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A simplified derivation of the master-graph formulation of the quantum-statistical theory of
an interacting quantum fluid is presented. A complete analysis of the self-energy structures
arising from both particle statistics and particle interactions simplifies the master-graph
expressions for the thermodynamic properties of the fluid. The x-ensemble formulation of
Lee and Yang is used to treat the degenerate Bose fluid below its Bose-Einstein condensation
temperature. The results for a Bose fluid above its Bose-Einstein condensation temperature
and for a Fermi fluid are obtained as special cases.

1. INTRODUCTION

The microscopic theory of the low-temperature
many-body problem has been approached in re-
cent years by a number of significantly different
methods. These methods have included quantum-
statistical methods, ' "perturbation theory meth-
ods, '3 "and Green's-function techniques. ~ "

In this paper, we present a unified quantum-
statistical theory of equilibrium quantum fluids
which is both simple and capable of direct applica-
tion to the calculation of the macroscopic proper-
ties of realistic systems in terms of their fun-
damental interparticle interactions. The unique
feature of the present theory is that it satisfies
the following important requirements on any micro-
scopic theory of quantum fluids, namely, (a) the
theory applies to finite temperatures as well as
to the zero-temperature limit; (b) the theory
treats the case of strong interactions so that the
repulsive cores of real particles can be included;
and (c} the theory obtains a quasiparticle descrip-
tion of the quantum fluid as the result of a thor-
ough and rigorous treatment of the self-energy
problem.

It is also worthwhile to indicate at the outset
what has not yet been accomplished by the present
theory. It has not yet been extended to include
the description of transport processes or other
nonequilibrium phenomena. It is restricted to
single- component quantum fluids, although the
generalization to a multicomponent quantum
fluid' is straightforward. The possibility of
describing the phase transition between the liquid
and gaseous states of a quantum fluid has not yet

been investigated. However, the case of Bose-
Einstein condensation, in which macroscopic oc-
cupation of a single (one-particle) quantum state
occurs in a Bose fluid, is treated.

The unified quantum-statistical theory of low-
temperature, equilibrium quantum fluids presented
in this paper has been developed over the past
several years by one of the authors (F.M. ). The
primary objective of this development has been
to derive useful expressions for the grand potential,
from which all the thermodynamic properties of the
system can be obtained, and for the various dis-
tribution functions, such as the momentum distri-
bution and the pair- correlation function.
development was divided into two parts: (a) the
analysis'~ of a Bose fluid above its transition
temperature or of a Fermi fluid (both referred to
here as a "normal" fluid}, and (b) the analysis'~'
of a Bose fluid below its transition temperature
(referred to here as a "degenerate" fluid). In a
degenerate fluid the macroscopic occupation of a
single one-particle quantum state (i.e. , the occur-
rence of Bose-Einsteincondensation) requires that
the degenerate fluid receive a different treatment
from the normal fluid. The purpose of the present
paper is to extend, synthesize, and simplify the
previous analyses of quantum fluids and to include
the normal fluid as a special case of the degenerate
fluid.

Before considering the new developments let us
first review the previous analyses of quantum flu-
ids. The Ursell expansion was used'~ to express
the grand potential and the distribution functions in
terms of cluster integrals. As a first step in
studying the cluster integrals, a partial summa-



NOH LING, 8 AMARAO, AND SHE A

tion in the theory was performed to express the
cluster integrals in terms of the free-particle
momentum distribution

v(k) =expp[g- ~(k)]{1—eexpp[g- &o(k)]] ', (1.1)

instead of in terms of the basic statistical factor
e expP[g- ~(k)]. Here, we have a=+ I for a Bose
fluid, and e=-1 for a Fermi fluid. Furthermore,
the effects of particle interactions were accounted
for by performing a linked-pair expansion in
which the cluster integrals were expressed in
terms of two-body functions related to the matrix
elements of the interaction potential. The theory
mas then expanded in terms of linked-pair graphs
in which the effects of particle statistics were re-
lated to solid lines and the effects of particle in-
teractions were related to wiggly lines.

In order to express the theory in terms of quan-
tities that are more physical than the free-particle
momentum distribution, the next step in the devel-
opment was to analyze the self-energy problem
(i.e. , to study all graphical structures with one or
two external lines). The self-energy analysis'~~
was divided into the study of three types of graphs:
those with just solid external lines (statistical ef-
fects}; those with just wiggly external lines (dy-
namical —or interaction —effects); and those with
both solid and wiggly external lines (mixing the
effects of statistics and dynamics). After this
complicated self-energy analysis, the theory was
reexpressed in terms of master graphs in which
the line factors represented all of the possible
contributions from self-energy graphs. These
line factors were obtained as solutions of a
complicated set of coupled integral equations.

Finally, a partial solution of these integral equa-
tions gave the dominant lorn-temperature contribu-
tions to the line factors, and the A transformation
was applied to the theory to account consistently
for the corrections to these dominant low-
temperature contributions. 2y~ The A transforma-
tion resulted in a quasiparticle description of
the system. This entire analysis mas an extension
of earlier work by Lee and Yang. ' '

Recently, we have found that the set of coupled

integral equations for the self-energy contribu-
tions can be considerably simplified if the effects
of mixing statistics and dynamics are fully utilized.
This new analysis results in simpler expressions
for the master-graph expansions of the grand po-
tential and the momentum distribution, and simpli-
fies calculations. Although we can derive this
new formulation from the previous results, we
have also obtained a deeper insight into the self-
energy problem, which indicates that much of the
previous complicated analysis can be eliminated.

In reexamining our previous analysis of quantum
fluids, we find that two "unfortunate" steps were
taken: The first was the partial summation of the
theory in which the basic statistical factor e expP
XLg- ~(k)] was replaced by the free-particle
momentum distribution v(k). {Since much of the
earlier self-energy analysis mas devoted to the
replacement of v(k) by a more physically meaning-
ful quantity, one closely related to the actual
momentum distribution for an interacting system,
it is simpler to work directly with the basic sta-
tistical factor e expP[g- ur(k)] without ever intro-
ducing v(k). ] The second "unfortunate" step was
to keep separate the effects of statistics and dy-
namics until the master graphs were introduced,
when the mixing of these tmo effects mas finally
considered. By mixing the effects of statistics
and dynamics from the outset, we find now that
the self-energy problem can be analyzed in a
clearer and more illuminating manner. To sum-
marize, two important steps in the previous anal-
ysis are eliminated, resulting in a considerable
simplification of the entire analysis. In making
these changes me depart almost entirely from the
original viewpoint of Lee and Yangs-io which
formed the basis of the previous analysis.

In Sec. 2, we use the linked-pair expansion to
express the theory in terms of primary linked-
pair graphs. In Sec. 3, we analyze the zero-
momentum self-energy graphs (for a degenerate
fluid). In Sec. 4, we analyze the nonzero-
momentum self-energy graphs and express the
momentum distribution in terms of master graphs.
In Sec. 5, we express the grand potential in terms
of master graphs.

2. REVIEW OF PUANTUM STATISTICS

The theory of the grand canonical ensemble provides a means of calculating average values and fluctua-
tions of the energy, total number of particles, entropy, and other equilibrium thermodynamic properties,
as well as the distribution functions, for a system of interacting particles. The calculation of the average
values of the thermodynamic properties of a system essentially reduces to the determination of the grand
partition function:

exp(Qf) = Z Tr [exp(PgN) exp(- Pa }j(N)

N=O
(2. 1)
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where A is the volume, f is the grand potential (assumed to be an intensive quantity), g is the chemical po-
tential, N is the number operator, p = I/([T, )[ is Boltzmann's constant, and T is the absolute temperature.
We make the usual assumption that the N-particle Hamiltonian H(N) includes only two-body interactions,
although this assumption is not essential to the method. The symbol Tr~ indicates that the trace is to be
taken over a complete set of properly symmetrized (or antisymmetrized) N-particle state vectors .If we
use the interaction picture and express the N-particle state vectors as symmetrized (or antisymmetrized)
combinations of single-particle state vectors in the momentum representation, the TrN term in Eq. (2. 1)
takes the form

TPN[exP(PPN)exP(-PN )l=(NI) 5 exP P 5 [N te(e )-))
(N) -1

k~ ~ ~ k~ i =1

where

xZ, ~ &'(aln2 "uJW (P)~e'u'"y '}~
2

(p)
= exy-(pHG ) exp(- PH )

N)

(2. 2}

(2. 3)

is the free N-particle Hamiltonian; (d(k)=0'0'/2M; e =-+1 for Bose-Einstein statistics, and q =
«r Fermi-Dirac statistics; and $&pp' indicates the sum over all possible permutations of the primed in-
dices. 'We use the convention that k represents a11 the eigenvalues necessary to specify a single-particle
state of II "'

For a degenerate Bose fluid, Lee and Yang' found that the usual methods for determining the grand po-
tential failed because of the macroscopic occupation of the zero-momentum single-particle state. If I. of
the single-particle states used in the trace in Eq. (2. 1) correspond to zero-momentum states, then there
are I t identical exchange terms in the matrix elements contributing to this trace [see Eq. (2. 2)]. This
very large number of exchange terms, for (L) -(N), results in a nonintensive expression for the grand po-
tential which diverges as 0-~.

To overcome this problem, Lee and Yang' suggested using a modification of the grand canonical ensem-
ble that they called the x ensemble. In the x ensemble, Eq. (2. 1}is replaced by

exp(Af ) =exp(- xA) Q Q
t

TrN jexp(pgN) exp(- pH )j(»A) (N)

O L 0
(2.4)

where the symbol Tr~ I, indicates that the trace is to be taken over a complete set of N-particle states in
the momentum representation in which L of the free, single-particle states have zero-momentum. The
parameter x is determined from the theorem that if

af /e»=O, x=(x&=A '(Z, ), (2. 5)

then fx=finthe limit A-~. If Eq. (2. 5) is not satisfied, then f„=fat(x)=0, and Eq. (2.4) reduces essen
tially to Eq. (2. 1). From Eq. (2. 5) we see that the parameter x is the density of zero-momentum particles
and that f» is equal to the grand potential f at equilibrium. Some of the implications of Eqs. (2.4) and (2.5)
are discussed in Ref. 3 [below Eq. (3) in that reference] .

Ef we develop the quantum-statistical theory using the x-ensemble, and allow the N-particle state
vectors used in evaluating the traces in Eq. (2.4) to be either symmetrized or antisymmetrized as in Eq.
(2. 2), we see that we can simultaneously treat the cases of a Bose fluid below the Bose-Einstein condensa-
tion temperature (e =+ 1, (x) & 0), a Bose fluid above the Bose-Einstein condensation temperature (a =+ 1,
(x) = 0), and a normal Fermi fluid (c = —1, (x) = 0). In the latter two cases (the normal fluid), we set (x}= 0
[which is equivalent to setting all the (0, 2) and (2, 0) quantities that we shall introduce later equal to zero]
and include 0 =0 in all of the momentum state sums

We begin our analysis with the expressions found previously for the grand potential and the momentum dis-
tribution in terms of linked-pair (p, v) graphs. The grand potential is given by

Af(x, P, g, A) = Afo(P, g, A}—xA+xAe +Q [all different linked-pair (0, 0) graphs],

where the free-particle grand potential is

(2.5)
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~f (P, g, fl) = —&Z in(1 —&expp[g- &u(p)]]. (2. 7)

and the momentum distribution is given by

(n(k)) =(x) 05 + & (&&&)[1+ev(p)] +[all different linked-pair (1, 1) graphs] p'

where the free-particle momentum distribution is

&(p) =expP[g- co(p)]/1 —e expP[g —&u(p)l 'j .

(2. S)

(2. 9)

Equations (2. 6) and (2. 7) follow from Eqs. (16) and (17) in Ref. 3 and Eqs. (57) and (22) in Ref. 1, while
Eq. (2. 8) follows from Eqs. (27) and (29) in Ref. 3 and Eqs. (9) in Ref. 2. We use the convention (when
(x) e0) that whenever a momentum k does not take the value zero it is represented by p.

The definition of linked-pair (i&, , v) graphs, which are similar to the primary linked-pair (p, , v) graphs we
shall introduce below, can be determined from Refs. 1 and 3. Among other things, linked-pair (p, , v)
graphs contain solid lines with line factors e»(P), where»(P) is the free-particle momentum distribution,
and cluster vertex functions"

t
exp(-t [~(k,)+~(k,)-~(k,)-~(k,)]]= 8(t, -t, ) -' ' 8(f, f)+8-(t,,-f )

~

' ' 8(f, -f ),

0 0 0

or

where 8(y) = 0 for y & 0, 8(y) = 1 for y & 0, and

kk
,

ksk4
0

8(f, —to), for t& = t2, (2. 10)

=((k,k, i R(f„ f,) i k,kg + ~(k,k, i R(t„ t, ) ikp, )]exp(- t,[(u(k, )+ &u(k, ) —(u(k, ) —(o(k,)]),
k3k4

0

R(t„ to) -=- —(exp[t,Ho&2&]exp[- (f, —to)H&2&] exp[- (+0"&] ]
0

The ev(p) arise by summing [for every internal line in the corresponding linked-pair (p, , v) graph] all pos-
sible numbers of one-body functions, each of which represents the basic statistical factor e expP[g- z(p)].
Unfortunately, the free-particle momentum distribution is not a useful function for an interacting system.
The entire statistical analysis is simplified if instead we use primary linked-pair (p, v) graphs, which are
expressed in terms of the basic statistical factor &expp[g-&o(p)] rather than e& Q). We now define primary
linked-pair (p, v) graphs.

Primary Linked-Pair (p v) Graphs

A primary linked-pair (p, , v) graph is a collection of P cluster vertices and P, 1-vertices. The expres-
sions represented by these two types of vertices are shown in Fig. 1. These vertices are entirely inter-
connected by m wiggly (internal) lines. There are also md outgoing dotted lines and md incoming dotted
lines, and we shall also refer to these dotted lines as being internal lines. The expressions represented
by these lines are shown in Fig. 2. In addition to internal lines, there are p, outgoing external solid lines
and v incoming external solid lines. Some examples of primary linked-pair (p, v) graphs are given in
Fig. 3. The rules for forming these graphs and the procedure for determining the expression correspond-
ing to a given graph are as follows:

(a) A 1-vertex is represented by a cross and has attached one outgoing and one incoming line, neither
of which may be a dotted line. A c1uster vertex is represented by a circled dot and has attached two out-
going and two incoming lines which may be solid, wiggly, or dotted. It must not be possible to complete
a loop in a primary linked-pair (p, v) graph by following the arrows on wiggly lines without encountering
at least one 1-vertex. Two wiggly lines may not connect the same two cluster vertices; such a structure
is called a wiggly-line double bond.
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(b)
k I~kk

I 2

k~k~ )

f,

8(P-),) R("„&)
ke = 8(p-te} 8(p, p ) exp pIg-~(p, )]

FIG. 1. Expressions represented by I vertices and

cluster vertices. Both types of vertices occur in pri-
mary linked-pair and zero-contracted (p, v) graphs,
while only cluster vertices appear in master (p, v)

graphs. When k cannot be zero, we make the replace-
ment k p. The lines which attach to cluster vertices
can also be dotted. (a) I vertex. (b) Cluster vertex.

(b) To each external (solid) line assign a pregiven momentum P. External lines with different assigned
momenta are considered distinguishable. For the case (x) WO, when an external momentum is zero, there
is no corresponding external line. For the purpose of rule (e), associate a temperature label P with each
outgoing solid line.

(c) Two primary linked-pair ()),, v) graphs are different if their topological structure, including internal
line types and directions, and external line momenta and direction are different.

(d) To each internal wiggly line assign a different integer i(i= I, 2, . . . , m) and a momentum ki. To
each outgoing dotted line assign a different integer i(i = m+ l, m+ 2, . . . , m+ mdo), a zero momentum, a
temperature label si, and an outgoing zero mome-ntum line factor ()(P- s )(xQ)'I'expPg. To each incoming
dotted line assign a different integer i(i=m+md +I, . . . , m+mdo+mdi), a zero-momentum, and an in-
coming zero-momentum line factor (xQ)'&.

(e) Assign a temperature label f. to each I-vertex and each cluster vertex. Associate a vertex function
with each vertex as shown in Fig. 1. Momentum is conserved at each vertex. Graphical structures in
which some of the wiggly-line momenta are identically zero must also be included in any sum over all pri-
mary linked-pair (p, v) graphs.

(f) Form a product of all the line factors and vertex functions assigned in rules (d) and (e). Assign an
over-all sign e H to the entire graph, where PH is the permutation of the (2P+P, ) bottom-row momenta
of the vertex functions with respect to the (2P+P, ) top-row momenta.

(g) Assign a factor S ' to the entire graph, where 8 —= symmetry number

(o)

(s=I) (S= I)

Q,
(s=2) (s=8)

= S(p-t) (xQ) e

( g)l/2 p9 G(o) ())

(b)

JN

(S= I) (S= I ) (s= I ) (S=2)

() t(P (l2 (c)

I

(S =2) (s= I) (S=2)

FIG. 2. Expressions represented by lines in primary
linked-pair and zero-contracted (p,, v) graphs. (a) A

wiggly line. (b) An outgoing dotted (zero-momentum)
line. The first expression is for a primary linked-pair

(p, v) graph, and the second expression is for a zero-
contracted (p, v) graph. (c) An incoming dotted (zero-
momentum) line. The first expression is for a primary
linked-pair (p, v) graph, and the second expression is
for a zero-contracted (p, v) graph. Here, the temperature
label t is that of the cluster vertex to which the incoming
dotted line attaches.

(S=2) (S= I) (s=2)

FIG. 3. Some examples of primary linked-pair (a)

(0, 0) graphs, (b) (1, 1) graphs, (c) (2, 0) graphs, and (d)

(0, 2) graphs. The symmetry number of each graph is
shown.
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The symmetry number is defined to be the total number of permutations of'the (m+mdo+mdi) integers
assigned to the internal lines that leave the graph topologically unchanged (including the positions of
these numbers relative to the internal lines). Examples of symmetry numbers are given in Fig. 3.

(h} Finally, sumoveraliofthemnonzero, internal momenta and integrate each of the (P+PI+mdo}
temperature variables from 0 to P.

It is also necessary to give a general definition of a (p, , v) L graPA C. orresponding to any given type of
(p, , v) graph (g, v) w (0, 0), we can define a (p, , v) L, graph which has the same structure and rules as the cor-
responding (p, v) graph with the following exceptions:

(i} The external lines are represented by wiggly lines assigned pregiven

momentary(=0

or p).
(ii) A temperature label t(t& P) is assigned to the head end of each outgoing external wiggly line (if any).
xiii) The temperature label of any vertex to which an incoming external wiggly line (if any} attaches is

not integrated over.
The concept of a (p, v) L, graph applies to the zero-contracted, master, and transformed master (p, , v)

graphs which will be introduced later, as well as to primary linked-pair (p, v) graphs.
In terms of primary linked-pair (p, v) graphs, the grand potential is given by

Af(x, P, g, A) = (xA) expPg- (xA) +Z [all different primary linked-pair (0, 0) graphs],

and the momentum distribution is given by

(n(k))=(x}A6 +expP[g-~(p)](1+a+[all different primary linked-pair (1, 1) graphs] ]k, 0 p
(2. 13)

We could obtain Eqs. (2. 6) and (2. 8).from Eqs. (2. 12) and (2. 13), respectively, by integrating over the
temperature labels associated withthe 1-vertices in the primary linked-pair {p, , v) graphs and then [for every
internal line in the corresponding linked-pair (p, v) graph] summing over all possible numbers of 1-vertices
to obtain linked-pair (p, v) graphs.

3. ZERO-MOMENTUM SELF-ENERGY STRUCTURES

Vfe begin our analysis of self-energy structures by considering zero-momentum self-energy structures.
By a zero-momentum self-energy structure we mean a graphical structure with only one "external" line
that could attach to a cluster vertex. In primary linked-pair (p, v) graphs there occur graphs in which
conservation of momentum at the vertices requires that some of the wiggly lines have momenta that are
identically zero (& =0). For such graphs, we can separate the graphs into two disconnectedparts by cut-
ting one of these 4 =0 wiggly lines. We shall perform a partial summation of the primary linked-pair
(y, , v) graphs in which these 0 -=0 wiggly lines are eliminated, and their effects are accounted for by gen-
eralizing the line factors associated with the zero-momentum dotted lines. Vfe note that the analysis of
this section applies, of course, only to a Bose fluid below its transition temperature and is essentially
the same as the analysis given in Sec. 5 of Ref. 3.

A (p, v) graph is improper with respect to 0 =-0 rei gply lines if by cutting any one of its 0 =-0 wiggly lines
the graph can be separated into two disconnected graphs. A ProPer (p, ~) grajk coifh respect to 0 =-0 soiggly
lines is a {p, v) graph which is not improper with respect to such lines. Thus, a (p, v) graph is improper
(proper) with respect to 0 =-0 wiggly lines if it contains (does not contain) k =-0 wiggly lines.

In order to perform the partial summation over k =-0 wiggly lines in primary linked-pair (p, , v) graphs we
introduce zero-contracted (p, v) graPhs. The rules for forming zero-contracted (p, v) graphs and deter-
mining the corresponding expressions are the same as for primary linked-pair (p, , p) graphs with the fol-
lowing changes:

(a) A zero-contracted (p, v} graph is proper with respect to k =-0 wiggly lines, i.e. , it does not contain
any & =0 wiggly lines.

(b) The line factor for an outgoing dotted (zero-momentum) line is (xA)'I'e@'Gout(0}(t) and the line factor
for an incoming dotted (zero-momentum) line is (xAP~'G „&'&(f), where

G ~ &(t) -=6(P- f)+E ~ &(f)
out out

G. &0&(f}=-I+X. ~0~(f) .
in in (3.1)

In Gin'to&(t}, f is the temperature label of the cluster vertex to which the incoming dotted line attaches.
Consider a cluster vertex in a zero-contracted (p, v) graph to which a dotted line is attached. It should be
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clear that, in terms of primary linked-pair (p, v) graphs, the 6(P- t) term in Gout&o&(t) represents an out-
going dotted line, while Kout'o& (t) represents the sum over all possible graphical structures which can at-
tach to the cluster vertex with an outgoing k —= 0 wiggly line. Similarly the "1"term in Gin~o&(t) represents
an incoming dotted line, while Ei„"&(t}represents the sum over all possible graphical structures which
can attach to the cluster vertex with an incoming k -=0 wiggly line. The quantities Kout@&(t) and Kin" &(t)

can be defined by functional derivatives as

K (t) = (xQe ) [6/6G. '&t )]Z [all different zero-contracted (0, 0) graphs]
(0) g -1 (0}(

out ln (3.2)

and E. (t) = (xQe ) [5/5G (t)]Z [all different zero-contracted (0, 0) graphs]
(0) g -1 (0)

in out (3.3)

In each of these derivatives, the vertex functions are held constant, and one of the temperature integra-
tions in the zero-contracted (0, 0) graph is eliminated. In Eq. (3.2) we obtain (xQ)"'e4Eout(0)(t) by tak-
ing the functional derivative with respect to the incoming dotted-line factor (xQ)' 'Gin &(t), while in Eq.
(3.3) we obtain (xA)'~2Kin&o&(t) by taking the functional derivative with respect to the outgoing dotted-line
factor(xQ)' 'ePgGout(0)(t). The quantities Kout&o&(t) and Kin~'&(t) will be expressed in terms of master
(»,, v) graphs in Sec. 5.

In order to make clearer the analogies between the analysis of zero-momentum self-energy structures
given in this section and the analysis of nonzero-momentum self-energy structures given in Sec. 4, it is
useful to express Kout"&(t) and Kin&'&(t) in terms of zero-contracted (0, 1) and (1, 0) L graphs as

K (t) = [(xQ)'~2e ] Q [all different zero-contracted (0, 1) I graphs) k
(0) „g -1

(3.2')

and K. ~'&(t) = (xQ}&~~+[all different zero-contracted (1, 0) I, graphs]in k=0 ' (3.3')

The general definition of J. graphs was given in Sec. 2.
We must now relate these zero-contracted (t&,, v) graphs to the primary linked-pair (t&,, v) graphs which

were used previously to express the quantum-statistical theory. By iterating the dotted (zero-momentum)
line factors in zero-contracted (t&, , v) graphs, we can verify that

2[all different primary linked-pair (t&, , v) graphs] =+[all different zero-contracted (t&, , v) graphs], (3.4)

for (t&, , v) 4(0, 0). For (tt, v} o(0, 0), the external lines provide a means for differentiating between the two
disconnected parts into which a primary linked-pair (p, v) graph can be separated by cutting one of its
k -=0 wiggly lines. Therefore, the symmetry numbers on the left-hand side of Eq. (3.4) are correctly gen-
erated by the right-hand side. For (t&,, v) = (0, 0), there are no external lines to provide a means for dif-
ferentiating between the two disconnected parts into which a primary linked-pair (0, 0) graph can be sepa-
rated by cutting one of its k -=0 wiggly lines. For this reason the zero-contracted (0, 0) graphs overgener-
ate the primary linked-pair (0, 0) graphs. As is proved in Sec. 5 of Ref. 3, we find

+[all different primary linked-pair (0, 0) graphs]

=+[all different zero-contracted (0, 0) graphs]- (xAe )1 dtK t (t)E. (t)pg p (0) (0) (3.5)

We can now use Eqs. (3.4}and (3.5) to express the quantum-statistical theory in terms of zero-contracted
(t&,, v) graphs. From Eqs. (2. 12) and (3.5), the grand potential is given by

Af4, p, g, A) =(xA)(e —1)—(xQe ) J' dtE (t)E; (t)+5[all different zero-contracted (0, 0) graphs].
(o) (o)

out in

(3.5)

From Eqs. (2. 13) and (3.4), the momentum distribution is given by

(»{t&)) = exp{p[g- &u(t&)])(1+eZ[all different zero-contracted (1, 1) graphs] (3.7)
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By studying the zero-momentum self-energy structures we have taken the first step in a complete
analysis of all the self-energy structures in the quantum-statistical theory. In Sec. 4 we complete the
analysis by studying the nonzero-momentum self-energy structures.

4. NONZERO-MOMENTUM SELF-ENERGY STRUCTURES AND THE MOMENTUM DISTRIBUTION

In order to complete the analysis of self-energy structures that. we began in Sec. 3, we now consider
nonzero-momentum self-energy structures. By a nonzero-momentum self-energy structure we mean
a graphical structure with two "external" lines that could connect two cluster vertices (or that could be
attached to the same cluster vertex). For a quantum fluid with (x) WO, there are three different types of
nonzero-momentum self-energy structures which we shall refer to as (1, 1), (0, 2), or (2, 0) self-energy
structures. A (p, , v) self-energy structure has p outgoing "external" lines and v incoming "external"
lines where p, + v=2.

We use the momentum distribution to motivate the introduction of the quantity g»(t„ t„k) which repre-
sents the sum over all of the (1, 1) self-energy structures. This interpretation of g»(t„ t„k) suggests
introducing the generalization g& v(t2, t1, k) which represents the sum over all the (p, v) self-energy
structures. We then obtain a set of coupled integral equations for the g»(t2, tl, k). Finally, we ex-
press the quantum-statistical theory (except for the grand potential which is treated in Sec. 5) in terms
of master (p, , v) graphs which contain three types of solid internal lines, dotted (zero-momentum) lines,
external lines, and cluster vertices. The 1-vertices no longer appear. The three types of solid internal
lines represent the three possible nonzero-momentum self-energy structures, and the dotted lines repre-
sent the zero-momentum self-energy structures introduced in Sec. 3. The use of master (p, v) graphs
is analogous to the use of dressed propagators in the finite-temperature field theoretic treatment of quan-
tum statistics. "~ '

We begin analysis of the nonzero-momentum self-energy structures by introducing a quantity g„,(t„t„k)
with the equation

(4. I)

Comparison of Eqs. (3. 7) and (4. 1) suggests defining

(4. 2)

where Z, ,(t„ t„k)=+[all different zero-contracted (1, 1) L graphs] (4. 3)

In Eq. (4. 3), t, is the temperature variable assigned to the outgoing external wiggly line, and t, is the
temperature variable assigned to the vertex to which the incoming wiggly line attaches. The rules for
(p, v) L graphs are given at the end of Sec. 2.

Upon examining g„,(t„t„k), we see that it represents the sum over all (1, 1) structures that can occur
between two cluster vertices. Hence, it can be referred to as the complete (1, 1) nonzero-momentum
self-energy structure. In Eq. (4.2), the 5(t, ( ) —t, ) term represents a single internal wiggly line (the 5
function removes the dummy variable t, in this case), while 2»(t„ t„k) represents all (1, 1) structures
with two wiggly external lines. The t, & & in the 5 function in Eq. (4. 2) ensures that t, & t, and prevents the
occurrence of wiggly-line loops [see rule (a) for primary linked-pair (p, , v) graphs) when g»(t„ t„k) is
used as a line factor in master (p, v) graphs.

The above interpretation of g»(t„ t„k) suggests the following generalization" of Eqs. (4. 2) and (4. 3):

(4.4)

where Z (t, t, k) —=+[all different zero-contracted (g, v) L graphs]
p, , v 2' 1' (4. 5)

for p+ v=2. The functions g»(t„ t„k) and g, ,(t„ t„k) represent the sums over the graphical structures
with two incoming external lines and two outgoing external lines, respectively. In these (0, 2) and (2, 0)
structures one external line has an assigned momentum label +0 and temperature label t„while the other
external line has an assigned momentum label —k and temperature label t, The function. g, ,(t„ t„k) in-
cludes (0, 2) L, graphs in which both incoming external lines attach to the same vertex; with such graphs we
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must include a factor 5(t2 —t, ) on the right-hand side of Eq. (4. 5). We can show that

8 (t2, tl, k)=g (tl, t2, —k), for (g, v)=(0, 2) or (2, 0)

Integral Equations for the 8 „(t~,tl, k)

We begin by defining a basic graphical structure:

M (t, tl, k) =+[all different proper zero-contracted (p, , v) L graphs]
p, , v 2' 1' (4. 6)

By a ProPe~ graph we mean a graph which cannot be separated into two disconnected parts by cutting any
one internal line. An improper graph is a graph which is not proper.

Now M»(t2 tl k) is intended to represent all possible proper (p, v) structures that can occur between
two cluster vertices except for a single internal wiggly line. The case of the single internal wiggly line
has been allowed for in the definition of g v(t2, tl, k) by the 6-function term in Eq. (4.4). As was also
indicated for theg»(t2, tl, k) functions, M»(t2, tl, k) =M& v(tl, t2, —k), for (t, v)=(0, 2) or (2, 0).

We next write dow'n a simple set of integral equations relating the Z& v(t2, tl, k) and M, „(t2, tl, k)
functions

Z, ,,(t„t„k)=f ds[g, ,(t„s,k)M, ,(s, t„k)+8, (t„s,k)M (t„s,k)]

= f ds[M, ,(t, s, k)8, ,(s, t,™~', .s, k)8,,(t„s,k}],

Z, ,,(t„t„k) = f ds [ g, ,(t„s,k)M, ,(s, t„—k)+ 8, ,(s, t„k)&,,(s, t„k)]™,,«'&(t„ t„k)

= f ds[M, (s, t, )k8, (s, t„}k+M,(t„s, )k8, ,(s, t„—k)]-M «"(t„t,k)

g, (t, t„k)= J ds[g (t„s,k)M, ,,(t„s,—k)+8, , ,(t„s,k)M, (s, t„k)]—6(t, t„)M, «'&(t, t„k)

(4. 7)

(4. S)

= f ds[M, ,(t„s,k)g, (s, t„k)+M, ,(t„s,k)8, ,,(t„s,—k)] —6(t t, ) M, «&(t„t„k) . (4. 9)

The quantities M»«'&(t2, tl, k) are those parts of M»(t2, tl, k) in whichboth external lines attach to the
same vertex within the graphs representing M»(t2, tl, k). The 6(t„ t, ) is a Kronecker 5-function, and
M, 2«'&(t„t„k) is understood to contain a 6(t, —t, ) factor, The M»«'&(t2, tl, k) are subtracted from
2„„(t2,tl, k) whenever both of the external lines of 2»(t2, tl, k) attach to the same external vertex
(see Figs. 5 and 6). This prevents the occurrence of a forbidden wiggly-line double bond [see rule (a) for
primary linked-pair (p, v) graphs] when the 8»(t2, tl, k) are used as line factors in master (p, , v) graphs.

t2

„k
b',

, (t2, t, , k) =-

ik

t2

Ik+

t2 tl

gO,2(t2, t), k) =-
k

I

-k

t,
k -k

t2

I

-k

I

-k

FIG. 4. Diagrammatic representation of Eqs. (4.4)
and (4.I3). The graphical symbol used in master {JM, p)

graphs for g««(t2, t«, k) is also defined.

FIG. 5. Diagrammatic representation of Eqs. (4.4)
and {4.14). The graphical symbol used in master (p, v)

graphs for Qo 2(t2, t«, k) is also defined.
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FIG. 6. Diagrammatic representation of Eqs. (4.4)
and (4.15). The graphical symbol used in master (p, v)

graphs for 8& 0(t~, t~, k) is also defined.

Equations (4. 7)-(4. 9) have the same form, but different meaning, as Eqs. (56)-(59) in Ref. 3 for (x)
& 0 or as Eq. (43) in Ref. 2 for (x) =0. In the same manner as we shall represent Eqs. (4. 13)-(4.15) dia-
grammatically in Figs. 4-6, these equations can be represented diagrammatically by figures similar to
Figs. 5-7 in Ref. 3, for(x) &0, and Fig. 2(a) in Ref. 2, for (x) =0. It should be remembered that for (x) =0,
all (0, 2} and (2, 0) quantities are zero. Equations (4. 7)-(4.9) are easily proved diagrammatically by
iteration.

It is possible to obtain a partial solution to Eqs. (4. 7)—(4. 9) in which the integral equation for
8»(t„ t„k) contains only a single term, and hence has the same (apparent) form for (x) &0 as it does for
(x) =0 [compare Eqs. (4. 7) and (4. 13)]. For this purpose we introduce two new functions by the integral
equation

8(t„ t„k) -=6(t, —t,)+ «(t» t„k),
Z(t„ t„k)—= f, ds Q (t„s,k)M»(s, t„k) (4. 11)

and define a function

Q»(t„t„k)-=M, ,(t„ t„k)+ f ds, ds, M, ,O(t2, s„k)8(s„s„—k)M, ,)(t„s„k)

We can consider Q»(t„ t„k) as a basic (1, 1) structure in the following sense: It represents all (1, 1)
structures (other than a single wiggly line} that cannot be separated into two disconnected (1, 1) structures
by cutting a single internal line. Using the three functions defined by Eqs. (4. 10)-(4.12), we can write
a partial solution to Eqs. (4. 7) —(4.9):

Z, ,(t„t„k)= f ds8, ,(t„s,k)Q, ,(s, t„k)

= f ds Q»(t» s,k) g»(s, t„k)

80 )(t» t»k) = f ds, ds) Mo )(s» s»k) 9»(s» t), k) g(s„ t» —k) —Mo )"&(t), t„k)

= f ds~ds) M»(s„s„k) g(s„ t„k)9, ,(s„t„—k) —M»&'&(t„ t„k)

S»(t„t„k) = f ds, ds, g»(t„s„k)g(t„s„-k)M) 0(s„s„k)—6(t„ t, )M, ,o&(t„ t„k)

= f, ds, ds, 8(t„s„k)g, ,(t„s„—k)M, ,(s„s„k)—5(t„ t,)M),&'&(t„ t„k) . (4. 15)

Equations (4. 13)-(4.15) can be proved diagrammatically by iterating Eqs. (4.4) and (4.7)-(4.9) and re-
grouping terms. Equations (4. 11)-(4.15) have the same form, but a different meaning, like Eqs. (60)-(65)
in Ref. 3. The equation for $, , (tm, t„k) has the same form for (x) &0 as for (x) =0. Notice that when

(x) = 0, we have Q, ,(t), t„k)= M. ..(t„t„k) so that g, ,(t„t„k)= 8 (t„t„k) and S...(t„t„k)= @t„t„k). In
Figs. 4-7, Eqs. (4. 12)-(4.15) are represented diagrammatically. These diagrams are similar to those
used by Beljaev ~ and by Hugenholt2; and Pines.
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t2
&1

Q( )(tp, ti, k) FIG. 7. Diagrammatic representation of Eq. (4.12).

Master (p, ,v) Graphs

Having completed our study of self-energy structures, we can introduce master (p, , v) graphs and master
(p, v) L graphs. These graphs contain cluster vertices (but no 1-vertices), three types of internal solid
lines representing the three different types of nonzero- momentum self-energy structures, and dotted lines
representing the zero-momentum self-energy structures. The rules for master (p, , v) graphs are given be-
low.

A Pth order, master (g, v) graph is a collection of P cluster vertices, which are entirely interconnected
by m internal solid lines. There are ado outgoing dotted lines and md& incoming dotted lines, also referred
to as internal lines. In addition to these internal solid lines, there are also p, outgoing external solid
lines and v incoming external solid lines. Each external solid line and each dotted line carries a single
arrow, while each internal solid line carries two arrows, one at each end of the line. Thus, there are
three different types of internal solid lines depending on whether the two arrows point parallel to each
other, point towards each other, or point away from each other. At the head of each arrow carried by
an internal line, there is a dot. If the arrow points towards a vertex this dot is identical with the vertex.
A master (p, , v) graph does not contain any 1 vertices. A master (p, , v) graph is irreducible, i. e. , it can-
not be separated into two (or three) disconnected graphs, at least one of which is a (1,1), (0, 2), or (2, 0)
graph, by cutting any two of its internal lines. The rules for obtaining the corresponding expression for a
given graph are as follows:

(a) To each external solid line assign a pregiven momentum p. External lines with different assigned
momenta are distinguishable. %hen an external momentum is zero, there is no corresponding external
line.

(b) Two master (p, v) graphs are different it' their topological structures, including arrow directions
and momentum labels of external lines (but not including the momentum labels of internal arrows and the
temperature labels which will be assigned later), are different.

(c) To each arrow of the m internal solid lines assign a different integer i(i = 1, 2, . . . , 2m) and a cor-
responding momentum kf. To each arrow of the (mdo+md ) dotted lines assign a different integer i(i =2m
+ 1, . .., 2m+mdo+mdf) and a corresponding zero momentum.

(d) Assign a factor S ' to the entire graph, where

S -=symmetry number.

The symmetry number is defined to be the total number of permutations of the (2m+mdo+mdf) integers
assigned to the arrows of the internal lines which leave the graph topologically unchanged (including the
position of these integers with respect to the arrows).

(e) Assign a different temperature variable f to each of the P vertices (circled dots) and to each of the
uncircled dots (at the head end of each internal arrow that points away from a vertex). Associate with the
entire graph a product of P pair functions corresponding to the P vertices with the momentum variable
assignments of rules (a) and (c). The pair-function "upper temperature label" associated with an outgoing
external solid line is P. Assign a factor e ~ to the graph, where PB is the total permutation of the 2P
bottom-row momenta with respect to the 2P top-row momenta in the product of pair functions.

(f) To each internal solid line with arrows labeled i and j assign a line factor and a momentum-conserv-
ing Kronecker 6. These assignments are: 5(k;, k&)81 1(f, s, kf), when the arrows point parallel to each
other; 5(kf, —k~)80 2(f, s, kf), when the arrows po~int towards each other; and 5(k~, —k&)g2 0(t, s, k;) when

t ~ 0 ~the arrows point away from each other, where the temperature variables t and s are determined by the as-
signments of rule (I). In each case the arrow labeled i points towards the dot labeled with the temperature
variable I;, and the arrow labeled j points towards the dot labeled with the temperature variable s.

(g) When two internal lines connect the same two vertices (with temperature variables f, and f, ) and
have the associated line factor product ~, ,(t„f„k,) 9»(f„t„k,), then from the quantity

k4
4
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we must subtract the term

5(t, —t, )5(t, —t, )
-k3 k4-

t4
The subtracted term is called the wiggly-line double-bond correction [see rule (a) in Sec. 2].

(h) Associate with each outgoing dotted (zero-momentum) line a factor (xQ)1/2Gout( )(t) e@', where t is
the temperature variable assigned to the outgoing dotted line in rule (e). Associate with each incoming
dotted line a factor (xQ)'~'Gint" (t), where t is the temperature variable assigned to the vertex to which the
incoming dotted line attaches.

(i) Finally, sum over the 2m internal momenta and integrate from 0 to P over each of the temperature
variables assigned in rule (e).

We must now relate these master (p, v) graphs to the zero-contracted (p, v) graphs. By iterating the
solid internal lines in master (p, v) graphs, we can verify that

Z [all different proper zero-contracted (p, v) L graphs]k

5(p —tl)expp[g —e(p)] + Z fall different master (p, v) L graphs] (4. 16)

for (p, v) I(0,0). The first term on the right-hand side of Eq. (4. 16) represents the proper zero-contracted
(1, 1) L graph consisting of a single l-vertex, which is not a master (1, 1) L graph. It is straightforward to
verify that the symmetry numbers are correctly given. It is convenient to define

K (t, t, k) -=Z [all different Pth-order master (p. , v) L graphs)
p, , 2 1

(4. 1V)

so that from Eqs. (4. 6) and (4. 16), we obtain

(t, t, k)=5 6(P-t )expP[g-~(t)]+A (t, t, k) .
p)p 2 1

(4. 18)

Thus, we can express the nonzero-momentum self-energy structures and the momentum distribution, Eq.
(4. 1), entirely in terms of master (p, v) L graphs.

The zero-momentum self-energy structures and the grand potential will be expressed in terms of master
(p, v) graphs in Sec. 5.

5. MASTER-GRAPH FORMULATION OF THE
GRAND POTENTIAL

The master-graph formulation outlined at the
end of Sec. 4 summarizes the analysis of the self-
energy problem discussed in detail in Secs. 3 and
4. The master graph line factors g & v(t2, tl, k)
of Eq. (4.4) represent the sum over all possible
(p, , v) self-energy structures, where (p, , v) = (1,1),
(0, 2), and (2, 0). By summing over all possible
self-energy structures we have been able to ex-
press the zero-contracted (p, v) L graphs in terms
of master (p, v) L graphs for (p, , v) o0 [See Eq.
(4. 16)]. In this section, we would like to express
the grand potential Af, given by Eq. (3.6), com-
pletely in terms of master (tl, , v) graphs.

We would like to rewrite the sum over all zero-
contracted (0, 0) graphs in terms of master (0, 0)
graphs. To this end we define

Qf= 5[all different ma—ster (0, 0) graphs] . (5. 1)

As a first guess, one might think that QE equals
the sum over all zero-contracted (0, 0) graphs.

8 (t, t, , k) -=5 (t —t, )
(~) (-)

+cZ (t2, tl, k)
(7)
ppv 2 1

(t2 t, k)= f ds[g, , (t2, s, k)M„,(s, t„k)(~) ~ (~)
0

(5. 2)

+ g, , (t„s,k)M...(t„s,k)],
(~)

(5.3)

Unfortunately, the expansion of the right-hand side
of (5. 1) shows that the symmetry numbers of the
zero-contracted (0, 0) graphs are not properly re-
produced. Hence we must obtain an expression
for the difference between QI' and the sum over all
zero-contracted (0, 0) graphs. We find that this
difference can be expressed in terms of master
(p, v) graphs by using the following quantities
which are generalizations of the 8»(t2, tl, k) and

Z»(t2, tl, k) defined by Eqs. (4.7)-(4.9):
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g, , (t„t„k)=J 'ds[8, , (t„s, k)M, ,(s, t„—k)
0

+ 8, , (s, t„k)M, ,(s, t„k)](l)

(5.4)

Q [all different zero-contracted (0, 0) graphs]

=nF+Q f dt[z, , (t, t, p)-z, ,(t, t, p)]p (t)

+5 &n(p))

+ 8... (t„s,k)M, p(s, t„k}](l. )

—5(t„ t, )M, po&(t„ t,k) (5. 5)

g, , (t„t,k)= f ds[8, , (t„s,k)M. ..(t„s, —k)
0

(5. 11)

Theorem (5. 11) can be proved by generalizing the
proof for the special case of {x)= 0 given in Appen-
dix A. This generalization is outlined in Appendix
B.

Substitution of Eq. (5. 11) into Eq. (3.6) gives
the following expression for the grand potential:

where & is a general temperature parameter
satisfying the inequality p&l & (t„t,). The func-
tions M, ,"'(t„ t„k) and M„,"'(t„t„k) have al-
ready been defined below Eq. (4. 9). The kernels
of the above integral equations, namely,
Mtl z(t2, tl, k), are given by Eqs. (4.18).

For convenience, we have not listed the alterna-
tive expressions for Ztl ~

r (t2, tl, k), which are
analogous to the second lines of Eqs. (4. V)-(4. 9).
It is also worth noting that the master-graph line
factors 8 tl ~(t2, tl, k) are the special cases of the
more general line factors 8tl „(t2,tl, k). Thus,(l)
it is easily verified that

+-,'Qf dt, dt M, , "'(t, t„k)

where

xM, ,&~&(t„ t„k), (5. 12}

nz*(x, p, g, n) -=nZ(~, p, g, n)- (xn)e

nf(~, p, g, n) =(xn)(e ~ 1)+-nF*(~, p, g, n)

+Z f dt's. .. (t, t p)p (t)

p
'

(5. 6)

We will also need a partial solution to the in-
tegral equations (5.2)-(5.5) for Z» ~ (t2, t„k).
This solution can be written in analogy with Eqs.
(4. 10}-(4.13) as

x f dtZ&'& (t)A.. &'&(t)+Z(n(p))
p 011't ill

p

(5. 13)

where

(tm, t„k)=—M, ,(t„ t„k)(l)

(t„t„k)=f ds8, , (t„s,k)
(&) l (l )

xq. .. (s, t„k),(l) (5.7)

To complete the master-graph formulation of
the grand potential we still have to express the
zero-momentum factors &out '&(t) and &in "(t)
in terms of master graphs. This step is easily
accomplished by substituting Eq. (4. 16) into the
right-hand sides of Eqs. (3.2') and (3.3'), and
remembering that zero-contracted (p, , v) I, graphs
are proper with respect to k =-0 lines. We obtain

+ f dS&dS2M2 p(tm, S&, k)

x 8 (s„s„-k)M, ,(t„s„k),(5.8)
(l )

x (t)=[( n)'~ ~~] '
out

8 (tm, t&, k)=5(t2 —t~)+eZ (t2, tl, k),
(l.) (l')

(5. 9)
xg [all different master (0, 1) L graphs]

k
(5. 14)

(t„t„k)= f ds8 (t„s,k)M. ..(s, t&, k).(T) l. (l.)

(5. 10}

We now state the result for the difference be-
tween nF of Eq. (5. 1) and the sum over all zero-
contracted (0, 0) graphs by the following theorem:

and X. &'&(t) =(~n)-'~
in

xi[all different master (1,0) I. graphs]
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By comparing Eqs. (3. 2') and (3.3') with Eqs.
(3.2) and (3.3), and using the definition (5. 1),
we can derive the alternate expressions

(t) = (xne ~) [5(nE)/5G. (t)] (5. 14')

(2, 0) quantities equal to zero. With this remark
Eq. (5. 12), which is equivalent to theorem (5. 11),
can be restated for the special case (x) = 0 as the
following theorem to be proved in this Appendix:

nf (p, g, n)=Zk f dt[s (t, t, k)
0

A. (t) = (xne g) [5(nF)/60 (t)]g. (5. 15')

As indicated in Eqs. (5. 14') and (5. 15'), the line
factors 9»(t2, tl, k) are to be held constant in
the functional differentiation.

6. SUMMARY

In this paper, we have taken the first step in the
development of a useful microscopic theory of
quantum fluids. As has been demonstrated in
Secs. 2-5, this theory is conceptually much
simpler than the earlier quantum-statistical de-
velopments of Lee and Yang' &" and Mohling. ' '
Also, the analysis of the self-energy problem is
approached in a more efficient manner. New and
simpler diagrammatic expansions for the momen-
tum distribution, the grand potential, and other
quantities of interest have been obtained in terms
of master graphs.

However, the formal expressions that we have
obtained here are not yet in a useful form for ap-
plication to low-temperature quantum fluids, i.e. ,
normal Fermi and Bose fluids and degenerate
Bose fluids. There are two routes for achieving
this objective: the application of a A transforma-
tion to the present theory and the use of a gener-
alized Hartree-Fock method in conjunction with
the present theory. Both methods result in a
quasiparticle description of the quantum fluids
with the present theory converted into a readily
usable form.
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APPENDIX A

—Z(t, t, k)]+Z (n(k))

+nz (p, g, n),(~)
(Al)

where nf (+) is the grand potential for the normal
system, and nE +) is given by the right-hand side
of Eq. (5. 1) after setting (x)=0. Also Z(t„t„k),
the master-graph line factor for a normal quan-
tum fluid [which is equal to Z»(t» t„k) in this
case], is given by Eqs. (4. 10) and (4. 11) with
(x) -=0. Similarly, Z(~)(t„ t„k) is given by Eqs.
(5. 9) and (5. 10) with {x)= 0.

The proof of theorem (Al) involves the use of
the following lemma:

(p, g, n)- nz (p, ~ n) Z {n(k))
(&) (N)

=-eZ Z e
mm —1 pf dt dt dt

k
2

m 0 1 2 mm=2

xM, ,(t„ t„k)M, ,(t„ t„k)

x M 1(t 1 t, k)

1(t, t, k). (A2)

This lemma can be proved by generalizing the
proof of Eq. (54) in Ref. 2, which proof is given
in Appendix 8 of that reference. We shall not re-
peat this proof here. We should note, however,
that for the purposes of this proof the term
gk{n(k)) on the left-hand side of Eq. (A2) can be
thought of as a master (0, 0) graph, constructed by
closing the external line of the 1-vertex graph of
Fig. 1(a) [see also Eq. (4. 1)].

The right-hand side of Eq. (A2) can be rewritten
in a more compact form by including the m = 1 term,
which is zero, and then separating the m/m terms
from the 1/m terms. We obtain

nf (p, g, n) nz (p-, g, n)-Z {n(k)}
(x) (iv')

Ze f dtdt "dtm p

1 0 1 2 m

In this Appendix, we prove theorem (5. 11) for
the special case (x) = 0, i.e. , for a normal sys-
tem. The relevant expressions for all quantities
of interest for the normal system can be obtained
by setting (x) = 0 and hence by setting all (0, 2) and

xM (t, t, k) ~ ~ .M (t, t, k)
y

m

+eZ Ze f dt,
0
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x ~ ~ (t, tl, a) .
1, 1 m' 1' (A8)

In obtaining Eq. (A3) from Eq. (A2) we have also
used the following identity:

f dt f dt
1 f, dtlf(tl, t&, . . . , t )

t
= f dt f dt f™dt

t
x 1 dtlf(tl, t, . .. , t ), (A4)

which is valid whenever f(tl, t2, . . . , t~) is a
cyclic function of the m-temperature variables.
Upon substituting the definitions (4. 11) and (5. 10)
for the case (x) = 0 into Eq. (A3), we readily de-
rive theorem (A1).

As a final matter for this Appendix we note
that the expression (Al) for the grand potential
Qf (A') can also be derived by simplifying the cor-
responding expression for Qf given by Eq. (56)
of Ref. 2.

In this Appendix, we sketch briefly the proof
of theorem (5. 11). The proof involves first a
generalization of theorem (A1) for the (x) 40
case. The first guess for such a generalization
might be

Q [all different zero-contracted (0, 0) graphs]

+Z, f dt[&„, (t, t, p) S, ,(t-, t, p)] . (B1)

This guess is almost correct. The correct-gen-
eralization is obtained by adding the last term on
the right-hand side of Eq. (5. 11) to the right-
hand side of Eq. (Bl), as can be verified by fol-
lowing the derivation of Eq. (91) from Eq. (88)
in Ref. 3. . This slight modification then leads
us to theorem (5. 11).

An even more direct proof of theorem (5. 11)
involves the combined use of the proof of Eq. (88)
in Ref. 3 with the analysis in Appendix G of Ref.
10. Vfe shall not elaborate this alternate proof
here.
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N. J. , 1963).
The definition of untransformed pair function in Eqs.

(2.10) and (2.11) differs from that used in earlier work
(see Refs. I and 3) through the inclusion of the factor
exp(-to(v(k~)++(~2) -~(&p) -v(&4)) ) We make this
change so that in the following papers of this series the
temperature dependence of the pair function will be more

apparent [see Appendix B of F. Mohling, I. RamaRao,
and D. W. J. She@, following paper, Phys. Rev. AI, 192
(1970)].

33The temperature integrals of the 8» (t2, tI, k) are
essentially equal to the reduced density matrices, Since
(+(p) )= (pl pi I p), this equality is obvious from Eq.
(4.1) for the (p, v)=(1, 1) case. See also Ref. 3.
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In a previous paper, the master-graph formulation of the quantum-statistical theory of quan-
tum fluids was developed. If this formulation is used to calculate the equilibrium properties
of quantum fluids, apparent divergences are encountered in the low-temperature limit. In the
present paper, we transform this theory by means of a A transformation to overcome these
apparent low-temperature divergences. In this transformation, the terms in the theory which
gave rise to the apparent low-temperature divergences and which represent the dominant low-
temperature contributions are summed explicitly to obtain well-behaved expressions. In ad-
dition, a consistent method is developed to obtain the corrections to the dominant low-tem-
perature contributions. Explicit expressions for the A-transformed theory are given for the
cases of a Bose fluid above the Bose-Einstein condensation temperature and for a Fermi fluid.
Finally, the physical implications of the A transformation are discussed.

1. INTRODUCTION

In the preceding paper, ' we developed a quantum-
statistical theory of quantum fluids and obtained
the master-graph formulation of the theory through
a very careful analysis of the self-energy problem.
In particular, we expressed the grand potential
and the momentum distribution [Eqs. (L 5. 12) and
(I. 4. 1)j in terms of master graphs. These quan-
tities were functionals of five different types of
line factors which arose from the self-energy
analysis: the solid-line factors 8 & „(t2 t 1 &)
with (p, v) = (1, 1), (0, 2), and (2, 0); and the out-
going (incoming) dotted zero-momentum line fac-
t»s &out"' (t ) [Gin"' (t)]. These line factors
were expressed in terms of a set of integral equa-

tions (I. 4.4), (I. 4. 10)-(I. 4. 15), (I. 4. 17),
(I. 4. IS), (I. 3.1), (I. 5. 14), and (I.5.15).

The reader might expect that a simple iteration
of the integral equations could be used to calculate
these line factors, which iteration could, in turn,
be applied to obtain meaningful expressions for
the grand potential and the momentum distribution.
Unfortunately, this iterative procedure cannot be
used since, in the low-temperature limit, it gives
apparently divergent contributions (ADC) to the
line factors, and hence to the grand potential and
the momentum distribution. To overcome this
problem we first identify the dominant parts, which
lead to ADC, of the kernels of the integral equa-
tions for the line factors and then solve the resul-
tant approximate integral equations exactly. These


