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(A10)

Now we go to order es. Substituting Eqs. (A4) and
(A9) into (A3) and multiplying the resulting equa-
tions by l from left we obtain

8 (pt
't(lip t li3) s 2 +f P4 rqt+f +5r s

+l8'er 2 +/Wvx =0,Bpg

which, after some manipulation, reduces to the
expression shown as Eq. (14) in the text.

Although the ion dynamics is ignored here it is
not difficult to include it. In this case, the disper-
sion relation changes, but it can be shown that if
a suitable group velocity and wave number are
used, the final expression [Eq. (14)] is still valid.
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The attenuation and dispersion of sound near the gas-liquid critical point are studied theo-
retically using the author's extended mode-mode coupling theory. The results differ in the
different regions of the sound-wave frequency f expressed in a dimensionless unit and of e,
the dimensionless temperature distance from the critical point. The attenuation behaves as
f'6 " ~ for 0-f«63", and as f ~ 6 ~ for E "«f«e", where p is the exponent which
appears in the wave-number (fc}-dependent correlation of the order parameter expressed as
&lk "+&2e k +",when k is much greater than the inverse correlation range of critical
fluctuations. The relative sound-velocity change with f behaves as f 2e ~" for O~f«e ", as
f c if p —2, and as f e if p&2 for e "«f«e"' . The explicit expressions for the
attenuation and dispersion are given for f- e ".

I. INTRODVCTION

In recent years the sound attenuation and dis-
persion near the critical points have attracted an

increasing amount of attention as a means of study-

ing dynamics of critical fluctuations. '2 In partic-
ular, the first successful theoretical study of
sound attenuation and dispersion near the liquid-
gas critical points was carried out in 1965 by

Botch and Fixman. '
After 1965, there has been a considerable prog-

ress in our understanding of the dynamics of crit-
ical fluctuations. In particular, Kadanoff and
Swift's brilliant application of the mode-mode
coupling theory to the liquid-gas transition yielded
valuable information on the divergences of various
transport coefficients near the transition. This
progress made it necessary to reconsider the
problem of the sound attenuation and dispersion
near the liquid-gas transition. Thus, it is the
purpose of the present paper to study this problem
in some detail using the extended version of the
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Although the order parameter associated with
the liquid-gas transition is the density, the entropy
fluctuation dominates the dynamics of the density
fluctuation near the critical point. Thus, in this
section we study the dynamical behavior of the
entropy fluctuations employing our general theory.
For this purpose we need the kinetic equations for
the entropy fluctuation 5S~ and the transverse com-
ponent of the local velocity vj'l where o = x, y, z.
The forms of nonlinear terms in these kinetic equa-
tions are derived in Appendix A, and we have

2 C

Sg = — p 5Sf -Q, iq'V ~ Zp 5St",vugg+ ff,
(2. 1)

T ~'. , qk
Vg = — O' Vg 1/2 ~IY 2 k — 2 9'

p 2pV q

1 1x p ——p 5S~&Sg p+ fg,
Cf

(2. 2)

where Xo and qo are the nonanomalous parts of
thermal conductivity and shear viscosity, respec-
tively. C~ is the k-dependent heat capacity per
unit volume at constant pressure, p is the mass
density, and V is the volume of the system. The
f's are the random forces acting upon S~ and vf,
and are related to 10 and go by the familiar fluc-

1
tuation-dissipation theorem. ~'9

gp designates the
sum over k which is smaller than some cutoff wave
number, so that the hydrodynamical concepts em-
ployed remain valid.

The pair of equations (2. 1) and (2. 2) for 5S~ and

v~ is essentially identical to the corresponding
pair of equations for the concentration fluctuation
5c~ and v$ of the binary solution [see Eqs. (3. 27) of
Ref. 7]. The analogy between the two problems
has been noted by Swift' previously, and we can

author's mode-mode coupling theory which is valid
in'the nonhydrodynamical regime as well.

In Sec. II we study the dynamics of the order-
parameter fluctuation (the entropy fluctuation in
this case), and obtain the decay rate of the fluctu-
ation which is valid in the nonhydrodynamical re-
gime as well. In Sec. III the results of Sec. II are
used to find the frequency-dependent complex
transport coefficients that enter the sound attenua-
tion and dispersion. In Secs. IV and V the behav-
iors of the sound attenuation and dispersion are
studied in various frequency and temperature re-
gions near the critical point, which restricted us
to the cases where the sound-wave length is very
much greater than the correlation range of critical
fluctuations. Since the work is closely related to
that of K'uianoff and Swift, ' we shall often quote
their work simply as KS in the following.

II. ORDER PARAMETER DYNAMICS

thus transcribe the results obtained for the binary
mixture~ to the present problem. Vfe thus con-
clude that (6Sgt)5S+0))/(I 5Sgl $ = e -r5 (f & 0) with

where the shear viscosity g remains finite and is
insensitive to e and k. If we use the Ornstein-
Zernike form for C„~ (k +z ) with g as the in-
verse correlation range of density fluctuations,
(2. 3) reduces to

where

I'jl = Dz'K(q/z),

D = ksT/-6vq

(2.4)

and

h((o) = —, —Re8(ar)+ ——Rez(ar)
co 1 1 1
c, p Cy Cp

&c ((o) (o 1—Im8(ar) + — Imk((o),
1 1

c 2c p v p

(3.1)

(3.2)

where Cz and Cp are the specific heats per unit
volume at constant volume and pressure, respec-
tively. Since the sound-wave frequency of our
interest co satisfies v/c «z, we only have to take
into account the frequency dependence in (3. 1) and
(3.2).

In the following we consider the two heat-modes
contribution 8r(&u), the two sound-waves contribu-
tion 8~(&o), the two viscous-modes contribution
8„(&o), and the contribution of the viscous mode-

K(x) -=—.'[1+x'+(x'-x-') ta 'x] . (2. 5)

For x«1, K(x) = x + ~ ~, and thus for q «a,
1 ~=Dzq . Therefore Ba is identical to the thermal
diffusion constant X/Cz, which can be directly
determined by the inelastic -light-scattering experi-
ment. ' Since the shear viscosity is expected to
be finite, so is D. This behavior of X was first
found by KS.

III. FREQVENCY-DEPENDENT COMPLEX TRANSPORT
COEFFICIENTS

In Sec. II, we have studied the heat diffusion
mode. Other hydrodynamic modes that couple to
the sound wave are the viscous mode and the sound-
propagation mode, ' both of which are, at most,
only weakly critical. Thus we are ready to study
the sound-wave damping, or equivalently, the fre-
quency-dependent transport coefficients entering
the sound-wave damping. These are 8(&o) =g(~)
+s q(&o), where f and g are the bulk and shear vis-
cosities, respectively, and the thermal conductiv-
ity x((o).

The sound absorption coefficient n(&o) and the
dispersion bc(or) =c(v) -c [where c(to) is the sound
velocity at the frequency ~, and c is the zero-fre-
quency sound velocity] are expressed in terms of
these transport coefficients as
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heat mode, &„r(&o).
According to KS (3.23), we have

1 " dk IL; 2/ql
2k T a (2m)' I'g+I'g „" -i(o

with L; f = —p(v'&a2(q))(a2( —q)a, (k)a, (q -k))
(3.4)

where q is the wave vector of the sound wave and
is taken to be along the z direction. a j and a2 are
defined in KS and are related to entropy and pres-
sure fluctuations 5Sg and 5Pt„respectively, as
(see also Ref. 13)

a)(k) =5Sf/(ksC2 )' (s. 5)

(p/ksT)' 1 1 1
a2(k) = conf + pr —

Cp 5$)H
n B k k

= cXs(p/ksT) 5P2

where Ck is the k-dependent specific heat at con-
stant volume, y& is the adiabatic compressibility,
and n is the number density.

Since we can take the limit q- 0 in (3.3), we
have"

(3. 8)

(a 2(- q) a,(k)a, (q —k))

T)&lpcl(KT (HP) (
)KCK

) (s. 'I)

and thus, using (v'~a 2(q)) = iqc(ksT-/p)', we

obtain

kBT 8P 8 lnC~q (s. 8)

dk 1 1

J (2v) (x +k2)2 21'S —i(d
(s. 9)

Using the Ornstein-Zernike form for Cg ()c(k +x )
'

we have finally'

Hp(QI)= K ( )
K ( )

where we have added the sound-wave damping con-
stants yg and y~ p in the denominator and

a;,&
=- —,'p k, T(( '„, ,(q)/))

(3.12)

For q«k, we may seta, (-q) =(p/ksT)' 'cys&P
by (3. 3) with &P, the pressure fluctuation. Thus
we have, as for (3.8),

a--=' "' k T' — ' (s 1s)'" '~2C ' ~r erV V 8

where Xs(k) is the k-dependent adiabatic compress-
ibility which is related to Fourier-transformed
local-pressure fluctuations 8P2 by ksT/(I 5PgI ).
The real and imaginary parts of e~(cu) have been
analyzed in detail in Appendix B, where the damp-
ing of intermediate-state sound waves was found
out to be important.

Next, we also considered the process in which
two viscous modes contribute to e. Essentially
the same type of analysis as before yields a con-
tribution ksTpx/rI to 6 and is always negligible.

Finally, we turn our attention to X„r(v), which
is very closely related to I'~. In fact, we have

( )
ksT

t
dk g 1 —(krak)

( )
p J (2v)' "

(ri/p)k ior-
and I (I

= q A.„r(0)/C,

IV. SOUND ATTENUATION

We first examine the sound attenuation arising
from Hr(&u) which we denote as o'r(&o). From (3.1)
and (3. 10) we immediately find

""=""(-::)'"'( )'-'

] + ~2 2 ~2 + 4D2~ 6g 2 ~

For «DK, we find

Substituting the result (2. 4) into (3.9), we ob-
tain the following form for 6r(&a), which is more
convenient for numerical computation,

(~) cc f2()c e (HH/2) -2f2A 1 8 lnz
c3C2 8T (4. 2)

x
dx (1+x')' 2''K(x) i&u-(s. 10)

where e -=I T T, I/T, and —we introduced the dimen-
sionless frequency f =(d/(H)(), with (H)() as some
microscopic frequency- I/qa, a being the average
intermolecular distance. If the scaling-law rela-
tion 2=3v+n is valid,

0

Next we consider the two sound-waves contribu-
tion 82(&H)). According to KS, Sec. IIIG, we find

1 dk"'"'= 2k.T, .+„(2.)
I&;. /q I'

(3 11)icsk +ics' ] q —k )+yg+ y~ p
—iso

(&)~ &
-2P- HH /2f 2 (4. 3)

This result is essentially the same as that of KS
in the low-frequency region 0«f«e ".

For higher frequencies f» e ", it may- appear
that 4D x K (x) in the denominator of (4. 1) is neg-
ligible compared with co . This, however, is not
the case. Since K (x) =(2v)x for x» 1, if we neg-



SOUND ATTENUATION AND DISPERSION

lect 4D )(3K2(x), the integral over x diverges at
large x. Namely, here the fluctuations with k» z
give major contributions to (2r((0). This contri-
bution was not considered in the earlier work of
the author. "

Now, for k»a, Ferer, Moore, and Wortis ~

have shown recently that the order-parameter «r-
relation, or Cfin our case, has the following
form,

C =Ak''" Ac'f 1 2 (4. 4)

where A& and A& are some constants, and

p = (1 —o.)/) if the strong scaling holds for Cg.
For the three-dimensional Ising ferromagnet,
p=-1. 51. Hence, we have for k»)(,

8 lnCg Ap
az" (4. 5)

Note that this is quite different from )((8)(/ST) 2k
k that follows from the Ornstein-Zernike

form for Cf, and (BCf/ST)2 is the only quantity
we need which is sensitive to the form of Cg,
[(4.4)]. We thus find

dk8r(~)-
K

1
2I k -$(0 (4. 6)

provided that k» z gives main contributions to the
integral, and

(4. 7)3~ /2 P dk 21k
k 2X'k +or

Indeed, as in (4. 1) the main contributions to (4. 7)
come from k» z which can be estimated by intro-
ducing the frequency-dependent cutoff k/- f '/3 de-
fined by 2I'~ =(d. In this way we obtain

ky

((d) ~ g / f 0/ ( gv+e/2 ))f))~3v) (4 6)

If we assume strong scaling p = (1 —n)/p,
i . t S -3e/2f 2 -2u - n)/3v (Sv + n/2» f» ~3v)

(4. 6')

or for n =0 (hence p= —',)13

nr((())(x:s3f, (q2/3»f»q2) (4. 6")
For f- s'", we may find (2r(v) by integrating

(4. 1) numerically. Unfortunately, the closed ex-
pression (4. 1) does not continue smoothly into the
high-frequency result (4. 6) due to the fact that the
Ornstein-Zernike form for C~gdoes not go into
(4. 4) for k»)(.

Here it is appropriate to remark about our ig-
noring the frequency dependence of I'g which is
valid as long as the condition

~ «(3)/p) I'

is satisfied where l is the wave number of fluctu-

In the low-frequency region f«s ", we have

(2 (&) f2~ - (n/2) - (1 - 3)v (4. 12)

and in the high-frequency region c2"«f «& ( /2) '",
we obtain

f (3 +3) /2 &-e/2 (4. 13)

We summarize the results obtained in this sec-
tion in Table I. Comparing the sizes of various
contributions to n((0), we find that (2r((()) dominates
practically in all the frequency regions considered
here, namely, 0&f«o ) '" ' ~=a". The over-
all behavior of n((d) is given in Table II.

V. SOUND-WAVE DISPERSION

We first consider the contribution of 8r((()) to the
sound-wave dispersion Acr((d). Equations (3. 2) and

(3. 10) immediately yield

~e,(~) a,T' (ev)' (a~)'

(1+x ) (d +4D /(K (x)
'

In the low-frequency region ar «D~, we cannot
ignore or in the denominator since this would cause
the integral to diverge at small x because K(x) = x
for x«1. The small-&u behavior of (5. 1) is found

TABLE I. Behaviors of contributions to sound at-
tenuation from ~T, ~&, and X„~defined in Sec. III in v»i-
ous frequency regions.

f o
Frequency regions

G&(cu)

n (cu)

Q g((2))

g3V — g2V ~v+ I/2

I II III

f2-2p/3 ~-3o /2

2 -V-0tf
2 -&f-n&v-a, /2f f&3+&)/2 -+/2

ations that give major contributions to I'2 [see
(3.14)]. In the low-frequency region f«s3", I- x
and (4. 6) is satisfied. In the high-frequency re-
gion f»3: ", l &k/=)(x„-a f ' and the condition
(4. 9) is satisfied iff«f'/', which is again satis-
fied since f«1.

The contribution of 8~((()) to the attenuation n~(ar)

is obtained using the result of Appendix 8 and is
for f«s"',

a ((0)- s " 'f ', (4. 10)

in agreement with KS.
The X„r((d) gives the following contribution n„((())

to the sound attenuation:

Q2((()) =(0 (ksT/pc Cy)

I
dk ), k~ ())k /p)

~ (2v)3 ' " k &o'+()lk'/p)2
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B&(cu)
given by (4.1)

~3V

~~((d)
f2-2p/3 &-3e~2

v+ e/2

TABLE II. Behaviors of dominant contributions to
sound attenuation in various frequency regions.

for
(5. 7)gp( )/ f3/2&1-2n

One from the fluctuations with 0- I(; denoted by
bc~(to), and another from the fluctuations with
k «2 denoted by AC3" (u1). Namely,

/2cp((o)/c- f'C '
0 &f« &v+ n/2

by introducing again the frequency-dependent cut-
off at x=x„-f'/ e "/ «1. Thus we find' for 0 gf« e3v

f« e3v gc (u1)/C 3
n - 9/2)v -2f 3/2

Or, using the scaling-law relation,

+c (a1)/c e + f

(5. 2)

(5. 3)

II( )/ f 9/2 —(15/2)v —(3/2)n

e3v «f« ~2v +n/4for
ti( i/ g8/2~ - (3/2)v —Q/4)e

cp ycogy c
(5. 6)

For higher frequencies f » a 3" the two cases
2p —3 & 0 and 2p —3 (0 must be distinguished. This
becomes apparent if we consider the sound-velocity
change using (4. 6),

&cr(40) n 2 dk 1
k23-2 (2F )2 2 (5 4)

Now, for 2p —3&0, the integral J'„" dkk2 2/' di-
verges at infinite k, and hence major contributions
to (5.4) come from k» a. On the other hand, for
2p —3 &0, the contributions from k» a to (5. 4) are
not significant, and we should use (5. 1) where the
main contributions to the integral come from x & 1.
For 2p —3&0 the integral (5.4) is again estimated
by introducing the same frequency-dependent cutoff
ki as for (4. 7). Thus we find for 2p —350,

1IC (R)/C 6 nf 1 3~/3 (63v&&f&& ev +n/2) (5 5)

and for 2p —3&0,

Ac (4c)/c-e f -s.f (e «f«e )
(5 6)

where the scaling-law relation has been used in the
second line of (5.6). The result (5. 6) is identical
to our earlier result. '

For f- e'", we can evaluate (5. 1) numerically.
Here again the same remark made for the attenu-
ation applies for the interpolation of (5. 1) and
(5. 5).

The contribution to the dispersion Ac~(ar) from
8~(a1) is found from the results of Appendix B.
There are two kinds of contributions to hc3(a1).

for 2V + e/4 g( +gg ~v +'e /2
J ~

Finally, the contribution from X„z denoted by
&c1(ar) is found in a similar manner, and the result
ls,

C (R)/C f 3/2& —(2-3)v

0&f«e"for

C (R)/C f u+ 0)/240

for esv((f (( Sv k n/2

(5. 9)

%e summarize the results obtained in this sec-
tion in Table III. Comparison of magnitudes of
various hc(1c) shows that Acr(a1) always dominates
in the frequency range considered, that is,
0 "f«e"' . This is shown in Table IV.

VI. CONCLUDING REMARKS

The sound attenuation and dispersion near the
liquid-gas critical point are studied for the sound-
wave frequency much less than cz, and the results
are summarized in Tables II and IV. In particu-
lar, we considered in detail the frequency depen-
dence of the attenuation and the sound-velocity
change arising from the very important process
of a sound wave breaking up into two heat modes. '
These theoretical results can be tested with the
recent accurate experiments, " which will be
deferred to another occasion.

So far our study has been restricted to the cases
where the sound-wave frequencies are much less
than etc. We now briefly discuss what is expected

TABLE III. Behaviors of contributions to sound dispersion from 8r, 83, and A„r defined in Sec. III in various frequency
regions. 4c& arises from fluctuations with k - ~ and Ae& from those with k « f(.

f 0 ~3V 2v+ e/4 2v &v+ e/'2

ac~(co)/c

b,c (co)/c

-3/2 -Sv/2

f3/2 ~&3/2) &v-e)

~2 -2v-ef E'

f8/'2 & i 5vt'2) -3e/2

f3/2 -(2-f))v

f' ~ e e for 2p —3=0
for 2p-3&0

f3/ 2 -3V/ 2- 3e/ 4

f(&+31)/2 0
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TABLE IV. Behavior of the dominant contribution to
sound dispersion.

f 0

hc(c )/c 4cz (~)/c
given by (5.1)

f' '~ 3~ for 2P —3(0
f & for 2P —3&0

when the sound-wave frequency becomes compara-
ble to cI(. Here L~ „- and JI~ g are no longer expect-
ed to have the simple forms of (3. 8) and (3.13),
respectively. Nevertheless, the static scaling
ideas allow us to 'estimate the various contribu-
tions to the attenuation and dispersion. Namely,
for v-cv, we have, apart from some dimension-
less factors which are functions of q/tc,

~2(v +e/2)(1- p/3)-3e/2 ~vQz

if o, =0 and p=1/v

( v +e /2) (1 - 2p /3) - e
C p/ C

ac,/c-e',

ECp/C

if 2p —350

if 2p —3& 0

(6. 1)

(6. 2)

(6. 3)

(6. 4)

n~ and bc~/c are much smaller and are ignored.
The contributions (6. 1)-(6.4) are roughly of the

same order of magnitudes and satisfy the dynami-
cal scaling in the extended sense'"' ' when n = 0.
That is, the sound-wave damping and the frequency
shift become comparable to and scale as the sound-
wave frequency itself. This is an interesting future
problem to study both experimentally and theoreti-
cally. The proper theoretical treatment, however,
requires the consideration of the frequency depen-
dences of yg and y& g in (3. 11) in a self-consistent
manner.
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APPENDIX A

Here we derive the kinetic equation for the en-
tropy density S(r), restricting ourselves to the
terms quadratic in the deviations from equilibrium. "
Regarding S(r) as a function of the particle number
density n(r) and the internal energy density H(r),
we have for the entropy density fluctuation 5S(r),

5S(r) = 5S'(r) +-,' 3„„5n(r)'

+ 3Nssn(~)5H(r)+~ Sss5H(r) + ~ ~ ~, (Al)
where~ 5S'(r) =(1/T) 5H(r) —(k/T)5n(r), (A2)

ae'
where we subtracted the orthogonalizing term from
aga~~ g to ensure the proper orthogonalization of
(A4) to a~~. By the time-reversal argument, the
only allowed combination on the right-hand side of
(A3) is [S'„., v~ p], (cr=x, y, g). The coefficients
in (A3) and (A4) are obtained by first noting the
following relations:

( Iv) l ) =ksT/p

(i 5Sfi') =ksC|.,

(A6)

(A6)

(5S~4vg fv'g) =[(ksT)'/pnV'~ ]n, 5„, (A7)

where C& is the k-dependent specific heat per unit
volume at constant pressure, ng is the k-dependent
thermal expansion coefficient at constant pressure
given by fo=( S 5nisg)/ksT, and p is the mass
density. This gives

[Sf, v~ i]=5spv~ 1",
—(Tnf/nV ~ Cg) v~ . (A8)

Use of the relations'

(5sf, 5S'f'i] =iV ~~ T (k'-k)' JP, f& (A9)

(vf i 5S!Pj Vl/2 Sl7+& TV&la ~ & f +"'
pV pTV

(A10)

and h is the equilibrium value of enthalpy per
atom, and the &'s are appropriate numerical co-
efficients.

If we take the local pressure, the entropy den-
sity and the three components of the local velocity
as the five macroscopic variables, the local pres-
sure and the longitudinal velocity change more
rapidly in time with the frequency of sound wave
than the entropy and the transverse components of
the local-velocity change. Thus, for the dynamics
of entropy fluctuations, we can retain only the en-
tropy density and the transverse components of the
local velocity as the macroscopic variables a' s
entering the kinetic equation of Ref. 7. However,
as in the case of binary mixtures, we temporarily
include the longitudinal component of the local ve-
locity and drop it later on.

Let us first consider 5S'(r) or its Fourier trans-
form 5S'~. The kinetic equation aside from the
random force and the damping term is written as

5st kB Q g ((Sf, [af ) a1 f]])[~g ~8
] (A3)(I[a, , a' -]I')

where the curly bracket denotes the Poisson brack-
et and
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where Pg' is the 7cr-component of stress tensor
and J)is the heat current related to the energy
current Jg by

J« = J2q -kv«, (A11)

yields

((6S,', [S'«, v),]})
iP~-,V '/2T '(q'+k')(J«'„-v««)

„,(5S'«[q'5S'«+ r-' Z, (k'- q') I'«']),
(A12)

where we have used that ((5S«, v'«}) = 0. Near the

critical point the major contribution comes from
(I5S«I ), and thus,

((6S'«, [S';, v««]}) = —(ik /pV' )q'C$ . (A13)

Noting that (I[6S«, v««]I ) =ksTCi/p+0(N '/ ), we

then find from (A3) and (A13)
I

6S« ———iV / Q,q'5~ " [S'„., v$ „"] . (A14)

Next, the contributions to 5S from the second,
third, ~ ~ ~ terms in (A1) either involve 5ri or 5H.

5i is the longitudinal component of local velocity
and averages out, and 6H= T5$'+&5' where 5S'

starts from the quantities quadratic in 5S' and v.
Therefore, 5S =5S'+(the quantities that average
out, or that are cubic, quartic, . . . in 5S' and 5v),
and for our purpose we can take 6S = 5S'. Thus,
finally we obtain

1

5S,= —V-"'Z. iq'Z«[5S„-, v; «], (A15)

~ g kate g' ((v«[S-«Skal}) [S'- S' ] (A16)vit ~«(I Pl gt ] I 2) kr «-«

Retaining only the most important terms near
the critical point in the coefficient of (A16) as be-
fore, we find

T ' . k' q'-k'i
v«= —,/, &~« i ~ + ~,l [S«, S« „-], (A17)

2pV

[SC S' -] = 5SC6S' - —( " " ) 6S'- . (A18)« it-2 ««-«(I 5S I2) q

Furthermore, if we note that only the transverse
components of v',»are to be retained, (A17) reduces
to

where v~ „"is supposed to contain only the trans-
verse component.

Next, consider the kinetic equation for v~~, which

is written as

APPENDIX B

Here we analyze 8~(ar) given by (3.11) and (3. I 3)
in detail. Since y& behaves as C& as far as the
critical anomaly is concerned, we have, assuming
the strong scaling for y2(k), ' '

[y, (I )] ' = k'"Z(x/k) . (»)
(8ixg(& i ')

(x/k) '-'"F '(x/k)T s

-& ''"&,(i~/k), (H2)

where E,(x) =x' /'F'(x) apart from a finite nu-
merical coefficient.
Therefore,

8 (id)-e" "Q )I dkP
S2S

I& (x/k) I

'
ic[sk+s' Ig -kl]+y«+y««-i' (a3)

lf &t(x) x for x« 1 with g & I, the integral con-
verges at large k provided that y~ increases at
least as fast as k at large k. ' We thus assume
the convergence of the integral at large k. Now,
if y~= 0, there is no significant contribution to
Re8~(w) from the terms with s =s'. The terms
with s —s behave like the contribution from the
three -phonon processes at low temperature solids
or superfluid helium and Re8&(ic) - 1/q. Thus
here the lifetime effects are important contrary
to the calculation of KS. Assuming the integral
for Re&(&0) to converge at small k as well22 and
noting that for k- x, y„- cia [see the discussion of
Sec. VI], we find for ur «cx that

n I i 2v-2+2m/2~0 -v+u/2f0

using 2= 3v+n, recovering KS's result.
Turning now to Im8~(e), we have

im8, ((o)-s" "Z d RIF,(x/k) I'
SS

X 2 p ~ 2 2 r (B4)c [sk+s Iq-kl-q] +(y«+y««)

since Im8~(&e) vanishes for id = 0. For definiteness
let us suppose that F,(x)- x0 for x» 1.22 The terms
with s = s

' in (B4) give no problem and behave as
e '" ' f=e "f. For s = —s', (B4) behaves some-
thing like the following quantity

v «
= —(T/2p V'/') 5~« i(k' —(q. k/q') q')

1 1x —
~

— ~ [S«,S««] (A19)

I(s,g)=s" "ff dk(f'+y,') (»)
Since for very small k, y~~ k, the integral di-
verges at small k if we set f=0 in the denominator.



SOUND ATTENUATION AND DISPERSION' ' ' 1757

This is the cause of some complications here. The
integral can be estimated by introducing the fre-
quency-dependent cutoff at k/ given by f=&2 as

ky

1(~,f)-2" "f 'k/, (B6)

where the correct most dominant y~ of Table II
must be used in each frequency regions ck&. The

results of somewhat tedious analysis are

O &f« esv

~3v« f« e 2v +n/4

I(C f) 61-nf 1/2

1(~ f) ~
- 25v/2- n /4f 7/2

e 2v + n / 4 «f« ~ v + n / 2 1(~ g) ~
- 3v /2 + n /4 g 1/ 2

PJ J
(Bv)
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