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Nonlinear coupling of a modulated wave and a low-frequency mode is shown to produce a
resonant interaction and instability when the Cherenkov condition v&=y cos0 is satisfied for
the phase velocity &p of the low-frequency mode, the group velocity vz of the modulated wave,
and the angle 0 between the two wave vectors. This effect stimulates the self-trapping (mod-
ulational instability) or self-focusing of the modulated wave. Examples are shown for the
cases of couplings between plasma cyclotron waves and magnetohydrodynamic (MHD) modes.

I. INTRODUCTION

Recently, the propagation of modulated waves
in a nonlinear dispersive medium has aroused con-
siderable interest in the self-focusing' or self-
trapping of laser beams and in the modulational
instability of a nonlinear plasma wave. 3'4 Such an
effect has been represented5 by a Schrodinger
equation for the amplitude of the modulated wave

y with a nonlinear potential term that is propor-
tional to I@1, i.e. ,

18v 8

The modulation has been shown to become unstable
when the potential is attractive'; i. e. , when

8 co Bv

a/cp f' aa

In the present paper, we present a new process
that leads to a similar instability. In this case,
the instability is due to a coupling of the modulated
wave with a low-frequency nondispersive mode
that may coexist in the same medium.

In this Introduction, we describe the general
idea of the process. Consider a wave with slowly
varying amplitude eq(x, t) e' " "", where c is a
small parameter. A second-order nonlinearity
will generate a perturbation of the form ~'ig(x, t)l

and cay (x, t) ea' "" ". If the medium can propa-
gate a low-frequency and long-wavelength mode,
the slow perturbation, a l&p(x, t)l, will then excite
this mode. We represent this mode by eaV(x, t).
If the medium is nondispersive at low frequencies,
the equation describing V to lowest order may be
written as an inhomogeneous linear equation with
a source term proportional to lyl', i. e. ,

DV(x, t) = nip (x, f) i'. (2)

In Eq. (2), o.'is the coupling coefficient, and D is
a linear differential operator involving a/at and

a/ax, having the form
( 82 82

where d& is a constant, and the v» are the charac-
teristic phase velocities (j= 1, 2 ~ ~ n) of the low-
frequency modes. Because a linear wave packet
propagates at the group velocity v~, the space and
time dependency of p in the right-hand side of Eq.
(2), should be of the form (x —vat) = f in the lowes—t
order. Equation (1) then assumes the form

a a
aV'

a
rr d
j=l a

On the other hand, if the medium is linear but
dispersive for the modulated high-frequency mode
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the amplitude function y(x, t) will obey a linear
Schrodinger equation of the form'

.8+ I dv,
z +2 d~

P-O. (5a)

If the medium is nonlinear, then the nonlinear in-
teraction between y and V (the third-order nonlin-
earity) will produce a coupling term E. quation
(5a) can then be modified to

1 dv~
Bt 2 dk Bx

(5b)

We now give examples of the above process em-
ploying modulated electron and ion cyclotron
waves. We assume a plasma with warm electrons
and cold ions. We assume also that the thermal
effect on the cyclotron waves is negligible. This
is valid so long as we limit the frequency of inter-
est to be well away from the cyclotron frequency.

where P is the coupling coefficient. Elimination
of V from Eqs. (4) and (5b) immediately results in
a nonlinear Schrodinger equation with a nonlinear
potential proportional to Igi2 and having a coeffi-
cient proportional to (v2- vk~~) '. In other words,
the nonlinear frequency change S&u/9!cpl2 now be-
comes proportional to (v~ —vk, ) . This indicates
that a suitable choice of v» will change the sign of
the coefficient in such a way that the potential be-
comes attractive. Hence, the instability can be
produced by the coupling. Furthermore, if v~ ap-
proaches v~; from the attractive potential side,
the instability will be enhanced because of the res-
onant denominator.

If one assumes a two-dimensional wave packet
p(x, y, t) e" " ", it can be shown in the same way
that the resonant condition becomes v cos8 = v~, ,
where 8 is the angle between x and the direction
of propagation of the low-frequency mode.

Equation (5b) itself is an ordinary linear Schro-
dinger equation if V is regarded as the potential.
Furthermore, Eq. (4) shows that V is created by

the particle density tp I, represented by the
Schrodinger equation. Therefore the entire pro-
cess can be understood as an interaction between
quantum particles (quasiparticles representing the
modulated wave} and the self-generated wave (low-
frequency mode}.

Because the Cherenkov condition v~ cos8 = v~

satisfies energy and momentum conservation
among the modes, (&u,k), (s~, bk) and (~a b, &u,

ka M), if v, cos6 —vk & e the process may be in-
terpreted as a decay instability, 8 (the decay insta-
bility of a modulated wave). A separate treatment
is necessary for this case because the present or-
dering breaks down.

II. THEORY FOR CYCLOTRON WAVES

We first introduce the scale transform in terms
of the slowness parameter e through the equations

$ =6( x—vgt)q ft=ev~ 7 =&

and then consider a modulated wave of the form
&p($, q, &) e' * "", where x is the direction of the
dc magnetic field. Because the cyclotron waves
are transverse waves in the linear regime, the
longitudinal variables, such as the density n or the
x components of the field variables, appear only
from the second- and higher-order nonlinearity.
Thus, we assume the following expansions in e for
the transverse variables:

(" (.
my (g ~ +) i(kxet)

and for the longitudinal variables

(8)

where E, B, v are the electric field, the magnetic
field, and the ion and electron velocities. On the
right-hand side of Eq. (8), the first term shows
the dc magnetic field and plasma density, and the
second term shows the slowly varying field quan-
tities produced by the second-order nonlinearity
of the transverse variables and represents the low
frequency mode. The third term contains the high
frequency longitudinal variables produced by the
coupling to the longitudinal mode through the g
dependency of the transverse variables.

We use the equation of motion and Maxwell's
equations for high-frequency variables:

(E+v, xB),
tPl ]

(E+v, xB),dt
1 8EgxB=ep,n(v, —v, )+~

()BVxE=—

From the equations of order e, we obtain

0 zg
= Pj($ ~

'9
~

~ )&~.
where x is a column vector satisfying 8"z = 0 and

fw/=o
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0 0 0+ Bx2 vx2 n2

kv~ B0 v~ 2n0
(14)

where c and ~~ are the speed of light and the elec-
tron plasma frequency. Equation (14), for appro-
priate v~(&o) and k(&u), hoMs for both ion and electron
cyclotron waves.

The slowly varying longitudinal variables 8„2,
v„2, and n2 are determined by the equations de-
scribing the low-frequency mode. We use here
MHD equations. For simplicity, we assume a
plane perturbation for p, as well as for the low-

frequency mode, that propagates with an angle 8

with respect to the x axis. The transverse vari-
ables couple through the J,xB, term (J is the cur-
rent density) in the MHD equations. Then we can
obtain for the longitudinal variables, correspond-
ing to Eq. (4), the following set of equations:

82
o„[(v2-c,') cos'8 v,', —c', sin8cos8 v'„]

2

=v~vg cos 8—-go

82

8
,o [ca sin8cos8 voo

is the dispersion relation of the cyclotron waves.
Using a technique similar to that developed by
Taniuti and Washimi (details are shown in Appen-
dix), we obtain a Schrodinger equation for Q that
corresponds to Eq. (5b):

1 dv Bg7& v kc
~~

Bp
sv 2 dk 8$ 4k uP —te&)

From Eqs. (16}and (17), v„can be shown to exist
between v& and v, . The expression derived above
for the coupling term indeed possesses poles cor-
responding to the Cherenkov condition.

The ion cyclotron wave, whose group velocity is
always smaller than the Alfven velocity, may reso-
nantly interact with the slow wave. The electron
cyclotron wave, whose group velocity can exceed
the Alfven velocity, may interact with the fast
wave.

III. CONCLUSION

It has been shown that the nonlinear self-action
term

8~/algal,

whose behavior is essential in con-
sidering self-focusing or self-trapping of a modu-
lated wave, becomes proportional to (v, cos8- v~)

'
and hence is significantly modified in the presence
of a low-frequency mode that can propagate in the
same medium. The mathematical expression for
the interaction is identical with that between quan-
tum particles (modulated wave) and the self-gener-
ated field (low-frequency mode). When the reso-
nant condition is exactly met, the process may be
interpreted as a decay instability of the modulated
wave.
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+ (c', sin'8+v„'- v,
' coso8) v~z]=0, (15)

8 n, v„, v,0 0 0

tan8~ =0,
so

Bo v'
&Bo v, )

where $ = )cos8+ gsin8 is the coordinate along the
direction of propagation of the MHD mode and y&
= B,', /Bo and v„and c, are Alfven and sound speeds,
respectively. If we eliminate 8„2, v„2, and nz from
Eqs. (14) and (15), the coupling term in Eq. (14)
(the right-hand side) finally becomes

—Vy

APPENDIX

For the purpose of illustrating the process lead-
ing to Eq. (14), we consider an electron cyclotron
wave only and ignore ion dynamics. Eliminating
the transverse magnetic field from Maxwell's
equation, we find

cop 8 m $ ~ 82 2

vxvxE — ' —(nv )-~e, =0
CM ~t CC

(Al)

where E, n, v, are normalized by cB0, n0, and c;
and the transverse displacement current is ignored
for simplicity. The equation of motion must also
be normalized in the same way. Then, corre-
sponding to Eq. (7), we take the expansion of a
column vector,

where v& and v, are the phase velocities of the
fast (Alfven) and slow (acoustic) MHD waves,

"~o =—(v~+c, a [(v„+c,)3 -4v~oco coso8]' },(16)'
vs 2

yo is the value of y, at $ -—~, and

v'„=v„'- ~2 ~ -1( c, sin8. (17}
kvg )

Using Eq. (Al) and the normalized equation of
motion, we can write an equation for P, as

(A2)
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-W1411+~ W1412 + W2
8

+ W3

+& ~'i ~3+ ~2 + ~3 ~-+ ~'4 ~&+ &5

+ Ws 2+ 8'7 —-0
87

where

(AS)

(o
0

(d
0

C (d
o

2
C

)
k 0

0 k

2ik

. 40(d&
2

Z 2
C (d

0

-Z(d

0 0 0

and 7 = et. Hence,
I( =EX —V~ T

From order e, , we get

01=~F1(( n

where r is a column vector that satisfies

(A4)

0 —2ik 0

0 0 m;~=0 or r= ic2u2(. /~', (u, (A6)

(d
0 0

C +

0 0 2
c

while IS'&I = o is the dispersion relation of the elec-
tron cyclotron wave which under our assumption
takes the following form:

(d —V

Let l now be the left eigenvector of W, such
that

(AS)

i COuP~n, 2
2c Go

0

i(d(d~ n2

l W, =O & = (l. , —i, —0 /v, , i 13 /~, ). (A7)

We multiply Eq. (A3) (to order &2) by f on the
left, and substitute (A4) into it:

ck(dcv
(d

Ckc V~2
0

CO

ikcv„2

0-&cB„2

0&x2c

zkcv„& or

l W2r + l W3r, = 0,

8@g c k co 8+g
8$ 2kb)& (d 8T

(AS)

o o)
0 0

0 0

0 0

Using the dispersion relation (AS), we can easily
show that the coefficient of the second term in Eq.
(AS) is equal to ek/8&v= l/v, . Hence, because of
the definitions of $ and T', Eq. (AS) is identica]]y
satisfied. This verifies the use of the group velo-
city in the coordinate transformation shown in Eq.
(6).

As the second-order solution of g1, we then
choose

8+g
412= &&2+ 2 (Ao)

ws=

.)
where s is a column vector that satisfies

W1s+(W2-v2W3) r=O
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or

0
0
2kc

2

i2kc

(A10)

Now we go to order es. Substituting Eqs. (A4) and
(A9) into (A3) and multiplying the resulting equa-
tions by l from left we obtain

8 (pt
't(lip t li3) s 2 +f P4 rqt+f +5r s

+l8'er 2 +/Wvx =0,Bpg

which, after some manipulation, reduces to the
expression shown as Eq. (14) in the text.

Although the ion dynamics is ignored here it is
not difficult to include it. In this case, the disper-
sion relation changes, but it can be shown that if
a suitable group velocity and wave number are
used, the final expression [Eq. (14)] is still valid.
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The attenuation and dispersion of sound near the gas-liquid critical point are studied theo-
retically using the author's extended mode-mode coupling theory. The results differ in the
different regions of the sound-wave frequency f expressed in a dimensionless unit and of e,
the dimensionless temperature distance from the critical point. The attenuation behaves as
f'6 " ~ for 0-f«63", and as f ~ 6 ~ for E "«f«e", where p is the exponent which
appears in the wave-number (fc}-dependent correlation of the order parameter expressed as
&lk "+&2e k +",when k is much greater than the inverse correlation range of critical
fluctuations. The relative sound-velocity change with f behaves as f 2e ~" for O~f«e ", as
f c if p —2, and as f e if p&2 for e "«f«e"' . The explicit expressions for the
attenuation and dispersion are given for f- e ".

I. INTRODVCTION

In recent years the sound attenuation and dis-
persion near the critical points have attracted an

increasing amount of attention as a means of study-

ing dynamics of critical fluctuations. '2 In partic-
ular, the first successful theoretical study of
sound attenuation and dispersion near the liquid-
gas critical points was carried out in 1965 by

Botch and Fixman. '
After 1965, there has been a considerable prog-

ress in our understanding of the dynamics of crit-
ical fluctuations. In particular, Kadanoff and
Swift's brilliant application of the mode-mode
coupling theory to the liquid-gas transition yielded
valuable information on the divergences of various
transport coefficients near the transition. This
progress made it necessary to reconsider the
problem of the sound attenuation and dispersion
near the liquid-gas transition. Thus, it is the
purpose of the present paper to study this problem
in some detail using the extended version of the


