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The unabbreviated Lamb semiclassical equations for the case of three interacting modes
are numerically solved for a variety of laser parameters. Steady-state solutions are ob-
tained for the amplitudes, beat frequencies, and time development of the modes by using the
Kutta-Merson method of integration. It is found that for some solutions the relative phase
angle g becomes constant, and so it is clear under what conditions self-locking is possible.
When the modes are unlocked, the value of g varies with time even after the steady-state
amplitudes have been achieved. Comparison is made with the locking criteria predicted by
approaches to the theory where approximations have been made. A physical interpretation
is given for the presence or absence of self-locking in terms of competition and of the ratio
4/AvD. Some general rules are established for the behavior. of the rise time and delay of
the onset of oscillation of the three modes.

I. INTRODUCTION

The Lamb semiclassical theory of the laser en-
abled a discussion of threshold conditions, output
as a function of cavity tuning, frequency pulling and

pushing, mode competition, locking, population
pulsations, and related phenomena to be discussed
within a single framework. Prior to this paper,
development of laser theory had been fragmentary.
Schawlow and Townes had discussed threshold
conditions and Bennett mode pulling and pushing,
but a rigorous multimode theory had not been de-
vised. Investigation of mode behavior via the study
of beat notes between modes in gas lasers was
carried out by Javan and the beat frequencies found
t'.onfirmed the existence of axial and transverse
modes as predicted by Pox and Li. ' After the
Lamb theory was published, Fork and Pollack
computed the mode intensities and beat frequencies
for the case of two axial modes as a function of
resonator tuning but not for the case of variable
population inversion N or of cavity Q. McFarlane'
compared measurements of the beat frequency be-
tween two axial modes of a laser as a function of
detuning with those predicted by the Lamb theory,
but the mode interaction terms were dropped in
his analysis. More recently, Allen, Jones, and
Sayers' have investigated the variation with cavity

of the beat frequency between axial modes of a
gas laser taking into account all the interaction
terms which exist in Lamb's formulation for three
modes. The method of approach used was to solve
the steady-state equations making use of the as-
sumption that terms of the form q, & sing —g, &

cosg
in Lamb's equation (108) have a time average of
zero, since the "relative phase angle" between the
three modes g is itself rapidly increasing with
time. This implies that no locking takes place.
Within the framework of these assumptions, the

beat frequencies predicted for three modes in the
He-Ne 0.633-p.m and 1.15-p.m laser transitions
were confirmed experimentally.

The phenomenon of mode locking was apparently
first seen by Javan in 1964. Crowell observed
self-locking in a He-Ne 0.633-p. m laser, and
Gaddy and Schaefer' observed similar effects in
an Ar' laser operating at 0.488 p, m. Uchida"
gave a very useful exposition of mode interactions
in gas lasers using the Lamb formulation. The
problem of self-locking was considered by intro-
ducing an external source term which may, in
fact, be internally generated by noise or may be
a combination tone. In a following paper with
Ueki, ' Uchida presented an experimental and the-
oretical examination of mode structure and lock-
ing phenomena, but ignored many of Lamb's in-
teraction terms. Jones, Sayers, and Allen" de-
rived approximate conditions under which self-
locking can occur in a gas laser. The results
suggested that self-locking should be a fairly
common occurrence, and this was demonstrated
to be the case with experiments performed on
He-Ne 0.633-p.m and 1.15-p.m lasers. This anal-
ysis depended strongly upon the assumption that
the mode amplitudes retain the values they would
have in the absence of mode competition. How-
ever, some general, but oversimple rules of be-
havior for the occurrence of mode locking in
three-mode gas lasers were derived and detailed
beat frequency predictions verified with a He-Ne
laser. The whole problem of mode locking in
lasers is extensively reviewed by Allen and
Jones. '4

In this work, an attempt is made at a rigorous
solution of Lamb's equations for the interesting
problem of three-mode operation in the presence
of mode interactions and competition in the com-
pletely general case. It is found by solving the
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differential equations describing mode behavior
rather than the steady-state equations, that mode
amplitudes may be calculated and the relative
phase angle computed so that it becomes immedi-
ately clear whether the modes are locked or un-
locked. Mode amplitudes and the value of the
relative phase p are investigated for the atomic
parameters of real laser systems in order to
make the calculations of specific interest, and for
a range of detunings and cavity Q's. Use of the
differential equations allows the time development
of the modes to be discussed and some conclusions
are drawn concerning the rate of growth of a laser
mode in a three-mode environment. %hen the
relative phase angle indicates that locking is taking
place the same techniques allow the beat frequen-
cies to be computed but this time, unlike our ear-
lier work, "all mode interactions have been taken
into accost.

It should, of course, be realized that the intrin-
sic faults of the Lamb theory are equally the faults
of the work pr esented here. The effect of spon-
taneous emission on the laser transition is not
taken into account; the mode distributions are con-
sidered to have no spatial variation"; the fields
are not allowed to grow from zero, because of the
nature of the self-consistent approach used by
Lamb; and the discussion takes place in the
Doppler limit of ~v~»y, ~, ~. The Doppler gain
curve is considered to be symmetric and hence
the calculations are only vaM for a single Ne
isotope He-Ne laser.

II. THEO R~

The three-mode amplitude determining equa-
tions given by Lamb' are

El +1El PlE1 812E1E2 ~»E1E33 2 3

(Il2 3 cos( + $23 sing)ES ES

E2 +SE2 P2E2 82 lE2E1 e2 3 ESE33 2 2

—(T/» costJJ —$ 13 sin()EI ESE3

E3 +SES PsE3 ~3 1E3E1 83 2 E3ES3 3 2

—(VS, cost+ $2, sing)ESE,

where the relative phase angle g is defined as

~ = (2&8 &I &$)~+ (242 01 4$)

The influence of mode coupling can be seen by
considering its effect on the equation for E~. In
the absence of any interaction, the equation of
motion for E, would be El = o.,EI —plE1' the famil-
iar single-mode equation, where n& describes the
gain and P, describes the saturation. The effect
of the interaction terms which take into account

E2 and E3 can be thought of as lowering the effec-
tive gain. a& is effectively replaced by 0.

&
- e»Ez

—8»E3'. The remaining terms in cosg and sing
describe the phase-dependent coupling. If it is
assumed that there is no locking, then ( is a rap-
idly oscillating function of time, and hence the
average values of sing and cosg will be zero. Un-

der these conditions, the set of equations (l) re-
verts to the unlocked three-mode equations as used

by Allen, Jones, and Sayers.
The frequency-determining equations given by

Lamb are

1 1+41 ~1++I+ PlE1 + T12ES + 1 3 E32 2 2

ES E3El (7[2 3 Sing —$23 Cosp)

&2+ 42 ~2+ 112+PSE2 + T21El + T2$ES
2 2 3

+E,ES(ll» sing+ $» cosg)

~3 + 43 = ~3+ +3 + P3 3 + T3 1E1 + T32E2
2 3 2

—ESEIES'(Il21 sing —$21 cosg)

From these, an expression for P can be obtained:

g= Z+A sing+8 cosg

where Z=2o, -o, —aS+E, (2T» —pl T31)

+E2 (2P2 T12 —T32)+E3 (2T23 T13 —p3) t

A = 2E/E3 gg3+E2E3 Ef gg3+E3E$ E3 Qgg 7

2E1E35 13 E2 E8E1 5 23 ESE1ES $22

There are some misprints involving the signs'
of the P terms in the amplitude- and frequency-
determining equations in Lamb's paper, which
have been corrected here.

Since (= Z+A sing+B cosg, it can be seen that

dg
Z+A sing+ B cosg

The interesting case is when Z & (AS+8 )'/2, for
then the denominator can pass through zero giving
a pole in the solution of the integral. This occurs
when g reaches its asymptotic value

(AS BS)1/2)

Since there is then no linear dependence of g on

t, it means that 2v2 —v& —v3 = 0 and hence that

v3 —v2= vq —v» giving frequency locking with a
definite phase angle p= 2/2-p, —$$. Thus, A

+B ~ Z gives a convenient criterion for the oc-
currence of locking. Whether or not the criterion
is satisfied clearly depends on the detuning of the
cavity modes from the line center', the depth of
the "holes" burnt into the gain curve and hence
the intensity, and the atomic parameters of the
system such as the decay constants y„y, and

y, &, the axial mode spacing 4, and the spatial
Fourier components of the inversion density N
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and N~. In Jones, Sayers, and Allen, "the cri-
terion was simplified and evaluated for three
modes in terms of these parameters.

All methods, however, which rely on values of
the mode intensities which are calculated in
some way from the unlocked equations, in order
to estimate the size of A' + Ba —Z', can provide
at best only a guide as to the probability of w heth-
er or not locking will occur . In order to gain any
degree of rigor in the calculations it is necessary
to solve the set of differential equations (1) for
given initial conditions and given values of the
atomic parameters and to see whether locking
does, in fact, occur . The methods used in Allen,
Jones, and Sayers assumed that a steady state
had been reached in which E,= E&= E&= 0 and that
the steady -state field amp litudes could be found

by solving the steady -state equations . In order
to determine the conditions under which locking
can take place, it is necessary to allow g to be
free either to become constant (locked situation)
or to continue to increase with time (unlocked
situation). It therefore becomes necessary to
solve the set of equations (1) as a set of four first-
order differential equations in the four variables

E1, E2, E„g of the general form y=f(y), where

f(y) is furnished from the equations for E„E„
E3 from (1) and the equation for g from (2).

It is found that the solutions are not strongly
dependent on the initial conditions . The mode
amplitudes are found to grow rapidly if started
from initial values 10 ' times less than their
final steady -state values . In order to speed up
the process of integration, in those calculations
where detailed analysis of the full time develop-
ment was not required, the unlocked steady -state
values w er e used as initial conditions for the mode

amplitudes .
The form of the parameters p, p, 8, v, 'I, and

~ can be simplified for the purposes of computa. —

tion by expressing all frequencies in units of the
passive cavity mode spacing 4. In this for malism,
the detuning of the central mode from the line cen-
ter can be written in terms of a dimensionless
parameter a such that p„—(d = a ~. In this present
work, a is used to describe the detuning of the

central mode from the line center and the detun-

ings of the remaining modes, and combination
frequencies in the polarization are calculated ac-

cordingg

ly .

The expressions for 8;&, v';;, p „, 0„reduce simply to functions of a because the frequencies occur only
as differences . In this new formalism, the parameters now become

p1=A [1+y, b Z((a —1)4)], p3 =A [1+ y, b Z(«)], pb =A[1+y, b Z((a + I)&)]

p1=Ay„(a —1)&Z((a -I)&), p2=Ay„«Z(ah), p, =Ay„(a+ 1)&$((a+ I)&)

812=A(y, b 2((—,
' -a)&)+4y, bh 3 —2y, yb& 3+ (N2/N) y, ybZ((1 -a)&)[y,b

—(1 -a)& ]&

821=Ay. b &((2 s)&)+4r-.b ~ 2r.rb ~ —+ (N3/N) r.rb I( «)[r.b -«j~ 'f-,

813 831 AMb ~( s~) + rob ~ 2(r.rb)& 'j

833 A(y,'b&(( —2 -s)~)+4r'.b~ '+(N3/N)y. yb&(-«)(y.'b+«')~ ' —2y.yb~ '),

832=Ay'. b&((- 2 -~)~)+4y', b& '+ (N2/N)y. rb&(( ~ —I)&[y', b
—(s —I)~']& ' —2y.yb&-'],

3 12 A[y.b(2 -a)Z(( —,
' -a)~)+ 2y, b & + (N2/N) y,y, (2 -a)b, y,bZ((1 -a)&)b, ]

7'2, = -A [y,„(2 -a)2((2 -a)~) —2y, b~ —(N2/N) y,yb (1+a)dr, b Z(-«)~ j

T13 A[y, b(-«)Z(-aL)+y, bL ], rb, = -A[y, b(-ah)Z(-ah) —y,bb 'j

T» -A [y,b(- 2 -a)4Z(( —
2 -a)4) + 2y, b& ' —(N3/N) y,yb(~ —I)&y,bZ(-ab )& ]

F32 = -A [y„(--,' -a)AZ((- -' -a)&) —2y„&-' —(N, /N) y,yb (a + 2)&y„Z(- (a+ I)&)& ']

$21=A[( y.rb/&') (-N2/N) y.b( ~ ——,')[r'.b-+ (-~ ——.")'] 'j,
(23

=Af(- r rb/~') (N2/N) r.b( 2
-&) [yah+ (-' -~ )'1 ']

I21=A(y.rb/&')ON2/N) [rob+ ( ~ 2)] [rub+ (-~ —2)'j ' —1]

I23 A (4yb/+ )ON3/N) [r'b - (-' -q)j [r'b+ (-' -~)'] ' - »
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q&~
——2 (y y /b, ')ON /N) [y'&+ (-a —2)j [r.', + (-a--.')'j ' + (Nz/N)[y'~ —(-' —s)j [W'~+ (-' —&) j '+ 2),

where A = m' 'vN P'/16&, k'y, y&ku

I

The expression for a„obtained by this means' is

Terms involving N4 and higher orders of N„~ are
neglected.

The constant A can be factored out from these
interaction parameters, giving the advantage that
N2 does not appear explicitly but only as the ratio
N2/N.

Lamb defines the spatial Fourier components of
the inversion density as

= (1/d) f dz N(z) cos(n —p) mz/d

where d is the length of the cavity. It is reason-
able to assume a step-function distribution for
N(z) of the form

N(z)=0, for z &zo and z &zo+l

N(z) =N, for zo ~ z ~ zo+ I

where I is the length of the plasma-tube discharge
and zp is the distance of one end of the discharge
from the nearest cavity mirror. N&, &

is assumed
to be uniform in the excited part of the tube.

Then N = (N/d) dz = lN/d
p

gp+ i 2mg
N&= — P N cos dz

gp

N~ w(2zo+ l) ) . ~l=~ cos
~

sin—

The ratio N2/N is

cos sin

which depends on the ratio of the active tube
length to the cavity length and on the position of
the tube with respect to the ends of the cavity.

%Kith these considerations and using a series
expansion for the plasma dispersion function
Z(v„—&u), all the parameters in Eq. (1) except
e and 0 can be calculated in terms of the atomic
parameters.

The calculation of n presents a problem. It
consists of two parts. One part represents the
gain of the medium and the other the cavity losses.
In order to evaluate n, the relative magnitude of
these two parts must be determinable. The sec-
ond part involves the excitation density N and this
has been absorbed in the previous equations by
the constant A. Fortunately it is possible to write
this part in terms of the inserted loss L and the
value of the inserted loss L p required to extinguish
the laser, both of which are measurable. '7& '

where ku is 0.6 of the Doppler width. o„can be
similarly evaluated to give

y )2

a -2+n ~ 2 a -2+kg

The constant A is still unevaluated and Eqs. (1)
can be written in the form

El +IEi +[P1E1 AfzE1E2

+ (terms of order E )j

and similarly for Ez and Es, where P', = P/A, etc.
Fortunately, the fact that all terms including

A are of order E can be exploited by making the
substitution E„=A ~~2E„'.

Then it can be shown that

E„=ngEg —PiE, + ~ ~ ~, for A i 40

In the numerical solution of the equations, A was.
put equal to unity. The only effect of this is to
introduce a scale factor of A ' in the value of
the E„'s as the above discussion shows. In order
to obtain absolute amplitudes, the values quoted
in this paper should be multiplied by A '~ .

For each set of calculations, the values of the
basic atomic parameters; 4v&, the Doppler
width; y, and y~, the upper and lower level decay
parameters; y„, the length of the cavity; the
length of the tube; its disposition in the cavity;
and the maximum inserted loss were chosen. The
solution of the differential equations was then
found as a function of inserted loss L and detuning
a by a step-by-step numerical integration, using
a Kutta-lVferson method. ' This work may be
thought, in some sense, to be the self-locking
equivalent of the work of McDuff and Harris who
investigated FM- and AM-forced locking by numer-
ical integration of the relevant equations.
In the present work, a grid of values of L and a
was constructed and Eqs. (1) integrated at each
point. Preliminary calculations were done for
positive and negative detunings about the line cen-
ter for one value of inserted loss only. These
showed that the solutions were symmetric about
the line center as they must be since the gain
profile used was perfectly symmetric. This
means that calculations only have to be done for
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TABLE I. Solutions of the three-mode equations for 6=165 MHz p,&=O.M, , ku =6&, p~p&=0.044 and for a sym-
metrically placed active length equal to 3 of the cavity length. In part D, entries are shown blank where g is non-
convergent.

Loss
—0.4

S& (arb. u its)

Detuning (units of 6)
—0.3 —0.2 —0.1 0.0 —0.4

E2 (arb, units)

Detuning (units of b)
—0.3 —0.2 —0.1 0.0

Solution with locking terms neglected Solution with locking terms neglected

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

0.0
0.0
0.37
0.53
0.65
0.75
0.84
0.92
0.99
1.06

0.0
0.04
0.37
0.52
0.64
0.73
0.82
0.90
0.97
1.04

0.0
0.0
0.35
0.50
0.61
0.71
0.79
0.87
0.94
1.01

0.0
0.0
0.30
0.48
0.61
0.72
0.81
0.89
0.97
1.04

0.0
0.21
0.35
0,44
0.52
0.59
0.66
0.71
0.76
0.81

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

0.57
0.40
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.21
0.30
0.37
0.43
0.49
0.53
0.58
0.62
0.65
0.69

0.18
0.30
0.38
0.45
0.51
0.56
0.61
0.65
0.69
0.73

0.16
0.29
0.38
0.45
0.51
0.56
0.61
0.65
0.70
0.74

0.19
0.30
0.38
0.44
0.49
0.55
0.59
0.63
0.67
0.71

Solution

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

~ ~ ~

0.37
0.53
0.65
0.75
0.84
0.92
1.00
1.07

0.03
0.02
0 36
0 53
0.64
0.72
0.84
0.89
0.92
1.05

0.33
0.51
0.63
0.69
0.82
0.90
0.96
1.03

of full set of differential equations

0.33
0.53
0.67
0.71
0.83
0.89
0.94
1.06

0.21
O.35'
0.45
0.53
0.59
0.66
0 71
0.78
0.81

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Solution of full

0.36
0.34
0.34
0.44
0.41
0.49
0.48
0.50

set of differential equations

0.36 ~ ~ ~ ~ ~ ~

0.17 0 ~ ~ ~ ~ ~

0.38 0.39
o.5o' o 48'
0.43 0.55
0.51 0.56
0.63 0.61
0.67 0.63
0.70 0.65
0.64 0.78

0.21
0.35
0 45
0.53
0.59
o.65'
0.71
0.78
0.81

Loss

E3 (arb. units)

Detuning (units of b)

D

Loss Detuning (units of b)

Solution
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

—0.4

with locking
0
0
0.54
0.76
0.93
1.07
1.20
1.32
1.42
1.52

terms
0.14
0.28
0.38
0.45
0.51
0.57
0.62
0.67
0.71
0.76

neglected
0.22
0.31
0.38
0.44
0.49
0.53
0.57
0.61
0.65
0.68

—0.3 —0.2 —0.1

0.35
0.37
0.39
0.42
0.44
0.46
0.48
0.50
0.51
0.53

0.0

0
0.21
0.35
0.45
0.52
0.59
0.66
0.71
0.76
0.81

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

—0.4 —03

41.5
2.2
3.15

—0.2

2.00
3.47

—0.1

0.0
0.0
0.0

0.0
0.0
0.0
G.o
0.0

Solution
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

of full set

0.53
0.63
0.71
0.79
0.86
0.92
0.98
1.04

of differential equations
0.28 0 0 0

0.16 ~ 0 ~

0.38~ .O.39~
0.37 0.38
0.56 0.42
0.61 0.56
0.53 0.53
0.63 0.58
0.63 0.66
0.80 0.60

0.36
0.34
0.34
0.44
0.41
0.49
0.48
0.50

0.21
0.35
0 45
0.53
0.59
0.65~

0.71'
0.78
0.82

~Locking is predicted.
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classed as unlocked situations.
Table I shows the steady-state values obtained

from the unlocked equations together with the re-
sults from the integration of the full set of equa-
tions. It can be seen from the value of g whether
or not locking is predicted (see Table I, part D).
In cases where g remains an increasing function
of time, Table I, parts A-C, shows that the final
values of electric field amplitude are very close
to those obtained directly from the reduced set of
equations assuming no locking. In cases where
locking takes place, the final electric-field values
are, except at the line center where they are iden-
tical, no more than 15% different from the values
given by unlocked approximation.

The matrix solution of the reduced set of equa-
tions for the unlocked case is simply the solution
of the steady-state equations and as such is only
valid if a three-mode unlocked steady state exists.
If the modes are locked, or if the competition is
sufficiently severe that one or more modes is ex-
tinguished, then these solutions are no longer
valid. The solutions to the complete differential
equations, however, do not suffer from this re-
striction. Table II shows the locked or unlocked
state predicted by the full theory together with
that predicted from the locking criterion discussed
earlier when applied to the steady-state solution
of the equations which excluded terms in g, for
several inserted losses and detunings. Results
are difficult to obtain very close to threshold be-
cause of the high numerical errors which appear
in the calculations. Above threshold, however, a
fairly well-defined pattern evolves. When the
middle mode is at the line center, locking always
occurs; for tke other Qetunings, the modes are

unlocked except for a region of locking for de-
tunings in the region —0.3~ &a + —0.2~ and in-
serted losses 0.024 & L + 0.020. It can be seen
that the locking criterion derived from the steady-
state equations gives much the same results.

III. RESULTS

A. Mode Amplitudes

1. Variation W'ith Axia/ Mode Spacing ~

It is convenient to present the results in graph-
ical form. In Figs. 2-4, the amplitudes of the
three modes are plotted against detuning. It must
be remembered that the actual oscillation frequen-
cies of the mo3es are different from the passive
cavity resonance frequencies because of the effects
of mode pulling and pushing due to the nonlinear
character of the gain medium.

Figures 2-4 show results for cavity lengths,
corresponding to cavity mode spacings 4, of 65,
130, and 400 MHz, respectively, and for the
atomic parameters quoted in the appropriate fig-
ure captions. In Fig. 2, where the natural line-
width y„ is taken as 0.6~ and the holes burned in
the gain curve by the oscillating modes can be ex-
pected to overlap, it is clear that there is severe
competition between the modes for the available
gain. It can be seen that the outer modes with
amplitudes E& and E3 are competing for the same
set of atoms and are constantly changing in rela-
tive magnitude as the detuning changes. This
competitive behavior becomes increasingly marked
as the cavity loss is decreased and at higher in-
tensity the center mode is also severely affected
by competition. For the larger cavity mode spac-
ing as the results in Fig. 3 show, the situation is

TABLE II. Vatues of the locking criterion A +B —Z are given as + or —.Results of the integration of the full set
of differential equations are given as U when the solutions are unstable in g, and S when they are stable in g. That is,
there is consistency between the results of the full solution approach and that of the steady-state equations when S+ or
U —are listed. The regions of inconsistency are boxed. Columns A and C should be treated with caution since in C,
E& tends to vanish and in A, E& tends to vanish, thus leaving only a two-mode situation to which the locking criteriondoes
not apply.

Loss

0.028
0.026
0.02$
0.022
0.020
0.018
0.016
0.014
0.012
0.010

—0.4
s-
s-

I

U-
U+ [

U+
U+
U+
U+
U+
U+

—0.3
S-
S+
U-
U—
U+
U+
U+
U+
U+
U+

Detuning

—0.2 —0.1
s-
U,—
U+,
U+
U+
U+
U+
U+
U+
U+

A. 4=65 MHz g. 6=130 MHz

Detuning

—0.2 —0.1 0.0

U-
$+
S+
U-
U-
U-
U-
U-
U—

U- S+
U+ S+
U+ $+
U- S+
U- $+
U- S+
U- S+
U- S+
U- S+

0.0 —0.4 —0.3

S+ U- U-
$+ U- S+
$+ U — S-
S+ U — S-
S+ U- U-
$+ U — U—
$+ U- U-
S+ U- U-
S+ U- U-

C. &=400 MHz

Detuning

—0.4 —0.3 —0.2

s-
s- [
U-

—0.1 0.0
U-

s- s-i
S- S+
s — s+
S- S+
U- S+
U- S+
U- S+
U- S+

$+
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a little different. The lower curvcurves correspond-
ing to near thres oh ld behavior show much less
severe competition anth n the corresponding curve
in Fig. 2, bu, an. 2, b t E and E are still destructively
competing with each other.

The influence of the shape of the Doppler gain
curve is shown, however, y
mode farther from the line center which loses

nsit . For the higher intensity curve shown,
this behavior is not apparent. is in

that the center of the three modes
xhibits a rise at the line center near re

old but a dip when the system xs mu
ld. This is similar to the Lamb-dip be-

havior of a single-mode system. ig.
1-mode spacing, corresponding to

= 400 MHz, the competition behavior is no
enough to cause vio en'

1 t fluctuations in the intensity
of E and E, as the detuning changes, but theirof y an
behavior is governed instead y eb the shape of the

is in fact, always the oneDoppler gain curve. It is, in
It isf the line center which loses.
e hasalso clear in this case that the center mode as

ct to the outer ones,a hi her intensity with respec o
again because of the shape of the gain curve.

2 Variation soith Natural I ineseidth y„

ected that increasing the natural
linewi w'dth would increase mode competition. a

arin Fig.this is indeed the case is seen by compa
'

g 'g.
3~ ith Fig. 5 for y„=0.4~. The
e of the figures is much the same ug p

th degree of competition is greater or ee
dth. The parameters of the 1. -p..15- laserlinewi

. 6 and 7 andare used in the results shown in Figs.
the same behavior is apparent.

B. Locking Behavior

Detailed information concerningin the locking
characteristics oof the system for various combi-

be found fromnations of the laser parameters can be foun rom
tables (Tables III-IX). It will be seen in
t all cases for which a three-m y-mode s stemalmos a

sares m-ls possl e'ble that when the cavity modes y
r the

1 k
ll di laced about the line center,

system is loc e .k d. This is always (=0-type o
to the 0.633-in . or parF rameters corresponding to e

er there is another locking region
s in the rangefor moderate intensities for detunings in e

0.3~a~ 0. 2 for w ich' h g 40. This region of lock-

1.6

1.2-

1.0-

0.8—
-.0]g x

x=.018 ~~ i

04- 022 -st'

0.2—

-1.6
I

- 1.2 - 0.8

.4 —v
- 0.1 0.0

I Y

0.8

=64 p =0.46, and 6=130 MHz.a function of cavity mode detuning 0= ~, =6& 'Yin fol L = 0.03' kQ = 6+p /gal
— ~FIG. 5. Mode amplitudes as a nc io
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TABLE III. Steady-state values of g for Lp=0 03,
Au=12~, p,~=0.64, and 4=65 MHz. Unlocked steady
states are shown blank.

TABLE VI. Steady-state values of g for Lp=0.03,
Au=6&, &,~=0.46 and 6=130 MHz. Unlocked steady
states are shown blank.

Loss
—0.4

Detuning (units of 6)
—0.3 —0.2 —0.1 0.0

Loss
—0.4

Detuning (units of 4)
—0.3 —0.2 —0.1 0.0

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

0
9.67

5.10 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

—19.4
3.63

10.8
2.71

—2.4 0.0
0.0 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

TABLE IV. Steady-state values of g for Lp=0.03,
Au=64, p~g=0.34, and &=130 MHz. Unlocked steady
states are shown blank.

TABLE VII. Steady-state values of g for Lp ——0.05,
ku=46, p,&=0.24, and 6=130 MHz. Unlocked steady
states are shown blank.

Loss Detuning {units of 4)
—0.4 —0.3 —0.2 —0.1 0.0

Loss Detunmg {units of ~)
—0.4 —0.3 —0.2 —0.1 0.0

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

2.35
3.13
9.88

2.14
3.36

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.053
0.050
0.047
0.044
0.041
0.038
0.035
0.032
0.029
0.026

—1.4
—0.5

10 1
—1.8

—4.5
—2.5
—2.8
—3.0

—0.9
—0.6
—1.3
—8.3

2.5
3.0
3.4

—0.6
—0.8
—1.6
—8.4

—4.4
2.6
3.0

—2.8
—1.0
—1.9
—2.3

—4.2
2.6

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

TABLE V. Steady-state values of g for Lp=0 03,
ku =24, p,&=0.16, and 4=400 MHz. Unlocked steady
states are shown blank.

TABLE VIII. Steady-state values of g for Lp=0.05,
ku = 2d, &as= 0.26, and 6= 65 MHz. Unlocked steady
states are shown blank.

Loss

0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

—0.4
—0.6
—0.7
—0.9
—1.3

—0.6
—0.8
—1.0

103

107

—0.9
102

—1.4
107

—0.9

—17
—1.8
—1.9
—202

Detuning (units of 4)
—0.4 —0.3 —0.2 —0.1 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Loss

0.041
0.038
0.035
0.032
0.029
0.026
0.023
0.020
0.017
0.014

—0.4
—6.9

1 Q 1
1g3

—1.5
—1.6
—1.9

—6.9
1yl

—1.4
—1.5

1y7

—1.8
—2.0

—2.1

—1.6
—1.8
—19
—2 -0

202

—1.5
107

—1.9
—2.0
—2.1

202
—8.6
—8.7

Detuning (units of 6)
—0.3 —0.2 —0.1 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

iug is sensitive to variation of the length aud po-
sition of the laser tube in the cavity (Na), and to
the cavity length (&).

For small axial mode spacing, the delicate
balance needed for locking appears to be upset
by the severe mode competition (Table III).
For large axial mode spacings (Table V), the in-
fluence of the shape of the Doppler gain curve is
such that the outer mode either does not oscillate

at all or only oscillates very weakly. Consequent-
ly, although there is a region from threshold up
to medium values of the inserted loss where g is
a constant, this is not really a three-mode system.
When the inserted loss is reduced to allow strong-
er oscillation, the locking is no longer predicted
mainly because of the increased effects of com-
petition. Severe mode competition appears always
to inhibit locking. %hen the linewidth y, & is large,
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TABLE IX. Steady-state va1ues of g for L0=0.05,
ku = 2D, y~b = 0.154, and 6= 65 MHz.

Loss Detuning (units of d)

0.053
0.050
0.047
0.044
0.041
0.038
0.035
0.032
0.029
0.026

—0.4
—4.6
—7.0
—0.54
—0.46
—0.64
—0.86

1 y 1
102

—1.5
1QV

—0.3
—3.6
—3.6
—0.64
—0.62
—0.87
—1.1
—1.3
—1.5

—8.2

—0.2
—1.9
—2.4
—0.8
—0.9
—102
—1.4
—1.6
—1.8
—2.0

—0.1
—0.96

1Q2

—1.9
—1.3
—1.6
—1.8
—2.0

201
242

—8.7

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

locking occurs only very near threshold or when
the modes are in the symmetric position (Table
VI).

The smaller Doppler width and larger maximum
inserted loss of the l. 15 p, m He-Ne laser produce
a greater tendency towards locking, but the com-
petition is more severe and the locking behavior
is more erratic as a result (Tables VII-IX).

It is difficult to itemize in a general fashion
under what conditions of &pa, &, y, b, and inserted
loss, locking is to be expected. Examination of
Tables III-IX shows the results for a variety of
values for these parameters.

C. Beat Frequencies

Figures 8-11 show computed results for the
difference frequencies of the polarization com-
ponents (v& —P&) —(v; —P, ) from Eqs. (2). Two
general points shouM be made concerning the ap-
plication of these results to a real experimental
situation. Firstly, it is not possible to distinguish
experimentally between the frequency v, and the
rate of change of phase angle p„and it is con-
venient, therefore, to calculate the experimentally
measurable beat frequency (v& —P&) —(v, —P, ).
Secondly, the present section calculates the fre-
quency of the polarization components, but these
results should be used in conjunction with the ear-
lier results for mode amplitudes in order to de-
termine whether an experimentally measurable
beat component actually exists.

In Figs. 8-10, the beat frequency v& —v& is
plotted (where v& is written instead of v, —P&) for
three values of & as a function of the detuning a
of the middle cavity mode from the line center.
In order to simplify the diagrams, v, —p~ is not
shown but can easily be found by reflecting the
curves for v2 —v~ about the line center (a = 0). In
each figure the results are plotted for six values
of cavity loss. The laser parameters are the
same as those employed in the calculation of the

mode amplitude results disylayed in Figs. 2-4,
respectively. All points where locking occurs are
ringed on the figures.

The functional dependence of the oscillation
frequencies on the mode amplitudes is described
by Eq. (2). In order to interpret the meaning of
these equations, it is often helpful to bear in mind
some of the more phenomenological ideas due to
Bennett. ' Three processes may be recognized in
Eq. (2). Consider the equation for v&. The basic
frequency is the cavity resonance frequency Q, .
The nonlinear character of the gain medium gives
rise to a "pulling" term 0» but the oscillating
mode itself distorts the shape of the gain curve and
produces the so-called frequency "pushing" effect
due to "hole burning. " This is described by the
term p&E', . The three terms 0» o» and p&E', are
solely functions of the medium and the intensity
of the mode under consideration. Hole-burning
effects caused by the other two oscillating modes
are included in the terms v&2E2 and r,sE3. The
remaining terms are phase-dependent interaction
terms.

The mode frequencies are seen, therefore, to
be very strongly dependent on the mode amplitudes.
It might be expected, therefore, that the beat
frequency results would display similar behavior
with regard to intensity and axial mode spacing
as the amplitude results. This is indeed the case.
Figure 8 shows the computed values of the beat
frequency p2 —p, for a small axial mode spacing
~= 65 MHz. As expected, the variation of beat
frequency with detuning becomes much more vio-
lent as the laser intensity is increased. This is
a direct result of the increasing competition be-
tween the oscillating modes.

A more common situation is shown in Fig. 9 for
a cavity mode spacing of & = 130 MHz. It can be
seen that the picture here is much more stable,
the beat frequency versus detuning curves being
very smooth except for a = 0.4, where it can be
seen from the amplitude curves that the central
mode is highly attenuated.

Figure 10 shows the results for a 1arge cavity
mode spacing of ~ = 400 MHz. For losses of I
= 0.006 up to L = 0.014, the curves exhibit the un-
locked pattern with quite a large frequency differ-
ence between the v3 —v& beat and the v2 —v& beat.
It will be realized that in these figures this fre-
quency difference is obtained from the frequency
difference between points for the same l& l but on

opposite sides of the line center. For high losses,
I ~ 0.022, the shapes of the curves (Fig. 9) are
symmetric about the line center as is typical for
the case of mode locking. This is not particularly
useful, however, as the amplitude curves show
that in this case there are only two modes os-
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to the steady-state values in order to save com-
puting time. If very small amplitudes are chosen
for the initial conditions the integration can be
used to predict the time development of the solu-
tions for mode amplitudes. The particular solu-

FIG. 11. Beat frequencies v2- v& and v3 v2 as a func-
tion of inserted loss for a detuning of a=0 3 Lp=0,03,
ku = 6~, p~g = 0.3&.

tions shown in Fig. 12 are for parameters corre-
sponding to the 1.15-p. laser. This was chosen as
an example since the smaller Doppler width makes
the behavior with respect to detuning and inserted
loss more explicit. Solutions are shown for four
values of loss and for a detuning of a= —0.4 which
is a position where the three modes have very
different amplitudes. The initial amplitudes in
these calculations were chosen to be -10 of the
steady-state amplitudes.

Some general results may be noted. The rise
time is dependent on the final steady-state am-
plitude —the higher the final amplitude, the faster
the initial rise. E& is the amplitude of the mode
nearest to the center of the gain curve and there-
fore the strongest of the three in this situation.
It has an initial peak which falls very gradually
to the final steady value. This fall is accompanied
by a rather slow rise of E& and E3.

In considering rise times as a function of am-
plitude, it is only found possible to compare the
evolution of E; for one set of laser parameters
with E; for another. It is not easy to compare,
for example, the behavior of E, for one value

.t2—

X
X

3 -)'

2 Q&

.08—

.06—
4 —()

I.
I

X/ / ~ ~ 2

16 24

x/
4

2- ~

32 48 56

I
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I

80 BB 96
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FIG. 12. Time development of the mode amplitudes for various conditions and for laser parameters ku=44, p,&=0.24,
A=130 MHz, and detuning a=0.4A. Curves (1) correspond to a loss of L=0.032; curves (2) correspond to a loss of
L=0.029; curves (3) correspond to a loss of L=0.023; curves (4) correspond to a loss of L=0.017.
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of loss mith E~ for another. This is because the
rates of rise of the three modes are not indepen-
dent but are strongly linked via their mutual in-
teractions.

The most significant feature of the results
shown in Fig. 12 is the delay time -10 p.sec be-
tween the start of the oscillation and the point at
which the mode amplitude is 59o of its peak value.
The rise time from 5 to 95%%uo of peak amplitude for
E2 for a small loss (I. = 0.01V) is 2. 4 psec and for
the largest loss tried is 9.6 psec (L = 0.032). The
rise time of E2 is shorter than that of E& for all
losses shown. It will be noticed from Fig. 12 that
the third mode is only present for the chosen laser
parameters when L = 0.017 and then the rise time
of E& is shorter than that of E3. It is clear that,
for a given value of loss, the more intense the
mode the quicker its rise time and the shorter the
delay time. For the detuning considered, E2 is
greatest for the lowest inserted loss. Its associated
delay time is less than for E~ corresponding to
larger inserted losses. Also the delay times of
E& and E, are less than their counterparts as-
sociated with higher losses. Thus the rise times
and delays are clearly to be associated with the
relative gain of the laser. The whole problem of
time development is discussed elsemhere. The
time scales are in agreement with what might be
expected. ~3

IV. CONCLUSIONS

The unabbreviated Lamb equations for the am-
plitude and frequency of three modes have been
numerically integrated, and detailed information
about the may in which the modes interact has been
obtained. Considerable insight has been gained
about the beat frequencies between the modes in
terms of the mode intensities; and the conditions
for self-locking to occur have been interpreted in
terms of mode competition and the ratio of mode
separation to the Doppler width of the gain profile.
The time development of the equations allows the
dynamic growth of the amplitudes to be studied
and the effect of competition between the modes

is manifested by the way in which the three modes
attain their steady-state amplitudes.

The numerical integration of the complete set
of equations, mhich include the phase-dependent
terms, gives a much more complete picture of
the three-mode process than any other approach
used to date. Comparisons have been made here
with other published work where approximations
have been made, and the quality of the approxima-
tions has been evaluated.

Although the calculations have been applied to
real systems, operating with reliable gains and
mode separations, the calculations are somewhat
idealized. For example, the values of y„y&, and

y, ~ are the pressure-independent values and the
Doppler-broadened gain curve is taken to be sym-
metric, thus corresponding to a He-Ne laser with
a single Ne isotope. However, the essential na-
ture of the three-mode behavior will not be altered
by the pressure broadened values of the y's and
the calculation could be reproduced in its entirety
for the appropriate corrected value of y if very
specific information were required.

The general problem of the time evolution of
the mode amplitudes is being tackled at the mo-
ment. In particular, it mill be interesting to
correlate the delay and risetime of the modes
with the steady-state amplitudes in a general way,
and to study the impact of locking on the same
parameters. The quality of the solutions given in
this paper would be best tested, and by implication
the full Lamb theory mould be well tested, if ex-
perimental data were available on the individual
mode intensities, frequencies, risetimes, and
locking characteristics of a three-mode laser as
a function of loss and detuning.
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Nonlinear coupling of a modulated wave and a low-frequency mode is shown to produce a
resonant interaction and instability when the Cherenkov condition v&=y cos0 is satisfied for
the phase velocity &p of the low-frequency mode, the group velocity vz of the modulated wave,
and the angle 0 between the two wave vectors. This effect stimulates the self-trapping (mod-
ulational instability) or self-focusing of the modulated wave. Examples are shown for the
cases of couplings between plasma cyclotron waves and magnetohydrodynamic (MHD) modes.

I. INTRODUCTION

Recently, the propagation of modulated waves
in a nonlinear dispersive medium has aroused con-
siderable interest in the self-focusing' or self-
trapping of laser beams and in the modulational
instability of a nonlinear plasma wave. 3'4 Such an
effect has been represented5 by a Schrodinger
equation for the amplitude of the modulated wave

y with a nonlinear potential term that is propor-
tional to I@1, i.e. ,

18v 8

The modulation has been shown to become unstable
when the potential is attractive'; i. e. , when

8 co Bv

a/cp f' aa

In the present paper, we present a new process
that leads to a similar instability. In this case,
the instability is due to a coupling of the modulated
wave with a low-frequency nondispersive mode
that may coexist in the same medium.

In this Introduction, we describe the general
idea of the process. Consider a wave with slowly
varying amplitude eq(x, t) e' " "", where c is a
small parameter. A second-order nonlinearity
will generate a perturbation of the form ~'ig(x, t)l

and cay (x, t) ea' "" ". If the medium can propa-
gate a low-frequency and long-wavelength mode,
the slow perturbation, a l&p(x, t)l, will then excite
this mode. We represent this mode by eaV(x, t).
If the medium is nondispersive at low frequencies,
the equation describing V to lowest order may be
written as an inhomogeneous linear equation with
a source term proportional to lyl', i. e. ,

DV(x, t) = nip (x, f) i'. (2)

In Eq. (2), o.'is the coupling coefficient, and D is
a linear differential operator involving a/at and

a/ax, having the form
( 82 82

where d& is a constant, and the v» are the charac-
teristic phase velocities (j= 1, 2 ~ ~ n) of the low-
frequency modes. Because a linear wave packet
propagates at the group velocity v~, the space and
time dependency of p in the right-hand side of Eq.
(2), should be of the form (x —vat) = f in the lowes—t
order. Equation (1) then assumes the form

a a
aV'

a
rr d
j=l a

On the other hand, if the medium is linear but
dispersive for the modulated high-frequency mode


