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Using the perturbation expansion for quantum crystals proposed in an earlier paper, we
investigate here the ladder approximation. A summation of ladder diagrams to all orders
is necessary since the interaction, e.g. , a Lennard-Jones potential, is singular at short
distances. The Bethe-Goldstone equation, describing the motion of two particles in a mean
field due to the remaining lattice particles, is derived, and further approximations are dis-
cussed, leading to a simplified equation tractable by numerical methods. In this approxima-
tion, we calculate the ground-state energy, pressure, and compressibility of the isotopes of
helium at various densities in the solid phase. The results are presented and agree quite
well with experiments.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as
I, we investigated a form of many-body perturba-
tion theory designed specifically for quantum crys-
tals. The proposed expansion is, at least at low
temperatures, formally identical to the standard
perturbation theory for spinless fermions. In the
case of lattice particles having spin —,', the "spin-
less fermions" are interacting with spins of & at-
tached to lattice sites. The expansion is found to
be independent of the statistics of the lattice par-
ticles, except for the sign in the exchange term of
the interaction.

The results given in I make it possible to use
standard many-body methods in the treatment of
quantum crystals. As a first step in this direction,
we investigate in this paper the ladder approxima-
tion.

It has been shown, e.g. , in the theory of nuclear
matter, ~'3 that a summation of ladder diagrams to
all orders produces sufficient short-range corre-
lations to make a treatment of hard-core interac-
tions possible. Since the interaction in quantum
crystals is strongly repulsive at short distances,
the ladder approximation is necessary, at least as
a first step in a more complete perturbation treat-
ment of quantum crystals.

A proper treatment of short-range correlations
has been the subject of many previous papers. '4

Most of them used a variational treatment and a
Jastrow-type trial wave function. '3 Several
methods have been used to evaluate the energy ex-
pectation value: cluster expansion, ' Monte-
Carlo integration, ' or integral equations known
from the theory of classical dense gages. '~ Re-
cently, Guyer' ' proposed a different method,
based again on a cluster expansion of the ground-
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state energy and using a hierarchy of model Hamil-
tonians. He derived a two-particle equation de-
scribing the motion of a pair of particles in a mean
field produced by the remaining lattice. This equa-
tion is very similar to the Bethe-Goldstone equa-
tion derived in this paper. We use similar approx-
imations to reduce this equation to a form tractable
by numerical methods.

The present paper is organized as follows. In
Sec. II, we review the Brueckner theory and intro-
duce some notations. Section III contains a deriva-
tion of the Bethe-Goldstone equation, the central
equation in this paper, which describes the motion
of a pair of particles interacting with the true in-
teraction between themselves and moving in a mean
field created from the remaining particles. This
equation is considerably simplified if a pole ap-
proximation is used for the single-particle propa-
gators. This is discussed in Sec. IV. In Sec. V we
discuss a number of further approximations of the
Bethe-Goldstone equation, reducing it to a form
which can be treated with numerical methods. In
Sec. VI, numerical results for the isotopes of he-
lium are presented and discussed. Finally, the
Appendix presents some numerical methods used
in the solution of the Bethe-Goldstone equation.

II. REVIEW OF THE BRUECKNER THEORY

In this paragraph, we give a short review of the
ladder approximation. 2' This also gives us the
opportunity to introduce the notations used later.
In the applications to 'He we will not be interested
in the nuclear spin system, assuming that we deal
with temperatures high compared to the ordering
temperature (=10 s K). Following I, we have to
solve the problem of a system of interacting spin-
less fermions having a Hamiltonian [Eqs. (I2. 14)
and (I2. 15)]

H=Z Z c,' T,„,„c,„
m, n

t vr+ Q ~ c &~c gn Vig;mnm'n~c&nrcfmr, (2. 1)
&&y mm'

nn '

where T& «are the matrix elements of the kinetic
energy in a basis of VYannier states. V is given
by (Is. 2), and the operators ct and c are, within
the approximations discussed in I, field operators
for spinless fermions. In the case of 3He, we

would also have a term in JI describing the cou-
pling between "particles" and "spine" [(I6.2)] but

in a high-temperature approximation for the spin
system (2. 1) is recovered

We had split H into Ho+ H', where [(I2.14)]

(2. 2)

and we had added and subtracted a single-particle
potential U such that

&i .-n+Ui «=&n&mn

%e introduced unperturbed propagator s:

go(ll ') = (I/i)b«. 5„„.exp[ - ie„(t —t ')]

„ i -f(e„) i(t- t') &0

-f(~„) ' i(t-t')-0

(2. 3)

(2. 4)

The statistical weight functions f(&) are given by
(I5. 2), but (as discussed in I) they can be replaced
at low temperatures by Fermi functions:

f(e) = 1/[e @' "'+ 1] (2. 5)

where the "chemical potential" has to be between
eo and E~. Equation (2. 4) now obeys the "quasi-
periodicity condition"'

go(t —iP) = -go(t) (2. 6)

Introducing the Schrodinger operator
p . 88(ll')= i +p—5„„.—T,„,„. 6«.5(t-t'), (2 7)

U(ii ') = U,„,„.6«.6(t - t) (2. 8)

we find [S(13)—U(13)]g (32) = 5(12) (2. 8)

where U(13) has canceled out. The mass operator
is given by

M(12) = —iV(1324)g(43) —V(1354)

Xg(56)g(47) g(83) T(6728), (2. 11)

and here we have used the vertex part of the two-
particle propagator defined by

g(1234) =g(13)g(24) —g(14)g(23)

+ig(15)g(26) T(56V8)g(VS)g(84) . (2. 12)

In terms of diagrams, T is given by the sum of all
connected skeleton diagrams having four terminals.
T can be generated from irreducible kernels, e.g. ,
by use of the Bethe-Sa, lpeter equation:

T(1234) = K(1234) —iK(1536)

&&g(68)g(75) T(8274) (2. 13)

Replacing the particle-hole irreducible kernel Z
by the potential leads to the RPA. Another pos-
sibility is to generate 7 from a particle-particle
irreducible kernel B, containing all skeleton dia-
grams having four terminals, which cannot be cut
into two parts by cutting two-particle lines. T is
then given by

where we use the convention that repeated indices
are summed, and repeated times are integrated
over the interval (0, —iP). We introduce in the
usual way the renormalized propagator g(12), which
obeys the Dyson equation

[s(is) —~(13)]g(32)= 6(12) (2. io)
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T(1234) = R(1234)

+ i R(1256)g(5'7)g(68) T('7834) . (2. 14)

This equation is still exact, the ladder approxima-
tion is obtained by replacing R with the bare inter-
action

forming with respect to the time variable, we find

jj( q 3 3 4 ) = ( 4
— 3) ( i- 3)5(r3 —r4)

+ f dpdp' V(r, —r, ) q,j(rpzpp'; z„)

x Tjj(pp'r, r, ;z„), (3.4)

R(121 '2 ') = V(121'2 ') = 544.5jj e5(i4 —t3)

"5(4- f i)5(f3-f 3) V&j,.... (2. 15)

where T,j(r,r,r,r4, z„)

&g„t= f dte " T,j(r,r,r,r, ; t) (s. 5)

In this approximation the mass operator becomes
and q, j(r,r,r3r4, z„)

M(12) = i T—(1324)g(43) (2. 16) =i dte " qjj(rpzr3r4, t) (s. 6)

The goal is now to find a self-consistent solution
to Eqs. (2. 10), (2. 16), (2. 14) and (2. 15).

x fdr, drzdr3dr4q *(r, —Rj)qj„(r, —R,)

xTjj(rl 2 3 4 f4 fg)'p (r3 Rj)

xq„.(r4-Rj) . (s. 1)

The 5 functions are a consequence of the fact that
the potential is instantaneous and diagonal in the
lattice site indexes. Further, we have used the
facts that g(12) depends on t, —t3 only and is diag-
onal in the lattice site indexes. qj„(r) are wave
functions of Wannier states at the origin, and R,
is the lattice vector to lattice site i. Although Eq.
(S.1) does not determine T uniquely, we can choose
it to be the solution to

T)j(rgr3r3r4 f) V(rg r3) '5(rg r3)

x5(r3 — )r4(t5)+ f dT f dpdp'V(r, —r, )
0

x q, j(r,r3 pp '; f —T) T,j(pp 'r3r4, T)

where

(3.2)

qjj(rpzr3r4 f) + 9 (r& —R;)qj„*(r3 R,)-
mmnn'

xg4„4 .(t) j'j„j„.(t)q „.(r, —R, )qj„.(r4 —Rj)

III. BETHE-GOLDSTONE EQUATION

To find self-consistent solutions to the set of
equations (2. 10), (2. 14), and (2. 16) without further
approximations is at present impossible. We
therefore have to discuss several steps to bring
the problem into a tractable form. Since the di-
rect term in (I3.2) is by far dominant and since
we are not interested in exchange for the moment,
we can neglect the exchange term in (IS. 2). We
introduce a T(r, ~ r4t) with

T(121 ' 2 ') = 5 44 ~ 5jj ~ 6 (ti —t3) 5(t g
—f 3 )

and z„=2izv/P with v an integer. To solve Eq.
(3.4) it is convenient to introduce a correlated
two-particle wave function $(rr') such that

Before proceeding with the discussion of the
Bethe-Goldstone equation, we have to investigate
the single-particle propagators and to introduce
some approximations.

We Fourier-transform the Dyson equation (2. 10)
with respect to time:

(z„+p)g, „,„.(z„)-Z„[T, ;„+M, „;„(z„)]

xaj. & (z.) =&.;,
where gj„, .(z„) = f dte " g. . .(t),

~4„4„(z„)= dte '" itd. . .(f),

(4. 1)

(4. 2)

(4. s)

and z„=2i zv/P with v a half integer
Neglecting the s„dependence of M we can find

the basis of Wannier states, such that

V(r —r')g,.„j„(rr';z„)
= f dpdp' T,j(rr'pp';z„)qj (P-R,)y„(p'-Rj) .

(3.7)

Inserting this into Eq. (3.4), we find the integral
equation

q,„j„(rr';z„)= qj„(r -R,)cp„(r
'

Rj) + f-dpdp'

"qjj(«'Pp' z.) V(P P')4je-jn(«'zu) .
(s. 8)

The usual procedure to determine T is first to
solve this (Bethe-Goldstone) equation to obtain

,T„„j,„.».( z) = f drdr'qj*„(r R,)y*„(r'-—Rj)

x V(r r')y, „,j„,-(rr';z„) . (S.8)

IV. POLE APPROXIMATION FOR SINGLE-PARTICLE

PROPAGATORS

(3.3)

Obviously Eqs. (3. 2) and (3. 1) together satisfy
Eq. (2. 14), with R replaced by V. Fourier-trans-

~imin+ ~imin ~n~ mn

and then g, ,„(z„)=(z„-4:„+p) '5

(4.4)

(4. 5)
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and Fourier-transforming back,

g»„»„(t)= —.5 exp[ —i(~„- t»)t] x [1-f(z„—p, )]=1

x 0 [-f(a„—p, )] it~ 0 . (4 6)

Inserting this approximation into Eq. (3.3), we

find

q», (r,r,r,r„.z„)=Zq»*„(r, -R»)»p*„(r, -R,)

x [1 —f (z„-t») —f(z„—t») ](z„—z —z„+2t») '

x»p (r, —R,)q»„(r4 —Rq ) . (4. 7)

We construct an operator I»»(r) having the Wan-

nier states at lattice site i as eigenfunctions:

I»»(r)cp„(r —R,) = z„y„(r—R,)

and a projection operator

P, =Q»p, „&(»p,.„
n

Using'these we can write Eq. (4. 7) as

(4. 8)

(4. 9)

Then ~p can be expanded in terms of those eigen-
functions:

(
I

) ~ z +2»» vm v
4»m»n i v ~ z + 2+

1f

q»&(r, rarsr4; z„)=P; P» [z„—h»(r, ) —I»t(r~) + 2t»]

x [I - f(a»(r») —t») -f(a, (r2) —t»)]

XS(r, r, ) 6( r, —-r, )P,P, . (4. 10)

We assumed that the overlap between Wannier
states at different lattice sites is negligible. In
this case P& is essentially a projection operator
into the Wigner-Seitz cell around A&. Under this
condition g [Eq. (3.8)] also will be essentially zero
if one of its arguments is outside the correspond-
ing Wigner-Seitz cell and we can replace the pro-
jection operators by unity.

Using Eq. (4. 10) we now can write the Bethe-
Goldstone equation [(3.8)] in the form

(z„+2t» —t», (r) —I»q(r ') —V(r —r ') + [f (h, (r) —IL»)

+ f(k~(r') —p)] V(r r'))g»„~„(r-r';z„)
= (z„+2t» —z —z„)»p,„(r—R,.) qr,„(r' —R»)

(4. ii)
To find the solutions of Eq. (4. 11) we solve first
the two-particle Schrodinger equation:

(a,.(r)+ a,(r')+ V(r+ r')
+ If(I» (r) —»»)+f(t»»(r ') p)]V(r r')]X—»;-.(«')

= &v;axe;. («') (4. i2)

=s(t)T»»»» ~ (4.is)

The sum over the eigenstates of Eq. (4. 12) has to
be restricted to the lowest states, since the @„-
dependent term has been replaced by 1. The sec-
ond matrix element in Eq. (4. 15) actually will re-
duce the sum to essentially one term only.

Using Eq. (4. 15) we find the mass operator [Eq.
(2. i6)]

~»m»m'(zv)= ~ T»m»n»m'»vf (ev —»») ~ (4.16)

V. FURTHER APPROXIMATIONS ON BETHE~LDSTONE
EQUATIONS

To reduce the two-particle equation [(4. 12) ] to
a form which can be attacked with numerical
methods we have to discuss some further approxi-
mations. We also restrict further consideration
to zero temperature, where

[h,(.).h,(.').v(.—.') —~;;,]x;;.,.( .')
=go( -R;)f dpi''o(p-R;)V(p- )x, ; (p )

+ y,(r'- R, )f dpyo (p —R, )V(r —p)X„,(rp).
(5.1)

We assume that

t»;(r) = —V /2m+ U(r R;), - (s.2)

where U(r) is a local single-particle potential.
Turning on the interaction in Eq. (5. 1), we find

a one-to-one correspondence between pairs of
band indices m g and a corresponding X. We write,
using this correspondence,

(rr') =f, ,, (rr')q. (r R, )W„(r' R,.),-(5..3)-

7'- '- (")=L&«.~». I
v Ix;;.&

+2/, —E
~x»y;il«m@yri& ~8„+ p. —'gg~. g

(4.14)

At low temperatures we are mainly interested in
the matrix elements of T between low Wannier
states. This means e„and e„ in Eq. (4. 14) are
small; in this case the main contributions in Eq.
(4. 14) will come from the lowest eigenfunctions of
Eq. (4. 12). This argument is strengthened by the
fact that the second matrix element in Eq. (4. 14),
as we will see, is essentially zero except for one
particular state. Inverting the Fourier transfor-
mation [(3.5) ] and using those arguments we find
that the leading term is

T:- '-'". (t) =«t)~'«;.~;.Iv Ix;;;.&x;»;.I~;-q»'

I
x&x»»;i I«-&» &x»»; («).

With Eq. (3.9), we find

(4.i3)
and find with Eq. (5. 2) an integrodifferential equa-
tion for f:
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t' 't('2 V o V ln&p (r R;) In&P„(r —R,)»
2m m

'
m

+V(r- r') —q;;,. +e +e„lf;;., (rr')
]

fdp V*(p —B ) V(p- r')f;»; (pr')

x &p (p- R») +
( B )

fdp Qo(p —Rg)
&o(r'- R,)
y„r -8,

(5.4)

This equation is considerably simplified if we as-
sume that at least the lowest Wannier states can be
approximated by oscillator eigenfunctions.
Nosanow has investigated this question and he
found that this is a good approximation. To deter-
mine the ground-state energy we need onlyf, , oo(rr'')
We will concentrate on the treatment of this quan-
tity. We use

f»o(r- R, ) = (n/4)" ' exp[- —,
' n'(r- R, )'] (5.5)

and introduce in Eq. (5. 4) relative and center-of-
mass coordinates x- R+ & p and r -R - —', p. We
find

V~ V
+ (R- ,B,—~R») .—V„(4m m m

Q
+—(p —R,. + R,) v, + V(p) —q„, 2, lf„.„(Bp)

fdp'(n/v'm)' exp(- n'p") [V(p'+ R, —R- -', p)
/1 1 1 I 1 ~ 1

xf» ~oo(-, B+ gP+ 2P + oR;; R+ p P —P —By)

+ V(p +B; -R+ —,'p)
1 & 1 1 1 ~ 1xf.»„oo(2P + 2R» + zB —4P P + R —R+ p P) ].

(5.6)

To simplify this equation further we assume that
f(R,p) depends on p only. The main contribution
to T [Eq. (4. 15)] will come from regions where
8 =28&+ —,'A;. We therefore neglect the 8 depen-
dence of f and evaluate Eq. (5. 6) at R= —,'R;+ —2R»,
introducing R„=A; —A, :

V2
——+

' (r-)), , ) V ~ ){r)-O;;:o)oo)f oo;ooo(r)

= 2(n/v'7»)'f dp exp[- n'(p —-', r- ,'B,,)']-
x V(p)f„.„(p). (5.7)

As a last approximation we reduce this three-di-
mensional integrodifferential equation to a one-di-
mensional equation, assuming that f(r) depends on
Irl only. In evaluating T[Eq. (4. 15)], f(r) is
multiplied with a Gaussian having a maximum at
r=B,J. We therefore should determine f(r) as
accurately as possible along the direction of A, &,
solving Eq. (5. 7) in this direction. We then ob-

tain the one-dimensional integrodifferential equa-
tion

«I

~
~

~ o
~

~

»

i ~

1 ~ 2 2 2+ oo )) —oo r + ) (r) —l7 oo+ )ooIij 9$ ~ 4t

1 1

xf„,(),.(r) =4nlv&f dp
' ' " exp(-n'p')

gl

x V(p+ ~2B» + pr)f»& ~ oo(p+ oB»» + 2r) (5.8)

Eo/N= fo —4 ~» T»o»o»o»o

= o 6() + 3n /8 m ~ (5.12)

The procedure to determine o.'mentioned above is
equivalent to making Eo stationary with respect to
variations of n, again ignoring the n dependence
of f(r).

VI. PRESENTATION OF RESULTS

The integrodifferential equation [(5.8) ] has been
solved numerically for bcc He, hcp He, and hcp
He for various densities. Some aspects of this

calculation are discussed in the Appendix. The
standard form of a Lennard- Jones potential was
used:

(6.1)

Equations for . .a short-range correlation function
f;,, (r) for excited states can be derived in the
same way. To calculate the ground-state energy,
however, we only need to know T,o;o,o;() . In (4. 15)
then the following matrix element appears:

(y... Iq»o»p, o) = fdr dr'q„*(r R;)y-„*(r'-R,)y

xf, ,. ( ')@o( —R,)qo(r' . R, ). (5.8)

Since f(r) is essentially constant at distances
slightly greater than the hard-core radius and the
main contribution to Eq. (5. 9) comes from those
regions, we find, with proper normalization of y,

&X;»; IW»oe»4=&. &.o. o (5.10)

Using this we find the mass operator [Eq. (4. 16)]

~(r B,)=~-, f. dp
I &o(p B,, ) I'f-„;oo(r p) «r -p). -

(5.11)

Equation (5. 8) still depends on the parameter n
which should be determined such that the Gaussian
[Eq. (5.5)] gives the best fit to the lowest eigen-
function of the single-particle Hamiltonian [Eq.
(5. 2) ], where U has to be replaced by Eq. (5. 11).
We determine + using a variational treatment such
that the expectation value of (5. 2) with the wave
function (5. 5) is minimal. In this variational pro-
cedure the n dependence of M [Eq. (5. 11)] must of
course be ignored.

The expression for the ground-state energy is
similar to the Hartree approximation
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VII. DISCUSSION

As a first application of the perturbation expan-
sion developed in I we investigated in this paper
the ladder approximation. In translationally in-
variant systems this approximation is a low-den-
sity expansion and it is not at all clear that it
should work in a system as dense as a quantum
crystal. The unperturbed ground state, however,
already contains correlations quite essential in a
crystal. Therefore, the additional correlations
which must be produced by the summation of lad-

A. S.W.~~-
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FIG. 5. Compressibility versus density. This work
(solid); Ref. 20 (solid M. K.); Ref. 17 (D. F.); Ref. 16
(E.P.); Ref. 21 (A. S.W. ).

would bring a lowering of approximately 2 K per
particle. The accuracy of this calculation is also
insufficient to predict the bcc-hcp phase transition
at the experimental density. Pressure data ob-
tained from the volume dependence of the ground-
state energy are presented in Fig. 4. In the hcp
phase of 'He and 'He we find somewhat lower val-
ues than the experimental ones; in the bcc phase
of 'He, however, the agreement is very good.

Finally, Fig. 5 shows the compressibility.
Again the agreement between theory and experi-
ment is better in the bcc phase; however, even in
the hcp phase the agreement is quite good. Fig-
ure 5 also shows theoretical values deduced from
a calculation by Morley and Kliewer. ~ Their
treatment does not include short-range correla-
tions; the discrepancy with the experimental data
is clear evidence of the importance of short-range
correlations even at higher densities.

der diagrams are rather small. This can be seen,
e. g. , from Fig. 2, by comparing the two-particle
correlation functions with and without short- range
correlations. A comparison with experiments in-
deed shows that the ladder approximation is rather
good for quantum solids. In particular, three-par-
ticle terms seem to be considerably less impor-
tant in quantum solids than in translationally in-
variant systems.

The central equation in this paper is the Bethe-
Goldstone equation [(3.8)] and the two-particle
Schrodinger equation [(4.12}]. This second equation
is similar to a corresponding equation derived by
Guyer' ~' using a cluster expansion of the ground-
state energy. The main difference is that his
equation does not contain the last term in the
curly bracket of Eq. (4.12}. Instead, the interac-
tion V(r- x ) in his calculation is corrected by sub-
stracting an effective force introduced earlier in
his calculation. The effect of this correction is
very similar to the effect of the additional term in
Eq. (4. 12), and the results from Guyer's calcula-
tion are actually quite similar to those presented
here. In contrast to the present case no self-con-
sistency condition follows from his theory for the
parameter n in the single-particle wave function
[Eq. (5. 5)]. Instead, he proposes two alternative
prescriptions to determine his effective force; one
turns out to be very similar to the present self-
consistency condition.

In conclusion, we can say that the ladder ap-
proach applied to quantum crystals represents an
alternative method of treating short-range correl-
ations in quantum crystals. It is equivalent and in
some respects superior to other means, in partic-
ular, to the use of Jastrow factors. Its main ad-
vantage is certainly that it has to be considered as
the first step in a unified treatment of quantum
crystals using many-body perturbation theory.

APPENDIX

To solve the integrodifferential equation [(5.8) ]
we used the following procedure. f has to be
normalized according to Eq. (5.10), i.e.,

o.'/(2v)' f dpf(J;00(p)[(p+Ro)/R(J]exp(- ~o.'p) =1.
(Al)

The integrodifferential equation was solved itera-
tively. Starting from an initial function f(r), nor-
malized according to (Al), the right-hand side of
(5.8) was calculated and treated as an inhomogen-
eity to the left-hand side. This "inhomogeneous
differential equation "was solved by finding solu-
tions to the inhomogeneous and to the homogeneous
equation integrating from small x outwards, a sec-
ond set, integrating from large x inwards. The in-
homogeneous and homogeneous solutions were



MANY- BODY PE RTU RBAT ION T HEORY . II 1729

added and constant factors in front of the homo-
geneous solution were chosen such that at some
intermediate distance the resulting two solutions
matched in value and in first derivative. The
eigenvalue, considered as a parameter in this
"inhomogeneous differential equation, "was deter-
mined so that the new f function again was normal-
ized according to Eq. (Al). The new f finally was
used to recalculate the right-hand side of (5. 8).

This procedure is sufficiently fast and rapidly con-
verging.
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