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The possibility of a perturbation treatment for quantum crystals is investigated. It is found

that the usual form of the unperturbed Hamiltonian, being a single-particle operator, is not
suitable for this situation, since it does not produce correlations necessary in a theory of
quantum crystals. These correlations prevent the unperturbed ground state or low excited
states from containing multiply occupied lattice sites. An unperturbed Hamiltonian is pro-
posed which generates these correlations but is no longer a single-particle operator. The
rules for a diagrammatic representation of a perturbation expansion starting from this un-

perturbed Hamiltonian are given. They differ from the usual rules for Goldstone diagrams.
In particular, the linked-cluster theorem is not valid. Adding and subtracting pairs of
mutually cancelling diagrams, in a manner similar to that in which Pauli-principle-violating
diagrams are treated in the standard perturbation theory for fermions, we find new rules
which, at least at low temperatures, are identical to those for spinless fermions. This result
is essentially independent of the statistics of the actual lattice particles. In the case where
the lattice particles are actually fermions with spin &, e.g. , He, we find an expansion for-
mally identical to the problem of spinless fermions interacting among themselves and with
a set of spins 2 localized at lattice sites.

I. INTRODUCTION

The outstanding feature of quantum crystals is
the existence of large zero-point motion. This is
caused by the light mass of the lattice particles,
the isotopes of helium or molecular hydrogen, and

by the fact that the van der Waals interaction is
quite weak at distances of the order of the lattice
constant. On the other hand, the strong repulsion
at smaller distances produces short-range corre-
lations which have to be contained in any first-
principle calculation on quantum crystals. Numer-
ous papers have dealt with this problem' '; most
of them are based on a Jastrow-type wave function
and use variational methods. '

Another consequence of the large zero-point mo-
tion is the strong anharmonicity of the lattice vibra-
tions even at zero temperature which prevents the
use of ordinary lattice dynamics. This problem
has been studied with the random-phase approxima-
tion (RPA)' andwith summations to all orders of an-
harmpnic phpnpn thepry. None pf these papers,

however, has given a consistent treatment of pho-
nons and short-range correlations simultaneously.
Some discussion has arisen as to which quantities
should be identified with the actual phonon frequen-

18& 20 22

A third group of papers has been concerned with
exchange in 3He, and conceptually quite different
approaches have been used. ~

'
In searching for a method to treat the three as-

pects —short-range correlations, phonons, and
exchange —on a common basis, we have investi-
gated the many-body perturbation theory. This
approach is suggested by the fact that short-range
correlations can be treated using Brueckner the-
ory, ~ as demonstrated, e. g. , in the theory pf
nuclear matter. Phonons on the other hand can be
obtained approximately from RPA. It therefore
seems natural to try to combine both methods.

A careful examination of perturbation theory,
however, reveals the fact that standard many-
body methods 6~ cannot be applied directly tp
quantum crystals. The reason is that the usual
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form of the unperturbed Hamiltonian, being a
single-particle operator, does not produce sufficient
correlations in the unperturbed ground state or low
excited states. The resulting perturbation series
would converge extremely slowly if at aLL. This
situation is similar to the theory of superconduc-
tivity where a canonical transformation has to be
used first, and after doing this a perturbation the-
ory in terms of quasiparticles is possible.

Naively, one would assume that a perturbation
calculation in a crysta1 should start from a state
having at each lattice site a particle sitting in a
localized state, e. g. , ground-state wave function
of a harmonic oscillator. The unperturbed
Hamiltonian would contain, besides the kinetic en-
ergy, an effective single-particle potential having
a deep enough minimum at each lattice site. The
problem arises from the fact that the unperturbed
ground state mentioned above, having at each lat-
tice site one particle in the lowest single-particle
state, is highly degenerate. In the case of fermi-
ons, this state is degenerate with states having
one or more doubly occupied lattice sites (sites
occupied by two particles of opposite spin in the
lowest single-particle state), and a corresponding
number of vacancies. In the case of bosons, there
are degenerate unperturbed states with even higher
occupation numbers and corresponding numbers of
vacancies. However, when the interaction is
turned on, states with more than one particle on the
same lattice site would develop into highly excited
states. Such a situation would require the use of
degenerate perturbation theory, which seems to be
most difficult in this context.

In Sec. II, we propose an unperturbed Hamilto-
nian which actually lifts this degeneracy, but it is
no longer a single-particle operator. The pertur-
bation expansion for the partition function is dis-
cussed in Sec. IG introducing diagrams similar to
Goldstone graphs. The great disadvantage of this
expansion is that the linked-cluster theorem is not
valid. The rest of this paper is concerned with
restoring the linked- cluster theorem.

There is an analog to this difficulty in the con-
ventional perturbation expansion for a Fermi gas.
Such an expansion obeys the linked-cluster the-

orem, but contains Pauli-principle-violating dia-
grams. 9 An expansion not containing those would
not obey the linked-cluster theorem. The usual
expansion could be recovered by adding pairs of
mutually cancelling Pauli-principle-violating dia-
grams.

A similar method is used in Secs. IV, V, and
VI to find an expansion in which the linked cluster
theorem holds. Sections IV and V deal with spin-
less particles at zero and finite temperatures,
respectively. In Sec. VI, the situation for fermi-
ons with spin & is investigated. Section VD con-
tains a summary and the Appendix contains a proof
necessary for Secs. IV and V. The result is that
the expansion, at least at low temperatures, can
be brought into a form identical to the usual ex-
pansion for a system of spinless Fermions. This
fact is independent of the statistics of the actual
lattice particles (except for the exchange term in
the interaction) as one would expect in a theory of
quantum solids, since the overlap between neigh-
boring particles is quite small. In the case of
He, we find that the "spinless Fermions" are

coupled to a system of spins & attached to the
lattice sites.

The result of this paper enables one to use the
standard methods developed in many-body theory,
e. g. , Brueckner theory or RPA. This opens the
field for investigations which one may hope will
lead to further developments in the theory of quan-
tum crystals.

II. UNPERTURBED HAMILTONIAN

H —pN =Ho+H (2. 2)

It is convenient to introduce "time-dependent" op-
erators in the interaction picture (8= 1)

g (t) e4Hpfge IHpf (2. 2)

A perturbation expansion for systems at finite
temperatures ~

' usually starts from an expansion
of the grand canonical partition function

(2. l)

The Hamiltonian is split into an unperturbed part
and a perturbation

and to allow for complex time arguments. The partition function can be expanded as

Z =Zp —f J dTTr[H'(7')e o]+(-i)' j "d'r, f" d~p Tr[H'(r, )H'(rp)e "o] (2. 4)

+(-i)'J '
d7; f" d7', f 'dr, Tr[H'(7;)H'(v, )H'(7;)e p"p]+

and Z, =Tre ' o (2. 5)

is the partition function for the unperturbed system. For this expansion to converge, it is crucial that the
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solution of the unperturbed system contains the essential features of the actual system. This is, for ex-
ample, most evident in the theory of superconductivity, where an Hp describing free particles is totally insuffi-
cient and a transformation to quasiparticles is necessary. More generally, for all systems having a sym-
metry lower than the actual Hamiltonian, it is essential to choose Hp such that it has the lower symmetry
of the system and not the full symmetry of H.

The usual choice of the unperturbed Hamiltonian
is
Hq Z, f dec.'(~)(- +()(v) —g)@.(~),

where U(x) could be the Hartree potential. In a
crystal, U(r) is expected to be periodic having the
symmetry of the lattice, and in this case the
eigenfunctions to Hp are Bloch states. Introducing
field operators for these states,

Ho-Z a~(kn)[e(kn) —p, ]a(kn) (2. I)
kn

(2. 6)

k is a wave vector inside the first Brillouin zone
and n is a label for band and spin in the case of
Fermions.

The density distribution of a particle around a
lattice site even in the case of quantum solids is
rather well concentrated compared to the elec-
tronic density distribution in metals. Hp would

describe lattice particles (e. g. , He atoms or H~

molecules) moving in bands, and as a consequence
at least the lower bands are expected to be ex-
tremely narrow in comparison to the band gap.
Neglecting the k dependence of e, we might write

(2. '7) in terms of field operators for Wannier
states:

HO=+ at(in)[e(n) —p]a(in) (2. 3)

where a~ and a create and annihilate particles in
Wannier states near lattice site R& and in a state
with quantum number (band index) n

For a crystal with N particles, we expect that
the lattice constant is such that there are just N
lattice sites. Turning on the interaction adiabatically
we expect that the actual ground state will develop
from an unperturbed state in which each lattice is
occupied just by one particle in the lowest Wannier
state. Unfortunately, this unperturbed state is
highly degenerate with respect to Hp. For example,
a state in which one lattice site is doubly occupied
and another vacant has the same unperturbed en-
ergy as the one considered before. Such a state,
however, will develop into a highly excited actual
state when the interaction is turned on. In a cal-
culation of the ground state, one would therefore
have to apply degenerate perturbation theory,
which is considerably more difficult in a many-
body system. In an expansion of the partition func-
tion Eq (2. 4), thes. e latter states would give rise

to unreasonably large contributions, resulting in
poor convergence of the expansion, if it converges
at all.

From this discussion, we conclude that Hp should
be chosen such that the unperturbed ground state
and low-lying excited states correspond to singly
occupied lattice sites. States having multiply
occupied lattice sites have much higher energy
with respect to Hp. It seems reasonable to com-
pletely disregard the latter states for the present
and to consider them, if necessary, separately.
To do so, we introduce projection operators P;
such that

P) ~%') =
~
4)) if Z„at(in)a(in)

~

4') =
~
@)

P;
~

4)= 0, otherwise; (2. 9)

or using the Kronecker symbol (we use this notation
instead of 5, „for typographical reasons)

P, =5(i, n;), where n, =Z„a (in)a(in) . (2. 10)

Using these, we define

c(in) =a(in)P, , c (in) =P&a (in) (2. 1i)

=Z c t(in)e(n)c(in) (2. 14)

c (im)c (jn)[V(im, jn, in', jm')
i& j m, m', n, n'

+ V(im, jn, jn', im')]c( jn')c(im')

- Q Z c'(im)U(im, in)c(in) . (2. iS)

Here 7 is the kinetic energy, V is the interaction,
and U is some properly chosen single-particle
potential.

The third part H contains the remaining terms

These new operators commute (anticommute) if the
lattice-site index is different:

[c (in), c (jm)], = [ct(in), c(jm)],=0, i 4j, (2. 12)

Two operators having the same lattice-site index,
however, do not obey simple commutation rela-
tions, but we will not need those.

We split the actual Hamiltonian into three parts:

H=Hp+H +H (2. 13)
where

Ho =Q Q c (im) [T(im, in) + U(im, in)]c (in)
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and does not have matrix elements between two
states, each having singly occupied lattice sites
only.

Retaining states only having singly occupied
lattice sites in evaluating the trace, and for the
intermediate states, we end up with an expansion
of the canonical partition function rather than the
grand canonical, and a Hamiltonian H =HQ+II'
only. This is the basic approximation of this pa-
per. It corresponds to an expansion in a subspace
of the N-particle Hilbert space, spanned by the
states having each lattice site singly occupied.

This subspace actually depends on the particu-
lar choice of the single particle basis of Wannier
states which was used to define the projection
operators by Eq. (2.9). If, however, the overlap
between states with different lattice site indices
is sufficiently small, the Wannier states at a given
lattice site form essentially a complete basis in-
side the corresponding Wigner-Seitz cell. There-
fore, the actual choice of the Wannier function
basis will not be critical as long as the overlap is
sufficiently small. In actual calculations the ba-
sis will be determined self-consistently such that
the single-particle propagators are diagonalized
at low energies. In a Hartree calculation, this

III. PERTURBATION EXPANSION OF THE PARTITION
FUNCTION

The time dependence of the operators is given
by Eq. (2. 3). Using Ho [Eq. (2. 14)], we find

ct(in; t)= exp[i«(n)t]c (in),
c(in;t) = exp[-i«(n)t]c(in)

We introduce

p(ij;mnm'n') = V(im, jn, im', jn')

+ V(im, jn, jn', im'),
U(i, mn)=U(im, in) .

(S.1)

(3.2)

would amount to using the Hartree function as ba-
Sis ~

The restriction of the Hilbert space will not be
crucial for most questions. For phenomena like
formation of defects, diffusion, or especially ex-
change, however, states outside this subspace
might play a role as intermediate states and at
least some effects of these states should be includ-
ed in a treatment of those phenomena. At present,
we will not be concerned with these questions,
leaving them for further investigation.

The expansion of the canonical partition function Eq. (2. 4) becomes

- f8—= 1-i dr Z U(imm') exp[i[«(m) - (m«')]v}(c (im)c(im'))0-i JZQ 0 imm'

x f'(ij;mnm'n') exp(i[«(m)+«(n) -«(m') —«(n')]r}(c (im) c(im') ct(jn) c (jn'))o

mm 'nn '

+(-i)'
~0

dr& „0 5~ W~ U(imm') U( jnn') exp (i[«(m) —«(m')] r&}
imm' gnn'

&&exp(i[«(n) -«(n')]ra}(ct(im)c(im')c~(jn)c(jn'))o+ ~ ~ (S. 3)

where the unperturbed partition function

Zp = Tr~ exp( -' pHp) = [Q„exp(- p«„)]

and the unperturbed expectation value

(Op)0= Zo
' Tr~Op exp(- PHD)

(3.4)

(S. 6)

Because of the commutation relations [Eq. (2. 12)] the expectation values occurring in Eq. (3.3) factorize
into expectation values, each containing c and c operators with the same lattice-site index only. A typi-

.cal such factor would be

(c (im, ) c(in, ) c (im2) c(imq) ~ ~ c (im„) c(in„))0= 6(n,mq)5(n2m~) ~ ~ 5(n„m, ) exp[- P«(my)]ZO
' " (S. 6)

In contrast to the usual perturbation expansion,
where Eq. (3.6) would contribute v! terms, this
is the only contribution in our case.

We would like to express the perturbation ex-
pansion Eq. (S.3) in terms of diagrams similar

1

to the Goldstone diagrams. ~' We use a vertical
time axis and represent each matrix element of
V or V by a dashed line at the corresponding time
level. The end points of these vertices are con-
nected by lines with arrows forming closed loops.
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Ea,ch such loop corresponds to an expectation value
such as Eq. (3.6), each up-going line particle
propagator contributes a factor 5(n, m), each
down going line hole propagator, a, factor
6(n, m)e ~""'Zo'~". Each loop carries a lattice-
site index and can contain only one hole line. In
a given diagram, all lattice site indices attached
to different loops have to be different. To evalu-
ate a given diagram we have the following rules:
(a) Each vertex carries a time label, each prop-
agator a band index, each loop of propagators a
lattice-site index. Each loop can have only one
hole line. (b) Each vertex contributes -',i times
the corresponding matrix element [Eq. (3.2]; each
propagator, a factor e "'"'" ' '; and each hole
propagator, in addition, a fa,ctor e t'""'go
The quantity e(n) is the energy corresponding to
the band index n, t and t are the starting and
terminal time of the propagator. (c) Integrate
over all times such that the given time order of
the vertices is preserved, sum over all band in-
dices and over all lattice-site indices such that
no two of them are the same.

These rules are quite similar to the usual rules
for Goldstone diagrams, with the additional re-
striction of one hole line per loop only, and the
restriction of the lattice-site summations.

We would like to stress the fact that the only
place where the statistics of the lattice particles
enter is in the sign of the "exchange term" in the
interaction (3. 2). In situations where the overlap
is small, the contribution of this term will be
negligible and the calculation becomes independent
of the statistics. This result is very natural in a
theory of quantum crystals. It is confirmed by
the close resemblance of solid He and He, in
contrast to the liquids, at least at temperatures
that are not so low that the nuclear spins in He
begin to play a role.
IV. GROUND-STATE ENERGY OF SPINLESS FERMIONS

AND BOSONS

The calculation of the free energy F = —kT lnZ
and of the ground-state energy E =limE as T-0
is much simplified in the usual perturbation theory
by the fact that disconnected diagrams simply
contribute factors. Therefore E or E is given by
the contribution of all connected diagrams. This
fact, known as the linked-cluster theorem, is not
valid in the present case because of the restric-
tions of the lattice-site summations in rule (c).

It is illuminating to examine for a moment a
similar situation in the usual perturbation expan-
sion for a Fermi gas. Such an expansion contains
Pauli- principle- violating diagrams, but to each
such diagram exists another one cancelling its
contribution exactly. In many cases, however,
connected diagrams are cancelled by disconnected

(a) (b) (c)

FIG. 1. Parts of mutually canceling diagrams.

ones. Therefore, in an expansion which does not
contain Pauli-principle-violating diagrams, the
linked-cluster theorem would not be valid and one
would find restrictions similar to those given in
rule (c).

On the other hand, starting from such an expan-
sion we could find the usual form adding mutually
cancelling Pauli-principle-violating diagrams in
an appropriate way. We will follow the same
strategy in the present case.

We restrict our further consideration, for the
time being, to bosons with spin 0 and to fermions,
disregarding the spin degeneracy. The consider-
ation of the spin degeneracy of Fermions with
spin —, requires a slightly modified formulation
which mill be given in Sec. VI.

We first treat the case of zero temperature.
There a hole line has to carry a band index of
the band with lowest energy n= 0, whereas, the
band indices for particle lines are not restricted,
including n = 0. For each diagram with a particle
line having band index n = 0 we can find another
one, not allowed according to the rules (a)-(c),
giving exactly the same contribution. An example
is given in Figs. 1(a) and 1(b), where the particle
line carrying band index n = 0 is marked by a p.
Similarly, we could find to each diagram having
more than one hole line in a given loop, another
one giving the same contribution, e. g. , Figs. 1(c)
and 1(d). In this case, both diagra, ms would be
forbidden according to the rules (a)-(c).

We can restrict the summations of the band

indices to n e 0 for particle lines and compensate
this change in the rules by allowing diagrams of
the type Fig. 1(b) having more than one loop for a
given lattice-site index. We also can add dia-
grams containing parts given in Fig. 1(d) and sub-
tract those of type Fig. 1(c) having more than one
hole line per loop. In the Appendix, we investigate
these canceQations more rigorously and find that
this procedure of adding and subtracting mutually
cancelling diagrams just gives all diagrams with-
out the restrictions given in rules (a) and (c) con-
cerning the lattice-site-index summations. More
precisely, we find for spinless particles at zero
temperature the following rules:
(i) The same as (a), except that the number of
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hole lines is not restricted. (ii) The same as (b),
except that each hole propagator contributes a
factor —5(no} exp[ —ie(0)(« —«')] and each particle
line [1—6(no)]exp[ —ie(n)(«- «)]. A factor (- 1)'
has to be added, where / is the number of loops in
the diagram. (iii) The same as (c), except that
the lattice-site summation is not restricted.

The changed sign for hole lines and the factor
(- 1) ' is introduced to give Figs. 1(c) and (d) op-
posite signs. Because of the form of the interac-
tion [Eq. (2. 15}], which is diagonal in the lattice-
site index, all lines in a given loop still carry the
same lattice-site index, but different loops with
the same lattice-site index are allowed within one
diagram. In this new diagrammatic expansion,
disconnected diagrams simply contribute factors
and the linked-cluster theorem is valid.

The new rules [(i)-(iii)] are exactly the rules
for fermions in the usual Goldstone expansion
they are, however, unchanged if we deal with
bosons. As pointed out earlier, the only differ-
ence is the change in the sign of the exchange ma-
trix element [Eq. (3.2)].

This result is not too surprising for a system
of Fermions disregarding spin degeneracy. In this
special case, the ground state of the usual unper-
turbed Hamiltonian [Eq. (2. 8)]already is nonde-
generate and has only singly occupied lattice sites.
Since the interaction does not change the occupa-
tion numbers at each lattice site, the intermediate
states also have singly occupied lattice sites and

in this special case the correlations introduced by

changing to the c and c~ operators are already pres-
ent owing to the Pauli principle. As we will see in

Sec. V, this is no longer true at finite tempera-
tures.

Having rules (i)-(iii) the change to Feynman
diagrams (without time axis} and the propagator
renormalization follow standard procedures and
need not be discussed here.

V. SPIN LESS PARTICLES AT FINITE TEMPERATURES

Vfe could try to generalize the results of Sec. IV
to finite temperatures replacing the Kronecker
symbols by statistical weight functions:

1- 5(no) - 1-f(e(n)}
—5(nO) — -f(p (n)),

where we choose

(5. 1)

f (e(n)}= exp[ —Pp(n)] / Q„exp[ —Pe(m)] . (5. 2)

This choice contains the previous results as the
T -0 limit. The cancellation of diagrams, e. g. ,
Figs. 1(a) and l(b) or Figs. 1(c) and l(d), however,
is no longer exact at finite temperatures. In the
Appendix, we derive an expansion of expectation

Mp(vl ) Mp(v2') ~ M, (vv')

In the Appendix, we show that expectation values
of the form of Eq. (3. 6) can be writtenPP

—«( c'(1')c(1)),= -g,(11'), (5. 8)

(- i)'(c'(1') c(1)c'(2') c(2))p
= g,(11')g,(22')

—gp(12 )gp(21 ) + Mp(12; 1 2 ), (5. 7)

(—i}'& c'(1')c(1)c'(2') c(2)c'(3' ) c(3)},
= —gp(11 )gp(22 )gp(33 )+gp(12 )gp(21 )gp(33 ) + ' ' '

gp(12 }gp(23 )gp(31 ) —~ ~ ~

—Mp(12; 1 2 )gp(33 ) —~ ~ ~ + Mp(12; 1 3 )

xgp(32')+ ~ ~ ~ —Mp(123;1 2 3 )

In general, we find for an unperturbed expecta-
tion value of c~ and c operators a sum of products,
each formed from factors gp, [Eq. (5. 3)] and Mp,

[Eq. (5. 5)]. We have to sum over all possible
ways to form such products, where products dis-
tinct only by the order of variables in a particu-
lar Mo should be counted once only. Each product
has a sign (- 1) ' where / is the number of loops,
including those which would be formed if we con-
nect the variables in Mo in the order of appearance,
i.e. , in the last term of Eq. (5. 8), 1 with 1, 2
with 2', and 3 with 3'.

This expansion is valid for c operators at dif-
ferent lattice sites also, since the semi-invariants
vanish if two lattice-site indices are not the same.

The time-dependent factors in Eq. (5. 4) can
easily be written as factors in front of the deter-
minant, leaving a determinant which depends on

values of the form (3. 6) in terms of semi-invari-
ants. We introduce a single-particle function,
analogous to the unperturbed single-particle
Green's function in ordinary perturbation theory:

gp(12) = —i6(ihip}5(n&np) exp[ —ie(n&)(«& —«p)]

(1-f( ( )) ~ (« —«) o
(5. 3)

( -y(c(n, )))' «(«, -«,)-0,
where 1 =-(i,n, «,) represents the lattice-site and
band index and the purely imaginary time variable.
In addition, we introduce

Mp(12) = i&(i,ip) &(ngnp)

x exp[ —ie(n, )(«& —«p)] f(e(n&)), (5. 4)

and Mp(12 v;1 2 v )

= &h, z,) 5(«,«,)"~ 5(«,«„)(- 1) (v- 1)!

i Mp(11 ) Mp(12 ) ' ' ' Mp(lv )

Mp(21 ) Mp(22 ) ' ' Mp(2v )
(5. 5)
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the band indices only. If two of the band indices
involved are the same, the determinant vanishes,
since two rows or lines are the same. Thus, the
maximal contribution arises if, e. g. , nj =0, n2= 1
and so on, and Eq. (5. 5) will be proportional to

exp[- P (e(O)+ e(1) + ~ ~ e(v})]/( Q exp[- P~(m)]j" .
The expansion, therefore, is a low-temperature
expansion, where the characteristic temperature
is given by the energy difference between the
lowest and the next band. In particular, at zero
temperature aQ the Mo's vanish and we recover
the result of Sec. IV.

A rather unpleasant feature is the fact that the
statistical weight factor f(e}[Eq. (5. 2)] is differ-
ent from the usual Fermi function. As a conse-
quence go does not obey the usual quasiperiodicity
condition

(5.9)

The lack of this symmetry makes the evaluation
of diagrams sometimes more tedious. In actual
calculations of quantum crystals, it is always
possible to replace the function f(e) [ Eq. (5. 2)]
by a Fermi distribution function, since the tem-
perature region of interest is always much lower
than the gap between the lowest and the next-lowest
band. The latter turns out to be of the order of
the Debye temperature and the melting temperature
is typically of the order of ~ 9~. One has to have
in mind the fact that low-temperature behavior is
dominated by collective excitations, not by the
single-particle properties.

For the same reasons, we can neglect in Eqs.
(5. 7), (5. 8), and corresponding expressions, all
terms containing Mo. With these two approxima-
tions, we recover an expansion identical to the
usual perturbation expansion for Fermions. The
statistics of the actual lattice particles again
show up only in the sign of the "exchange term"
in V [Eq. (3.2)].

VI. FERMIONS WITH SPIN 2

The method discussed in Sec. V cannot be used
for Fermions with spin —,'. If we would simply
allow for the spin degeneracy, e. g. , enlarging the
number of indices by a spin variable, M~ [Eq.
(5. 5)] would no longer vanish at zero temperature
or be small at low temperatures. The determinant

in Mo(12; 1 2 ) would not always vanish at zero
temperature since the band indices could be the
same (n = 0} if the spin indices are different. We
would, therefore, have to retain all the Mo of
order 2, even at T=O.

The eigenfunctions to Ho [Eq. (2. 14)] have the
property that they have at each lattice site just
one particle. Since Ho is also spin independent, or
at least diagonal in the spin if an ordered state
should be treated, the single-particle functions are
products of a spatial part and a spin function. The
Hilbert-space @„spanned by the states having each
lattice site singly occupied is the product of a
space spanned by spatial function, @s and a space
spanned by spin functions Qs. If the unperturbed
Hamiltonian and the interaction are spin indepen-.
dent IIO. and the contributions of H' due to U and
the direct term act in Oz only. The "exchange
term" in (2. 15) has for spin-independent interac-
tions the form

V'(in, s „jn2s2, jn4s4, in3sg)

= 6(s,s4)6(s~s~)V(in„jna, jn4, in3) (5 1)

Its matrix elements with respect to the spin
states have the same form as those of the usual
Heisenberg Hamiltonian.

We would now like to characterize the states
with each lattice site singly occupied in the fol-
lowing way.

We say each lattice site carries a spin —,
' and a

"particle, "meaning actually the spatial part of its
total wave function. We introduce spin operators
at each lattice site, represented by Pauli spin
matrices, acting in the space spanned by two spin
basis functions at each lattice site. We redefine
the c and ct operators [Eq. (2. 11)] such that they
act in the spatial part Os only, extending the Hil-
bert space by states having a spin, but no "parti-
cle, " in the sense above, at a given lattice site.
These states are unphysical, but we have to have
in mind that they are introduced only as a trick
and that the operators c and c ~ always occur in
pairs at the same time. Therefore, the energy of
these states never occurs and the expansion actu-
ally is independent of these states as it should be.

Introducing spin operators and using the rede-
fined c and c~ operators, the contribution of H' due
to the exchange term can be written in a form sim-
ilar to a Heisenberg Hamiltonian:

p' = Z Z c (im)c (jn)V(imjnim'jn')c(jn'}c(im')-Z Q c (im)c (jn)V'(imjnjn'im')
i& g mm'nn' i&g mm'nn'

xc(jn')c(im')[ ,' + 2 s(i) s(j—)]-QZc t(im)U(imin)c(in)=5~ 2 c~(im)ct( jn)
i&g mmsnn'

(5.2)
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&& V(ij;mnm'n')c(jn')c(im') -Z Zc (im)U(imin)c(in) —2 Q s(i) s(j)
i mn

&& Q c (im)c (jn) V(imjnjn'im')c( jn')c(im')
mm 'nn '

where now V(ij; mnm'n') = V'(imjnim'jn') —
~ V(imjnjn'im') (6. 3)

In an expansion of the partition function, we can again add mutually cancelling diagrams and under the
conditions discussed in the previous paragraph, i.e. , at low temperatures, the c and c operators can be
treated as field operators corresponding to spinless fermions. These "particles" interact via the last
term in (6.2) with the "spine. " This interaction has in spin space the usual form of a Heisenberg
Hamiltonian. The exchange integral, however, is replaced by an operator in the "particle" space. "

In this form, the problem can be attacked by combining the standard perturbation-theoretical methods
developed for fermions and for the Heisenberg model.

VII. SUMMARY

We have investigated the question as to what

form of perturbation theory is applicable for quan-
tum crystals. The usual choice of an unperturbed
Hamiltonian as a single-particle operator cannot
be used since it does not produce correlations es-
sential in a theory of quantum crystals. These
correlations prevent a lattice site from being oc-
cupied by more than one particle. An unperturbed
Hamiltonian is proposed which provides these cor-
relations but is no longer a single-particle opera-
tor.

Under the assumption that intermediate states
having multiply occupied lattice sites can be dis-
regarded completely, which is the basic approx-
imation in this paper, we give a diagrammatic
expansion starting from the proposed Ho. It is
shown that this expansion is, at low temperatures,
formally identical to the usual perturbation expan-
sion for spinless Fermions.

This result is independent of the statistics of the
actual lattice particles, except for the sign in the
exchange term of the matrix elements of the in-
teraction. In the case where the lattice particles
are fermions with spin —,

' we find, within the frame-
work of our basic approximation, an expansion
formally identical to the usual expansion for spin-
less Fermions interacting among themselves and

with a spin —,
' attached to each lattice site. This

latter interaction has in spin space the form of the
usual Heisenberg Hamiltonian. The exchange in-
tegral, however, is replaced by an operator in
the space of the syinless fermions. ,

The validity of the basic approximation might
be questionable to some degree if exchange is con-
cerned. This problem has not been investigated
and will be subject to further work.

The procedure described in this paper is not
without ambiguity. To define occupation numbers
at lattice sites we have introduced a complete set
of Wannier states. Thus, the states omitted in
our basic approximation depend on the particular

The author wishes to thank I . H. Nosanow for
many invaluable discussions and for a critical
reading of the manuscript.

APPENDIX

We derive the expansion of expectation values of
the form (3.6) in terms of semi-invariants [Eqs.
(5.6)-(5.6)]. We introduce

F(12)= Mo(12) —iX(1)e( it, it, rt)—-
&& 5(n&n&) exp[- i&(n&)(t& —t,)], (Al)

where M, is given by Eq. (5.4} and q- O'. We have
to have in mind that all the lattice-site indices in
Eq. (3.6) are the same. Using Eq. (A1},

[1+~(1)]F(12)=g,(12),
where go is given by Eq. (5. 3) and we have used
the abbreviation

A(1)E(12)= E(12)
& )t=—o (AS)

I

choice of this basis. However, as long as the
overlap between Wannier functions at different
lattice sites is small, we expect negligible depen-
dence on the further details of the basis chosen.
In actual calculations, a self-consistency criterion
mill be used which reduces in a Hartree calculation
to the choice of the Hartree states as basis.

In conclusion, we like to point out that we were
able to bring the perturbation expansion, at least
at low temperatures, into a form identical to the

standard problem of syinless fermions and of a
Heisenberg model. These problems have been
widely studied and the methods developed there
can be transferred to the case of quantum crystals.
As a first step, the foQowing papers gives a dis-
cussion of the ladder ayproximation, which has to
be used because the interaction in actual quantum

crystals is singular.

VIII. ACKNOWLEDGMENT



1720 HE IN Z HORNER

We introduce
F{11') F(12') F(ln')

(y(1. ..n. 1&. . () ( 1))) F(21') F(22') ' ' ' F(2n')

&(v) F(l' ' 'n; 1' n') (A5)

We must keep in mind that in Eq. (A5), t( = tf,
t2= t,', and so on, and further it&)it2 ~ )it„. Since

&(1)F(12)= 0, if i(t~ —t2) & 0;

also &(l)6:(1 n; 1' ~ n') = 0

We now write Eq. (A5) as
n

II [1+&(v)]6:(1 ~ n, 1' ~ n')
v-"1

II t).(v, )+ Z
I ~ VP Vj O' VP O' V3

(A6)

(A7)

x II 6(v4) + ' ' ' + Z 6(vl)~(v2)
V49 Vy~ V V3 VI WVg

+Z&(v)+)) P(l. ~ m;)' ~ n')
V

(A8)

where we have used the fact that as a consequence
of Eq. (A7)

D ~(v)S(1" n;1'"n')

F(ni') F(n2'). .. F(nn')
(A4)

Using these definitions, we can express Eq. (3.6):
(-i)"(c (1)c(1')c (2)c(2') ~ c (n)c(n'))p

where I' is a permutation operator acting on the
indices 1 ~ pl. 6p is 1 for an even permutation
and —1 for an odd permutation. The sum runs
over all permutations, i.e. , over all elements of
the symmetric group of order n. ' Each element
can be characterized by giving its cyclic struc-
ture, e.g. , (123)(45)(67)(8), meaning that we have
a cyclic permutation of the indices 1, 2, 3; that 4
and 5, and 6 and 7, are interchanged; and that 8
is not permuted. Usually cycles of length l, e.g. ,
(8), are not explicitly written. A cyclic permuta-
tion acting on a product as the one in Eq. (A10)
produces, in terms of diagrams, a "closed loop",

e.g. ,

(123)[gp(11')gp(22') gp(nn')]

=gp(12 ')g p(23 ')gp(31 ')g'p(44' ) gp(nn ') . (Al 1)

It is easily seen that the factor 5~ together with
(- 1)" produces for a given permutation a factor
(-1)', where l is the number of cycles, including
cycles of length 1, or in terms of diagrams l is
equal to the number of loops in the diagram gen-
erated by this permutation. Since we have to sum
over all permutations, Eq. (A10) is just equal to
the contribution of all diagrams which wouM be
obtained if the c and c operators were field oper-
ators for fermions /except for a different definition
of f(e) [Eq. (5.2)]].

We now have to investigate the remaining terms
in Eq. (A8). We consider for simplicity

t (m+1)~(m+2) ~ ~ ~(n)6:(1" n; 1' "n'), (A12)

where e» rn ~ 2. A generalization to an arbitrary
term in Eq. (A8) is trivial. We introduce anti-
symmetrizers

= II ~(v)6:(1 "&1'"n')=0, (A9) A(1 "v)=—, 2 5~P,1
& ~ JCSV

(A13)

if p, &1. The remaining terms arising from chang-
ing (A5)-(A8) are explicitly subtracted again.

f(l ~ n; 1'- ~ n') is just the antisymmetrized
product of functions F [Eq. (Al)]. Since any per-
mutation operator permuting indices in 5 commutes
with II„[1+h(v)], the first term in (A8) is just

II.[1+~(v)]6-(1 "n;1'" n')

gp(11') gp(12') . .g()(ln')

( l ))) g()(21 ) g()(22 ) g()(2n )

where S, contains all permutations of the indices
1' ' p. Since P is already antisymmetric,

A(l v)F(1 ~ n; 1' ~ n')= P(l n; 1' ~ ~ n')
(A14)

We associate to each element of S an operator
consisting of products of antisymmetrizers such
that the indices in one cycle are just the indices in
one antisymmetrizer. We also insert a factor 5J,.
Thus, with P= (123)(45)(6).~ ~ (m), the operator

gp(nl'), gp(n2 ) ~ ~ gp(nn )

OJ,(l ~ .m) = (- 1)'A(123)(- l)A(45) (A15)

= (- 1)"Z~ 5~[gp(11')g, (22') ~ g()(nn')], (A10)
is associated.

Because of Eq. (A14), and since the number of



MANY-BODY PERTURBATION THEORY ' ' I

even permutations is equal to the number of odd

per mutations,

Z O,(1 "m)8'(1" n;1' "n",=O,
JCS

(A16)

or
PCS ) P41

O~(1 ~ m) 6'(1 ~ ~ n; 1' ~ n')

= —6:(1 ~ n; 1' ~ ~ n') . (A1V)

Operators associated with per mutations which
are distinct only by the order in which the same
variables occur in a given cycle are the same.
For example, the operator associated with P
= (132)(45) is equal to Eq. (A15). For a permuta-
tion having cycles of length nq, nz, . . ., there are
just (n, —1) I(ns —1)! ~ ~ identical operators since
there are (n —1)!different cyclic permutations in

~n
We now have to investigate the diagrams created

by acting with a given operator Oo(l ~ ~ m) on 6:.
We write F explicitly as

6'(1" n;1'" n')=(-1)" Z
PCs~

x [E(11')E(22')"E(nn')] . (A18)

We investigate one single term on the right-hand
side, corresponding to a certain arrangement of
closed loops, in terms of diagrams. Acting with

O(1 ~ ~ m) on this term produces, except for a
numerical factor, functions similar to Ms(1 ~ ~ v;
1' "v') [Eq. (5.5)], each one corresponding to a
cycle in Q. The difference with Mo is that they
are constructed from functions F(12) instead of
Ms(12) [Eq. (5.4)] but for X —= 0 they are equal.

Again we get for a given 0@ identical contribu-

tions from different P in Eq. (A18) if these are
distinct only by permutations of numbers occurring
in the same cycle of Q. There are just nq!ns I. ~ ~

such terms if Q has cycles of length nuns ~ ~

Summation over all such terms and over all iden-
tical operators Oq thus gives nq! (n, —1) Ins!
x(nz —1) I ~ terms. The factors nq!ns I ~ ~ are
cancelled by the factors 1/v! in Eq. (A13), where-
as the factors (nq —1)!(ns —1) !.~ ~ occur explicitly
in M, (1 ~ .n„1' "n,') [Eq. (5.5)].

We use Eq. (AlV) in (A8) such that in each term
the variables in 0@are just those not occurring in
the products of &(n) operators [Eq. (A3)]. After
the execution of the & operators and setting X=0
we get a sum of products, each containing at least
one Ms(1 ~ ~; 1' ~ ~ ) [Eq. (5.5)]. We now collect
allterms havingthe samefactors Mo( ~ ~ ~,' ~ ~ ~ ), e.g. ,
Ms(123; 1'4'5')Mo(45; 2'6'), and find that they give,
e.g. ,

(- 1)"Mo(123; 1'4'5')Mo(45; 2'6') Q [1+&(v)]

xQ' 5vPE(63')F(VV') ~ ~ ~

P
= (- 1)"Mo(123; 1'4'5')Ms(45; 2'6')

I
xQ 5,Pg(63')g(VV') ~ ~ ~ (A19)

I
where g„runs over all permutations of the numbers
not contained in the Mo factors.

Since we have to sum over all different config-
urations of function Ms( ~ ~, ~ ~ ~ ) and each config-
uration occurs once, we obtain just the expansion
given in Sec. V. The first terms of this expan-
sion are given in Eqs. (5.6)—(5.8).
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Many-Body Perturbation Theory for Quantum Crystals.

II. Ladder Approximation*
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Using the perturbation expansion for quantum crystals proposed in an earlier paper, we
investigate here the ladder approximation. A summation of ladder diagrams to all orders
is necessary since the interaction, e.g. , a Lennard-Jones potential, is singular at short
distances. The Bethe-Goldstone equation, describing the motion of two particles in a mean
field due to the remaining lattice particles, is derived, and further approximations are dis-
cussed, leading to a simplified equation tractable by numerical methods. In this approxima-
tion, we calculate the ground-state energy, pressure, and compressibility of the isotopes of
helium at various densities in the solid phase. The results are presented and agree quite
well with experiments.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as
I, we investigated a form of many-body perturba-
tion theory designed specifically for quantum crys-
tals. The proposed expansion is, at least at low
temperatures, formally identical to the standard
perturbation theory for spinless fermions. In the
case of lattice particles having spin —,', the "spin-
less fermions" are interacting with spins of & at-
tached to lattice sites. The expansion is found to
be independent of the statistics of the lattice par-
ticles, except for the sign in the exchange term of
the interaction.

The results given in I make it possible to use
standard many-body methods in the treatment of
quantum crystals. As a first step in this direction,
we investigate in this paper the ladder approxima-
tion.

It has been shown, e.g. , in the theory of nuclear
matter, ~'3 that a summation of ladder diagrams to
all orders produces sufficient short-range corre-
lations to make a treatment of hard-core interac-
tions possible. Since the interaction in quantum
crystals is strongly repulsive at short distances,
the ladder approximation is necessary, at least as
a first step in a more complete perturbation treat-
ment of quantum crystals.

A proper treatment of short-range correlations
has been the subject of many previous papers. '4

Most of them used a variational treatment and a
Jastrow-type trial wave function. '3 Several
methods have been used to evaluate the energy ex-
pectation value: cluster expansion, ' Monte-
Carlo integration, ' or integral equations known
from the theory of classical dense gages. '~ Re-
cently, Guyer' ' proposed a different method,
based again on a cluster expansion of the ground-


