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High-Energy Neutron Scattering from Liquid He . II.
Interference and Temperature Effects

V. F. Sears
Atomic Energy of Canada Itd. , Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada

(Received 3 November 1969)

The scattering of high-energy neutrons from liquid He was discussed in an earlier article
on the basis of the Gram-Charlier series expansion of the incoherent scattering function.
In the present paper, interference effects ignored previously are taken into account approxi-
mately and are shown to give rise to an oscillation in the half-width of the scattering function
as a function of the momentum transfer. The temperature dependence of the scattering is
investigated by deriving approximate expressions for the parameters in the Gram-Charlier
expansion in terms of their values at T= 0, together with the observed thermodynamic prop-
erties of liquid He . Reasonable agreement with the neutron-scattering data of Cowley and
Woods is obtained.

I. INTRODUCI'ION

In a recent article, ' the scattering of high-en-
ergy neutrons from liquid He was discussed in
terms of the Gram-Charlier series expansion of
the scattering function. The coefficients in this
expansion were denoted by e„(K),with K being the
momentum transfer, and it was shown that if e„(K)
is replaced by e„(~),the series can be summed
exactly to yield the impulse approximation (IA).
Me IA is, therefore, asymptotically correct as
x-~ and, for a finite value of z, the difference
between a„(K)and s„(~)represents the effect of
final-state interactions neglected in the IA. The
coefficients e„(K)were evaluated for n = 0, 1, 2, 3,
and 4, ignoring interference effects in the scatter-
ing process. They lead to the conclusion that
final-state interactions were not negligible over the
range of K values (2-9 A ') employed in the recent
experiments of Cowley and Woods.

The interference effects ignored in I' are inves-
tigated in the present paper. It is shown in Sec. 0
that when interference effects are included, p„(K)
can still be calculated exactly for n =0 and l. Ap-
proximate expressions for the coefficients with
n =2, 3, and 4 are proposed and shown to (i) reduce
to the correct incoherent expressions as z- and
(ii) when expanded in powers of a' yield not only
the correct classical limits but (when n =2 or 3)
also give the correct expressions for the first
quantum corrections. The scattering function ob-
tained by truncating the Gram-Charlier series af-
ter the n =4 term is found to be in reasonable
agreement with the data of Cowley and Woods for
T=1.1'K and 4&tc&9A '.

The temperature dependence of the scattering
function is considered in Sec. III. The main prob-
lem here is the calculation of the rms velocity of

a He' atom. It is shown that this quantity can be
expressed approximately in terms of its value at
T = 0 and the thermodynamic properties of the liq-
uid. Again satisfactory agreement with the data
of Cowley and Woods is obtained.

Finally, in Sec. IV a few concluding remarks
are presented.

II. INTERFERENCE EFFECTS

The first-two central moments' of the coherent
scattering function are given by3

sp (K) = 1+y (K), sl(K) = -pl„y(K),

where ~ =@K /2m is the recoil energy and

y(K)=S(K)-1=(N/0) fcosK r [g(r) —I] dr. (2)

sp(K) alld sl(K) are uniquely determined by the pair
correlation function g(r). However, the higher-
order moments are not, because, in general, they
involve averages over the positions of three or
more atoms as well as simultaneous averages
over positions and velocities. These latter quanti-
ties are not statistically independent when quantum
effects are important, as in the case in liquid he-
lium. The situation is somewhat simpler at tem-
peratures high enough for quantum effects to be
small, where the following expansions in powers
of 52 may be used4:

p ~+
a 2 K'yal(K) K Ilail (K) 0ia.4 i

2

(3)

S4(K) = 3K —+ K —Bol (K) +O(R ) .2kT 2

Here y„(K)denotes the classical limit of y (K), and
B„(K)the classical limit of

1699



1VOO V F SEARS

B(K) =—(1 —cosKS) 2 gb') dr y

N
ex

where the x axis is taken in the direction of Pc.

For sufficiently large values of ~, on the other
hand, interference effects disappear and'

(4)
zs its integrated zntensxty.

The Gram-Charlier expansion (I20) for the
scattering function is

2

S(K, &u}= —exp
2 7I'Q 2Q

S,(K) = K'(V„'& S,(K)=(u„B(), x Q s„(g)8„( ') (10)

S,(K)=K'(V'„}+K'(V'„&B( ) .

Smce (v„&=—y " ' '
+ 0(g4)JT ea &&I 12mb T

(8)

the simplest expressions satisfying both (3) and

(5) are evidently

s, (K)=K (v„&+Id„~y(K)+ —g

B(K)-B( )
3K~&v„'&

S,(K) = Id„B(K),

S4(K) = K (Vg& + K (V„&B(K)

These approximate relations can be regarded as
partial summations of the series expansions in
powers of h2 given by EII. (3). The incoherent
terms have been summed exactly, but only those
interference terms arising from quantum effects
in the pair correlation function have been included.

Substituting (1) and (7) into (I 22), and taking o.
2 XX/2=K(x~ (v„&) as before, one obtains, for the coef-

ficients in the Gram-Charlier expansion

e II(K) = 1+y (K},
& g(K) = -(K/K&)y (K),

& 2(K) =(a(K/Kg} —I) y (K)+ (K4/2K, ) p, (K), (8)

E g(K) = (K/K')y (K) + (KB/K)(1+ p(K))~

& 4(K) =f4+(K4/K) + 2[1 (K/K, )']y (K)

+ [(K4/K) —(K4/Kg) ] P, (K),

Since e„(K)is determined according to (I 22} by the
moments s (K) for m =n, n —2, n —4, . . . , the se-
ries (10) has the property that if it is truncated af-
ter the nth term, the truncated S (K, ~) differs from
the complete S (K, &u) only insofar as moments of
order greater than n are concerned. Thus, if ex-
pressions (8) are employed in (10) and the series
is truncated after the term n =4, the truncated
S(K, ur) satisfies the m =0 and 1 moment relations
identically, and has approximately the correct

I.O-

0.0-

I.O-

0.0-

—I.O-

where KK, = m(2(v'„&)' ', p(K) = B(K)/B(~) —1, (9)

and the remaining parameters ~„v4,and f 4 are
given by (I30) and (138}. The parameters in (8)
can be evaluated at T = 0 with the help of the pair
correlation function and velocity distribution func-
tion computed by McMillan from a variational
ground-state wave function of the Jastrow type.
It was found in I that (v„&= 1.96 X 10 cm s

o y
o

4

= 0. 092, x3 —-4. 2 A, and ~4 = 1.6 A '. Hence, ~&

=1.3 A '. McMillan's pair correlation function
has also been used to calculate y (K) and p, (K) nu-

merically, with results shown in Fig. 1, together
with the corresponding (e).KIt is seen that p, (K),
and hence ez(K), e, (K), and e4(K) are much mor
strongly oscillating functions of K than is y (K).
Consequently, the shape of the scattering function
is much more sensitive to interference effects than
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FIG. 1. Coefficients in the Gram-Charlier series
(10) calculated for T=O from the expressions (8) with
the help of McMillan's pair correlation function and
velocity distribution function. The dashed lines repre-
sent the corresponding incoherent, coefficients which
are obtained from (8) by putting p(&) and p(&) equal to
their asymptotic values, zero, in the limit ~
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m=2, 3 and 4 moments for all ~.
The truncated series was used to solve numer-

ically the equations

s S (~, (u ) =0, when (d =co,
„
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FIG. 2. Comparison of observed and calculated half-
widths. The full line is the curve calculated from the
coefficients shown in Fig. 1. The dots represent the
observed data of Cowley and Woods. 2

and the mean frequency

(0~ = ~a ((d ~ + (d )

If S (z, &u) were symmetrical about the maximum,
&o„would equal ~c . S (a, &c) is not symmetrical.
Nevertheless, these quantities differ by less than

o
1% when z&4 A ' because the asymmetry is con-
fined almost entirely to the wings of the scattering
function.

The calculated quantities 4+ and (d are shown
in Figs. 2 and 3, together with the data measured
by Cowley and Woods' at 1.1 'K. General qualita-
tive agreement between the observed and calculated
curves exists although significant quantitative dis-
crepancies occur. These discrepancies can be at-
tributed to a number of causes:

(i) The coefficients e„(z)were calculated with
the help of McMillan's approximate wave function
which givesa a ground-state energy 20% above the
experimental value and also gives a pair corre-
lation function which differs by roughly 20% from
those obtained from x-ray and neutron-diffraction
experiments. Moreover, the oscillations in g(r )
and y (z) found by McMillan are not as pronounced

200,

I
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FIG. 3. Comparison of observed and calculated mean
frequencies. The full line is the curve calculated from
the coefficients shown in Fig. 1. The dots represent
(unpublished) data of Cowley and Woods. The dashed line
is the free-particle recoil energy &u„=sic /2m.

as is observed experimentally. Quite apart from
other sources of error it is, therefore, not sur-
prising that one finds discrepancies between the
observed and calculated h~ which are typically
20%, and that the amplitude of the observed oscil-
lation is larger than is calculated.

(ii) The approximate nature of expressions (8)
for ea(v), e, (z), and e4(K) will produce errors in
&co and co especially for small x, where interfer-
ence effects are largest.

(iii) It is difficult to assess the error introduced
by truncating the Gram-Charlier series. Since the
truncation changes only the fifth- and higher-order
moments of S (K, ~), one is tempted to conclude
that the truncation error is important only in the
wings of S (v, &c) and, hence, will have little effect
on the values of 4' and & . However, this is cer-
tainly not true for values of v large enough for the
impulse approximation to be valid since truncating
(I 32) will tend to suppress the zero-momentum
peak.

(iv) The fact that the curves in Figs. 2 and 3
are calculated for T = 0 while the data were taken
at a finite temperature of 1.1'K is a further
source of error although the results of Sec. III sug-
gest that this error is quite negligible.

In view of the above remarks, the agreement
between theory and experiment in Figs. 2 and 3
can be regarded as satisfactory. In particular, it
seems reasonable to assert that the oscillations in
the observed 4' data arise from interference ef-
fects which, in turn, are mainly a reflection of the
hard core of the interatomic potential. We empha-
size this point because Cowley and Woods had orig-
inally assumed that the observed oscillations did
not arise from interference effects [because y (~)
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is essentially zero when v & 4 A '] and that, there-
fore, one must search elsewhere for an explana-
tion. They speculated that the oscillations might
arise from the existence of thresholds above which
a recoiling He atom can create small quantized
vortex rings having successively 1, 2, . . . , units of
vorticity. However, this novel suggestion is, we
feel, weakened by the fact that the oscillations are
observed~ to persist with roughly the same ampli-
tude above the X point where liquid helium behaves
like a Newtonian liquid with unquantized vorticity.
We consider it more likely that the oscillations in
4(d are due entirely to interference effects and
should, therefore, be regarded as analogous to the
de Gennes narrowing effect in classical liquids.

I

Fernandez and Gersh' suggested that the ob-
served oscillations in ~~ arise from the oscilla-
tions in y(z). This suggestion is based on the as-
sumption that y(tc) has the form (cosvo)/z appro-
priate for a dilute classical hard-sphere gas.
However, this assumption is not valid for liquid
helium. A realistic model for g(r) will go smooth-
ly to zero as x-0 with the result that the oscilla-
tions in y(z) will damp out more rapidly than K

This is clear from Fig. 1, where it is seen that
McMillan's pair correlation function indicates that
y(z) is virtually zero above 5 A '.

We now consider the shape of the scattering
function. For this purpose it is convenient to ex-
press 4~ in the form

&(o = a(o, (1 —y ), (14)

where &or, is the full width of S (~, &u) at half-max-
imum for the Gaussian approximation in which
e„(~)is put equal to zero when n & 0:

+(dg = K(8 ln 2 (Vg) )

and y describes the narrowing due to the non-
Gaussian terms in the Gram-Charlier series. The
effect of the shape of the scattering function on 4~
is contained entirely in y, and 4v, plays the role
of a scaling factor.

The truncated Gram-Charlier series gives a
scattering function which is approximately Gaus-
sian near the center, but which departs asymmet-
ricaQy from a Gaussian in the wings. The high-
frequency wing is enhanced and the low-frequency
wing depressed. The asymmetry decreases with
increasing ~. The neutron-data also shows this
behavior although the data is not sufficiently pre-
cise to determine the shape of the wings accurate-
ly.

If one assumes a Gaussian line shape by putting
~(d = &co~ and then fits a straight line through the
origin to the data in Fig. 2, one finds an effective
value for (vo) equal to 1.13&10o cm sec . Thisis
73~p smaller than McMillan's value' of 1.96x 10'

To determine the temperature dependence of the
scattering function we first consider (v„}and note
that this quantity occurs in the general expressions
for both the thermal and caloric equations of state

pv =&v'„}— P, g(r) r' dr,2' .d (r)
3m o dr

(16)

where p is the pressure, v the volume per unit
mass, p = 1/v the density, and u the internal en-
ergy per unit mass.

Henshaw has measured the structure factor y (K)
both above and below the X point and found that for
values of ~ above the position of the first diffrac-
tion maximum y (v) is independent of temperature.
This implies that g(r) varies appreciably with tem-
perature only for large values of ~. The pair po-
tential is proportional to r when x is large so
that one can write

in which the quantity X(r) so defined is a short-
range' function of r Combin. ing (16) and (17), we
obtain

(v'„}=A+u —o pv, (is)

where A=(mp/3m') J, X(r) g(r) r'dr. (19)

In what follows, we shall adopt the convention that
quantities labeled with the subscript 0 refer to the
state T=O, p=O; while unlabeled quantities refer
to an arbitrary state of the liquid in equilibrium
under its own saturated vapor pressure. Thus,

(v~) o= o+uo. (20)

Since X(r) is a short-range function of r, the inte-
grand of (19) is appreciably different from zero
only for smaQ values of x, where Henshaw's ex-
periments indicate g(r) is independent of tempera-
ture. Hence,

A A~

P Po

cm sec . On the other hand, it is seen in Fig. 2
that McMillan's value gives quite reasonable
agreement when the non-Gaussian terms up to n =4
are included. While McMillan's value may perhaps
be in error by as much as 20%, we consider it un-
likely to be in error by 73/q. Thus, we conclude
that the scattering function for liquid He at 1.1'K
does depart significantly from a Gaussian line
shape in the wings.

III. TEMPERATURE DEPENDENCE OF
SCATTERING FUNCTION
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Combining (18), (20), and (21) we get

&v'„)= (p/po)&v'„) 0+ (1 —p jpo)uo+ au —-', pv, (22)

where ~ =-u —uo is the change in internal energy,
'which is given by the first law of thermodynamics:

hu= f CdT f-pdv,

l30

I IO—

hC
0
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in which C is the orthobaric specific heat per unit
mass. Thus, Eq. (22) expresses(v„) in terms of
its value at T =0 and the known thermodynamic
properties of liquid helium. " If McMillan's value
(v„)0=1.96x10 cm s is used in (22), one finds

that(v„) =2. 58x10 cm s at the boiling point
(4. 2 'K). This corresponds to an increase in the
average kinetic energy per atom of 4. 1 'K and is
consistent with the value O'K which Puff and Tenn'
speculate might be reasonable.

Below 2. O'K, thermal expansion is negligible
and the vapor pressure is so small that (22) re-
duces to

(v'„)=(v'„)0+f'CdT. (24)

Above 2.5 'K, however, P increases rapidly and p
decreases with the result that &v„) increases less
rapidly than the specific-heat integral.

The temperature dependence of the parameter
n in the Gram-Charlier series (10) is determined
entirely by (v„),while the temperature depen-
dence of e„(tc)is determined by both (v„)[through
the quantities a~, tc~, and tc4 in Eq. (8)] and p. For
large values of ~, the integral in the expression (4)
for B(tc) will, like that fory (v), be independent of
temperature. For the remaining parameter f 4 in
Eq. (8) we shall assume that (v„)has the same
temperature dependence as (v„) so that f 4 is in-
dependent of T.

It may be seen from Eq. (8) that, generally
speaking, the magnitude of e„(~)for n& 0 decreases
as (v„)increases and increases as p increases.
As the temperature is decreased below the X point,
p remains constant and (v„)decreases, so that
e„(z)increases and the line shape becomes less
Gaussian. On the other hand, as the temperature
is increased above the X point, (v'„) increases and

p decreases, with the result that e„(v)decreases
and the line shape becomes more Gaussian. These
qualitative conclusions are confirmed by the nu-
merical calculations discussed below.

4' has been calculated as a function of T for
x = 5. 1 A ' following the method outlined in Sec. II,
and the results are shown in Fig. 4 together with
the data of Cowley and Woods. As the tempera-
ture is decreased from 4. 2'K to O'K, the calcu-
lated value of 4~ decreases from 109 to 91 'K,
while her~, defined by Eq. (15), decreases from

90—

80—

70
0 2 3

(K)

FIG. 4. Comparison of observed and calculated half-
widths as functions of temperature. The full line is the
curve calculated with the help of the approximate rela-
tion (22). The dots represent the observed data of
Cowley and Woods.

146 to 129 'K. This corresponds to an increase in

y from 0. 25 to 0. 29. If y were constant, i.e. , if
the coefficients e„(x)were temperature independent,
the decrease in 4~ would merely describe a change
in the width of S (~, ar} without any change in shape.
The fact that y is not constant, but increases with
decreasing temperature, shows that S (a, &o) is less
Gaussian and more strongly peaked below the X

point than it is above.
Up to this point the temperature dependence of

the scattering has been discussed in terms of the
observed thermodynamic properties of liquid he-
lium. These properties are, in turn, determined
by the Bose condensation. It is of interest to try
to interpret the above results in microscopic
terms.

Equation (24) is clearly consistent with the gen-
erally accepted view that the X anomaly in the spe-
cific heat of liquid He is due to a Bose condensa-
tion. In particular the decrease in &v~) as the
temperature is decreased below the X point can be
interpreted by noting that the finite fraction of
atoms in the condensate gives a vanishing contri-
bution to (v„),so that as this fraction increases
below the X point (v„2) shows a corresponding de-
crease.

The slight peaking of S (z, u&) below the X point
can perhaps be interpreted in terms of the appear-
ance of an unresolved zero-momentum peak. The
zero-momentum peak has been predicted' to be-
come a prominent feature of S (v, &o} in the limit

It was pointed out in Sec. II that the trunca-
tion of the Gram-Charlier series would tend to
suppress the zero-momentum peak. This may ac-
count for the nature of the discrepancy between the
observed and calculated widths in Fig. 4. Above
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T&, where there is no zero-momentum peak, the
calculated width is in good agreement with the neu-
tron data. Below T~ the calculated width does not
fall to as low a value as the observed width, owing
to a partial suppression of the zero-momentum
peak caused by truncating the Gram-Charlier se-
ries. It must be emphasized that this interpreta-
tion is purely speculative since the widths in Fig.

o

4 are for K=5. 1A, where final-state interactions
are large and the concept of a zero-momentum
peak is ill defined.

Finally, we point out that the fact that ~(d is
constant up to approximately 1.5'K justifies our

having compared data taken at 1.1 K in Figs. 2

and 3 with calculations for T=O.

IV. CONCLUDING REMARKS

The most interesting problem remaining to be
solved concerns the zero-momentum peak and,
more generally, the way in which the scattering
function approaches its asymptotic limit, the im-

pulse approximation, as v- ~. It is felt that no
reliable information on this question will be ob-
tained merely by calculating a few more terms in
the Gram-Charlier series. Rather, one must de-
termine how s„(x)approaches f„asK-~for arbi-
trary ~. In other words, the first few terms in the
Gram-Charlier series are determined by the low-
order moments of 8 (x, ~) which, in turn, are de-
termined by the behavior of F(x, f) at small t. The
shape of the zero-momentum peak, on the other
hand, is determined by the long-time behavior of
F(a, f), For this reason, attempts' ' ' to under-
stand the zero-momentum peak by using low-order
moment relations to determine the parameters in
an ad koc model for S (x, v) are liable to yield mis-
leading results.
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