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Upper and lower bounds are derived for the average potential energy and Helmholtz free en-
ergy of an electron gas with uniform positive background. In the ground-state limit, upper and
lower bounds are given for the average kinetic energy, average potential energy, and total
ground-state energy. Inequalities are derived for the static form factor S(k) and wave-
number-dependent dielectric function &(k, 0), making use of exact sum rules for the Fourier-
transformed density-density commutator and of the assumption that S(k) «1. Comparison is
made with the exact behavior of these quantities for small k. The sum rules are used to con-
struct an approximate nonlinear integral equation for the ground-state static form factor of
the electron gas.

I. INTRODUCTION

In this paper we derive exact bounds for some
equilibrium properties of an electron gas with uni-
form positive background. Mermin' recently de-
rived exact lower bounds for this system in the
classical limit, showing that the internal energy,
Helmholtz free energy, and Fourier-transformed
static form factor S(k) are all bounded below by
their Debye-Huckel values. In our discussion of
the wave-number-dependent quantities S(k), and

a(k, 0) (the static dielectric function) particular
emphasis is placed on the comparison of the
bounds obtained with the exact behavior of these
quantities for small k.

Starting with a variational property of the free
energy (Sec. II), we first derive upper and lower
bounds (valid for all temperatures and densities)
for the Helmholtz free energy and potential energy,
respectively. At temperature T = 0, we give both
upper and lower bounds in terms of the dimension-
less parameter re (defined by 3 mr~ao = I/p, where
ao is the Bohr radius and p the number density)
for each of the quantities: average kinetic energy,
average potential energy, and total ground-state
energy. Most of these latter bounds are not new.
However, since they apply to the entire range of
x, values and since the calculation of the above
quantities in the high, intermediate, and low den-
sity regions is still one of considerable interest,
the results of Sec. II may be looked upon as pro-
viding a summary of simple criteria against which
any approximation might be tested.

In Sec. III we review the relation of the quanti-
ties S(k) and &(k, 0) to the basic spectral function
y"(k, ar) defined as the Fourier transform of the
time-dependent density-density commutator.
This function satisfies several exact sum rules '

which form the basis for the inequalities obeyed
by S(k) and e(k, 0). The latter are cited in Sec.

IV and compared with the known exact behavior of
S(k) and a(k, 0) for small k. The derivation of
these inequalities (Sec. V) makes use of two gen-
eral inequalities for the moment sums of y" (k, &o)

which are due to Mihara and Puff7 and Bogo-
liubov, ' respectively, and is based on the as-
sumption that S(k) ( I in the homogeneous electron
gas.

Finally, in Sec. VI we derive an approximate
nonlinear integral equation for the static form fac-
tor of the ground-state electron gas. This inte-
gral equation is analogous to the one recently de-
rived by Mihara and Puff 7 for ground-state He4

using various moments of X (k, &u). The equation
predicts the exact form of S(k) for small
0 and leads to a convergent result for the radial
distribution function evaluated at the origin. It
also reproduces the free-fermion form factor
So(k) when the interaction is switched off.

II. BOUNDS FOR FREE ENERGY AND GROUND-STATE
ENERGY

H=HO+ V, (2. I)
where Ho is the kinetic energy operator of the elec-
trons, and

(2. 2)

is the potential energy operator of the system
electrons plus background. 2 p(k) and v(k) are,
respectively, the Fourier transforms of the num-
ber density operator p(r) = g &

5(r —r&) and of the
Coulomb potential v(x) = ea/r; they are given by

We consider a system of N electrons in a cubical
box of volume 0 (with periodic boundary condi-
tions), filled uniformly with positive background
charge of density ieiN/0= ieip. The Hamiltonian
H of the system will be written
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p(k) = P» e-»~'», (2. 3) Eo ——TrPo(Ho+ kJ» T InPo), (2. lib)

F= —k Tln Tre ~=(H) —TS, (2. 5)

v(k) = 4~e'/k' . (2. 4)

The k= O Fourier component does not enter into
the sum over k in (2. 2) because this part of the in-
teraction is cancelled by the contribution to the po-
tential energy coming from the field of the uniform
positive charge.

In a canonical ensemble of systems (identical to
the one above) at temperature T, the Helmholtz
free energy I" and entropy S are given by

where P = e o"/Tre o", (2. 12)

and Po is similarly defined by replacing H by Ho on
the right-hand side of (2. 12). The above forms
for the density matrices guarantee that the free
energies I' and Fo for the systems with Hamilto-
nians H and Ho, respectively, are minimized with
respect to a11 Hermitian matrices with unit trace.
Thus, if trial density matrices P, and P2 are sub-
stituted in place of P and Po on the right-hand side
of Eqs. (2. 1la) and (2. 11b) we have' »

where I8 =1/( k»T»), and the average value of an op-
erator A is defined by

F & TrP, (H+k»»TlnP, ),

Fo & TrPo(Ho+k»»TlnP2) .

(2. 13)

(2. 14)

(A) = Tr e ~A/Tr e o" . (2. 6)

(v) v., (2 7)

Of the lattice types thus far considered for a sys-
tem of point charges in a uniform background of
opposite charge, the bcc lattice has been found to
have the lowest energy; for this lattice, V«has
the value" V„/N= —l. 820 e /a, where a = (2/p)'
is the side of the cube.

Together with (2. I) we shall obtain the inequal-
ities

v.„-(v)-(v&, ,

F,+ v.,- F- F,+(v), ,

(2. 8)

(2. 9)

Fo= (Ho)o TSo &(Ho& TS & Eo+(V&o Vs».

(2. 10)

The unperturbed quantities Fo, So, and (A) o are de-
fined by replacing H by the free-particle Hamilto-
nian Ho in the definitions (2. 5) and (2. 6). The in-
equality F & Eo+(V)o means that the free energy
of the system is bounded above by its value for a
system of noninteracting electrons plus the first-
order perturbation-theoretic value for the average
interaction energy. This upper bound for Il has
already been obtained by many authors. ' We em-
phasize the fact that the above inequalities are
valid generally, ' whether the equilibrium state
of the system is uniform or crystalline.

The proof of the above relations makes use of
the facts that E and Eo can be written in terms of
their respective density matrices P and Po as

E = TrP(H+ k»» T lnP), (2. 11a)

It is generally accepted (even though a rigorous
proof does not exist) that the minimum potential
energy is realized when the particles are arranged
in a static lattice configuration. ' Denoting the po-
tential energy of the static lattice by V„we have

S(k) = —(p(k)p(- k)&, (2. 15a)

or, alternatively,

1
s(k) =-

N
dr dr'e'"'" ~ '(p(r) p(ri)& . (2. 15b)

At k=0, S(k) has the value N. From S(k) the ra-
dial distribution function g(r) is determined via

p[g(r) —1]= —Z [S(k) —1]e'"'~.
&~0

(2. 16)

Furthermore, the average potential energy per
particle is given in terms of S(k) by"

— Z v(k)[s(k) —1] .(v&
N 2Q )go

The quantity (V) o reads

(2. 17)

(2. 18)

where So(k) is the static form factor of the free
Fermi gas. 'o At T= 0, So(k) has the well-known
value"

So(k) = N,

So(k) = 3k/4k», —k /16k»o„,

S(k)= 1,

k=0

0&k& 2k», , (2 19)

2k~ &k,

The choice P, = Po in (2. 13) then gives the upper
bound in (2. 9), while the choice Po = P in (2. 14)
yields Fo &(Ho) —TS. The upper bound for (V) in
(2. 8) results from these last two bounds and the
definitions (2. 1) and (2. 5). Finally, the bounds
Eo+ V,»

& E and (Ho) —TS & Eo+(V&o —V„result
from (2. V) and the other bounds derived above.

An important quantity in the study of the electron
gas is the static form (or structure) factor S(k) de-
fined by
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where kz-—(3v~p)~~3 is the Fermi wave number.
Substituting (2. 4) and (2. 19) into (2. 18) we obtain

(V)JN = 3e—'k„/4~ . (2. 2o)

The right-hand side of (2. 20) is the exchange en-
ergy evaluated in the Hartree-Fock approxima-
tion; it represents the expectation value of Vover
a Slater determinant of single-particle plane-
wave states filling the Fermi sphere of radius

1Vk~.
With energies expressed in rydbergs (1 Ry

= e /(2ao) = 13.60 eV) the relations (2.8)-(2.10)
at T=O imply the bounds for (V)/N, E/N (the
ground-state energy per particle), and (Ho)/N
[the average kinetic energy per particle (here-
after denoted by (KE))]~8:

1.792 (V) O. 916 (2. 21)

2. 210 1.792 E 2. 210 0. 916
( )r',

2. 210
( )

2. 210 0.876 (2. 23)

(2. 22) can be written in an equivalent form'~ in
terms of the correlation energy Z, = E —E»..

—0. 876/r, ~E,/¹0. (2. 22')

As is well known, a lowering of the Hartree-
Fock energy results for x, & 5. 46, by having all
spins in ferromagnetic a,lignment. ~7 Because of
the exclusion principle, the electrons in this case
occupy all states up to a wave number k, = (6w~p)~~s

= 2 Q~, so that a. new upper bound results:

1 3@& 3ek 1
N HF&

6 2 4 ferr( s) N ERE

where'~

( )
2. 210

(2 s —1)
0.916

(2 i — )~err &s =
S 8

1.296 0. 238
Ry

S S

(2. 24)

(2. 26)

is negative for x, &5.46. Hence, for such x, we
obtain improved upper bounds for (V)/N, E/N,
and (KE) by adding b,„(r,) to the right-hand side
of (2. 21)-(2.23), respectively.

We emphasize the fact that the above bounds
apply to the entire region of x, values, whether
the equilibrium state is uniform or crystalline;
paramagnetic, ferromagnetic, or antiferromag-
netic. o

In the classical limit the quantity (V)0 vanishes
[since in this case So(k) = 1] and (2. 9) implies that
F is bounded above by its value Il p for an ideal gas
at the same temperature and density. Together

with the Debye-Huckel lower bounds' we have

—N ,'e—kn~(V)~0,

~o N3 e kD ~ ~ ~ Eo ~

(2. 26)

(2. 27)

where kD = 4mpe /(k~7). It is evident that for
large T the Debye-Huckel lower bounds provide
an improvement over the lower bounds in (2. 8)
and (2. 9).

III. TIME-DEPENDENT CORRELATIONS AND
SUM RULES

In contrast to the relations derived thus far,
where no assumption about the nature of the equi-
librium state has been made, the relations to be
derived in what follows will be valid only for the
homogeneous electron gas, i.e. , we henceforth
assume our system to have translational and ro-
tational invariance. We then have (p(r)) = p and
the functions S(k) and g(r) will depend only on the
magnitudes k and x, respectively.

The basic correlation function we consider is
the time-dependent density-density commutator
and its Fourier transform, the spectral function
y"(k, a&). This latter quantity is defined by'

y"(k, v)=f dr f dte '~'~""'
—,'([p(r, f), p(0, 0)])

dte' '(1/2A)([p(k, t), p(-k, o)]), (3. 1)

pS(k) = —g"(k, (o) coth(-', Pk(u),
'o 2%

(3 3)

which may be looked upon as a, sum rule for
y" (k, (o).

An important quantity obtainable from y" (k, &u)

is the density-density response function; the lat-
ter measures the linear response of the system
to an external potential acting on the density.
The Fourier transform of this quantity, y(k, &u),

where p(k, t) = e ""p(k,o)e ""is the Fourier trans-
form of the number density operator p(r, f) in the
Heisenberg picture and where the average is de-
fined as in (2. 6). The product y" (k, ur)

x (1 —e' + "') ' is the density fluctuation spectrum
measurable in inelastic electron scattering ex-
periments; @k is the momentum transfer and @(d

the energy loss of the scattered electron.
As a consequence of its definition, together

with the spatial invariance of the system, the
quantity y" (k, u&) is real and has the properties'

y"(k, (o) = —y"(k, —(u) =y"(k, (o), s)X"(k, (o) -0.
(3 2)

The static form factor is related to y" (k, u) by
the equation'
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is given by' [~(k, »d)]
' = 1 —(4»»e'/@k') X(k, »d), (s. 14)

X(k, »d) = X'(k, »d)+ iX"(k, »d), (3. 4)

which represents the boundary value as z ap-
proaches co on the real axis from above, of the
analytic function of z

x(k, z) =
"&~' x"(k, ~')

(s. 5)

The static wave-number-dependent susceptibility
X(k) is defined as the inverse first moment of
x"(k, »d):

6x(u)=x(k o)=x(u, o)= J (3. 6)

its physical significance is stated below.
Other exact relations satisfied by X"(k, &d) will

be needed. The first is the well-known longitu-
dinal f sum rule'

f lap—»d x"(k, »d) = p -=2p»do(k), (3. 7)

f —„~'x"(» ~) = 2p~o(k)~3 (k)
wOO

where &d3(k) = »do(k) + 4»dq(k) (KE)/@+ Q(k) .

The function Q(k) is defined as '

(s. s)

which holds whenever the interparticle forces are
velocity independent, and the second is the co'-

moment sum rule

from which we obtain the relation between x(k) and
the static dielectric function t(k, 0):

[~(k, O) —I]/~(k, O) = (4~e'/@')X(k) . (s. 15)

[~(k, o) —I]/~(k, o) - o. (4. 1)

From this it follows that either e(k, 0) & 0, or
e(k, 0)~1. It has been suggested and recently
verified by actual calculation~» that the case e(k, 0)
~ 0 is realized in the low-density electron lattice '
(the so-called Wigner lattice). Since the latter
represents a spatially noninvariant state of the
system, it violates the assumption made in Sec. IG
and will not be dealt with subsequently. The other
possibility, e(k, 0) ~ 1, is therefore taken to apply
to the homogeneous electron gas. ~6

A stronger bound for e(k, 0) is contained in the
following inequalities to be derived in Sec. V on
the basis of the definitions and sum rules of Sec.
III and the additional assumption S(k) ~ 1:

Physically, the ratio on the left-hand side [or,
equivalently, x(k)] is a measure of the screening
in the electron gas of a static charge disturbance
of wave number k. '~~

IV. INEQUALITIES SATISFIED BY S(k), X(k),
AND 6(k,o)

As a consequence of the relations (3. 2) and (3. 6)
it is noted that x(k) is a positive quantity, imply-
ing"

A

Q(k) = p (e-»" ~ '~»-&y'(k. v,.)(k v, )V), (3 1o)
$ ~ g]

where k is a unit vector in the direction of k and
V»=8/Br». When the form of V given by (2. 2) is
used in (3.10), Q(k) can be written

Q(k)= Q (k q) v(»f)[s(q+k) —S(q)]. (3.11)
mA ggo

&la

s(k) =
»dy, + 4»do(k)(KE)/k+»do(k)

( )
2p»do(k)

»d3'»+4»d, (k)(KE)/@+»d', (k) '

P@ps(k) - x(k),

(4. 3)

(4. 4)

We then obtain Q(k) = »d,', +I(k),

where, explicitly
3 A

I(k) = —
3 ([k. (q+k)]

m (2»»)'

(3.12)

x v(q+k) —(k ~ q)' v(q)] [S(q)—1] . (s. is)

The response of the electron gas to a longitudi-
nal external field may equivalently be described
in terms of the longitudinal dielectric function~

e(k, »d). The latter is related to X(k, »d) by

In expressing the above sum as an integral over

q space, we must first separate the contribution
Nk v(k)/(mQ) =4»»pe /m = &d& (»d~, being the plasma
frequency) coming from the term q = —k.

(d
c(k, o)~ 1+-

~,(k)[4(KE)/@+~,(k)]
' (4. 5a)

The last relation follows from (4. 3) and (3. 1.5).
At &= 0 we also have the inequality

~,(k)x(u) - 2p[s(k)]', (4. 5b)

or, stated in terms of c(k, 0) using (3.15),

[a (k, 0) —I]/e(k, 0) ~ [»d„s(k)/»do(k)]',

~(k, o) o {i—[~„s(k)/~,(k)]']-'.

The last relation implies that for large 0

e(k, O)' ~ (I —[»d„/»d, (k)]'] '.

(4. 5c)

(4. 5d)

(4. 5e)

A characteristic feature of the interacting elec-
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S(k) = (Sk /2m &u») coth ,'Ph—cu», k - 0 (4. 6)

q(k) = @k'/4~e', (4. 7)

CO

e(k, o) =1+,", , (4. 8)sk
Here s is the isothermal sound velocity related to
the isothermal compressibility Eland Fermi level
p, by

k-o.

(4. 9)

tron gas is that for long wave lengths its properties
are determined entirely by the plasma oscilla-
tions. As a consequence, in the limit of small 0
the quantities S(k), )f(k), and &(k, 0) are given by
the exact relations valid at any temperature:

verse screening length 0,:
(4. iS)k, /gr~ 5(KE)o/9(KE),

where kyar = 67) pe /(+3(KE)0) coincides with the
square of the Fermi-Thomas wave number at T
=0

V. DERIVATION OF INEQUALITIES FOR S{k)
AND X{k)

The derivation of the inequalities (4. 2) and
(4. 3) makes use of two general inequalities due to
Mihara and Puff and Bogoliubov, ' respectively.
These have been derived making use of the rela-
tions (3.2), (3.3), and (3. 6) and of the sum rules
(3.7) and (3.8).

The inequality of Mihara and Puff reads

The relation (4. 8) is often expressed in terms of
the inverse screening length k, defined by k,
= &u»/s. Equations (4. 7) and (4. 8) are expressions
of the fact that in the long-wave-length limit the
electron gas exhibits perfect screening.

The limiting forms (4. 6) and (4. 7) follow from
the definitions (3.3), (3.6), and the form of the
spectral function X"(k, &u) for small ka'~:

Sk'y" (k, &o) = "p
Q[&u —&o(k)] —5[&v+ &u(k)]],

k-0, with &o(k)-&o» for k-0. (4. 10)

This y" (k, ur) exhausts both the sum rules (3.7)
and (3.8) (for k-o).

Comparing (4. 7) with (4. 3) we see that for small
0 the inequality becomes an equality. In the
ground-state limit (P- ~) the coth factor in (4. 6)
is 1 and S(k) is given by

k~ co

m CO

—(o'y" (k, (o)
7t'

(6. 2)

where ufo(k) and &o~(k) are defined by (3.7) and (3.9).
Using the expressions (3.9) and (3.12), the above
inequalities become

S(k) o- —, ' (6 3)(u'„+ 4a), (k)(KE)/@+ (u', (k) +I(k)

and that of Bogoliubov, applied to the density-den-
sity correlations, reads

))KpS()) - y().') -( — v))").', td

S(k) = ak'/2m~„, k-O, r=0; (4. 11)

S(k) =k'/k,', k- O, (4. 12)

showing that for small k (4. 4) becomes an equality.
The result (4. 12) shows that the inequality derived
by Mermin, '

S(k) - k'/(k,'+k'), (4. 13)

also becomes an equality for small k. 27

Comparison of (4. 5) and (4. 8) leads to an in-
equality for the isothermal sound velocity in the
el.ectron gas~8:

—,
' ms' ~ (KE), (4. i4)

or, stated equivalently in terms of the exact in-

comparison with (4. 2) shows that in this limit that
inequality also becomes an equality. On the other
hand, (4. 4) reduces to a trivial statement at T= 0.

In the classical limit, coth( —,
'

P@o») = 2/(Pk+»)
and (4. 6) implies that

y(k) o- — , ' —
, (~ 4)

(u'»+ 4(uo(k)(KE)/5+ (o', (k) + f(k)

where f(k) is defined by Eq. (3.13). If I(k) can be
shown to have the property I (k) & 0 for all k, the
above inequalities will be strengthened by replac-
ing I(k) by its maximum value, zero, thus yield-
ing (4. 2)-(4.4). We now show that the inequality
I(k) ~ 0 follows from a plausible assumption about
the behavior of S(k).

When (2.4) is substituted into (3.13) and the in-
tegration over solid angle is carried out, we obtain

82
I(k)= —'~ q'dq[S(q) 1]Z(q, k), —(6. 6)

0

where J(q, k) = ——
z +——

z
—1 ln (5.6)

5 q' k q' ' q+k '
6 2k Bq k q —k

is a function only of the ratio q/k, positive for all
values of its arguments and monotonically de-
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creasing. Further properties of the functions
J(q, k) and I(k) are given in the Appendix.

For small k we have seen that S(k) goes as k';
consequently, the integrand in (5. 5) is negative
for small q values. Now, a sufficient condition
(but by no means a necessary one) for I(k) ~ 0 is
that the integrand in(5. 5) be negative, i.e. , S(k)
~ 1 for all 4. To see whether this condition ob-
tains, we note that since S(k) must tend to 1 for
large k, it follows that for intermediate values of
k the function S(k) can either increase monoton-
ically from 0 to 1 as k increases, or else it can
have a peak for some k =k . An indication of the
behavior of S(k) in a normal electron gas is re-
vealed by its value in the RPA at T=O; the latter
(see Fig. 1) shows that no such peak exists and
that Saz, „(k) is monotonically increasing. We
assume this property also holds for the exact S(k)
in a homogeneous electron gas with uniform back-
ground. With the assumption of monotonicity for
S(k), the integrand in (5. 5) is negative for all q
and the property I(k) ~ 0 follows. As shown in the
Appendix, this property holds in the limit of small
and large 0 even without the assumption of mono-
tonicity.

The plausibility of the above assumption is
strengthened by a further observation: First, it
follows from Eqs. (4. 6) and (2. 19) that for small
k, S(k) & So(k). Figure 1 shows that Szz, „(k)
~ So(k) for all k, tempting the conjecture that the
actual S(k) & So(k) for all k. This conjecture is
supported by the inequality (V) ~ (V) 0 proved in
(2. 8), which follows trivially if S(k) ~ S,(k). To-

gether with (4. 2) we would then have both an up-
per and lower bound for S(k):

where So(k) is defined by Eq. (2. 19) at T = 0.
Finally, we prove the inequalities (4. 5b)-(4. 5e)

at T= 0. From (3. 3) S(k) is in this case given by

ps(a) f —-P(a, ~) . (5. 8)

Using the fact that &uy" (k, &o) ~ 0, we can write the
inequality

X ( & ) [ (k)]2) 0
W CO

(5. 9)

valid for any real function ~(k). Expanding the
above integrand and carrying out the integrations
term by term, using Eqs. (5. 8), (3. 6), and (3. 7)
we obtain

p~, (k) —2p~(k)S(k)+-,'[(u(k)]'y (k)~0, (5. 10)

for any &u(k). The choice e(k) =&so(k)/S(k) then
leads directly to (4.5b) .. We note that this choice
for &o(k) is precisely the Feynman excitation fre-
quency ' for a density fluctuation of wave vector k.
[Using for S(k) the exact form (4. 11) for k-0, the
Feynman excitation frequency gives, of course,
the frequency of a long-wave-length plasma oscil-
lation, i.e. , e (k - 0) = &o»."]

10-——

G6.

0.2 0.4 0.6
w

0.8
1

1.0 1.2

k/k,

1.6 1.8
I

2.0 2.2 24

FIG. 1. Plot of the ground-state free-fermion static form factor $0(k) [Eq. (2.19)j and of the HPA value of S(k)
obtained by Glick and Ferrell (Ref. 29); the latter was calculated at a density corresponding to that of aluminum

(r, - 2).
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[~0(k)/S(k)]' = (o',(k) —f(k), (6. 1)

where f(k) ~ 0 for all k. To use (6. 1) as an inte-
gral equation for S(k), f(k) must have as its leading
term at large k the value 4&v,(k)(KE)/k. The ki-
netic energy term is then eliminated from the equa-
tion at high k and a solution for which g(r) is finite
at the origin is possible. The simplest choice
which satisfies the above requirements for f(k) is
then to take f(k) = 4&so(k) (KE)/5 for all k, leading
to the integral equation

VI. INTEGRAL EQUATION FOR S(k)

We now show how the inequalities derived in
Sec. V can be used to construct a nonlinear inte-
gral equation for the static form factor of the
ground-state electron gas. This equation is anal-
ogous to the one first derived by Mihara and Puffv

(MP) for ground-state He; our derivation closely
follows their work.

We have already seen that for small k, S(k) is
equal to its lower bound (lb) given by the right-
hand side of (5.3), both behaving a.s Ik /(2m'&„).
Also, for large k, both S(k) and its lb approach
unity. [The fact that for k-0, I(k)-0 and for
k-~, I(k)- const &«u~ are shown inthe Appendix. ]
Hence, we might atfirstbe tempted to define the in-
tegral equation for S(k) by simply equating S(k) to
its lb(5. 3). The resultingintegral equation, writ-
ten as [&uo(k)/S(k)]' = ~s(k) [with &u', (k) given by (3.9),
(3.12), and (5. 5)] would then be equivalent to pos-
tulating the single-resonance ansatz (4. 10)for all
k, with &o(k) = eo(k)/S(k), the Feynman excitation
frequency. However, this integral equation leads
to a difficulty at large k havingits origin inthe
term 4ruo(k) (KE)/@. Due to the latter, the right-
hand side of (5. 3) would predict that for large k,
S(k) approaches unity as 1 —m(KE)/I k~), result-
ing in a g(r) whichis negatively divergent as r-0.

We follow MP in writing the inequality (5. 3) as

We define the function g(k) by writing

[(o,(k)/S(k)] ' = u)(')(k) + (o,', +I(k) +g(k), (6.3)

where g(k) ( 4+0(k)(KE)/k for all k and in partic-
ular less than order k~ for large k [this follows
from the above restrictions on f(k)]. We now

specify a form for g(k) by simply demanding that
Eq. (6.3) give the correct free-fermion form fac-
tor So(k) when e is set equal to zero. This leads
to

3u 1 a'
g(k) =~'(k) ————~ —1 0&k & 2k

4u~ 16 u~

g(k) =0, 2k~ & k. (6.4)

lt is easily verified that this choice for g(k) satis-
fies all the above requirements. For small k,
g(k) behaves as vo(k)(KE)0/h (where (KE)0
= 3k'kz'/10 m), then rises to a maximum and drops
continuously to the value zero at k = 2k„. With the
above choice for g(k), Eq. (6. 3) can finally be
written in the form

[(oo(k)/S(k)] = [&uo(k)/S (k)] + +,' +I(k), (6. 5)

where So(k) and I(k) are defined by Eqs. (2. 19) and
(5. 5), respectively. The above equation gives the
exact value of S(k) for small k, is consistent with
the moment sum rules, leads to a finite value of
g(0), and takes into account the additional cor-
relations arising from the exclusion principle.
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[~,(k)/S(k)]' = ~', (k) + ~'„+I(k), (6.2) APPENDIX

with I(k) defined by (5.5). We note that this equa-
tion gives S(k) = 1 when the coupling constant e~ is
put equal to zero. However, for any nonzero val-
ue of en, Eq. (6. 2) gives the exact value of S(k) for
small k and leads to a finite value of g(0).

The fact that for zero value of the coupling con-
stant, Eq. (6. 2) leads to the value S(k) = 1 appro-
priate for noninteracting classical particles,
rather than the value So(k) [Eq. (2. 19)) describing
free fermions at zero temperature is not surpris-
ing, since it is well known that the single-reso-
nance ansatz (4. 10) is not valid for free fermions.

We now show how Eq. (6.2) may be improved
so as to give a better account of the correlations
implied by the fermion nature of our particles.

Z(q k) =————+—7+ ~ ~ ~
4 4q 4 q
3 3' 15&

while for q/k ) 1, Z(q, k) can be written

4u' 4 u4
Z(q, k)=——+ —,+ ".

15 q 105 q

(A1)

(A2)

At q=k, J has the value 3.
Substituting (Al) into (5. 5) we obtain the limit-

ing value of I(k) for k- ~:
4e

I(k) = q'dq[S(q) - 1]= -', &o,', [g(0)- 1], (A3)
0

Herein we give some further properties of the
functions d'(q, k) and I(k) defined by Eqs. (5. 5) and
(5.6). For q/k &1, J'(q, k) has the expansion
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where g(0) is the radial distribution function (2. 16)
evaluated at r = 0 .The part of g(0) which is due to
particles of parallel spin vanishes automatically
on account of the exclusion principle. In the re-
maining part, contributed by particles of anti-
parallel spin, the dynamical correlation due to
the Coulomb repulsion will act to prevent these
particles from approaching too closely, with the
result that g(0) & 1, and hence that for large
k, I(k) &0.

To obtain the behavior of I(k) for small k, we
first rewrite (5. 5), changing the integration vari-
able to y = q/k:

I(k) = k y dy[S(ky) —1]J'(y) . (A4)
m7T p

To obtain the k dependence of the above integral
for small k, we write the latter as fc = Jc+ ft .
Malting use of the known form of S(yk) for small
k[S(yk) =kk y /(2mv~t)], the part contributed by

=k(f, dy[S(ky) I-] f-dy[S(ky)-1]&

- (4/15k) j dq[S(~) - I], (A5)

so that to leading order in k(A4) becomes

I(k) = ——,k 0,4 k' (V)
15 m N' (A6)

where use has been made of the relation [(2.1V)]
between the average potential energy per particle
and S(k). Since (V)/N is negative, we have shown
I(k) negative also for small k, independent of the
assumption of monotonicity.

fs is of the form —a+ bk', where a and b are pos-
itive numbers; hence this part leads to an I(k)-k .

On the other hand, for k-0, the integral

j y'dy[S(ky) 1—]Z(y) -~ f"dy[S(ky) —1]
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The density matrix in the P representation of a beam of radiation amplified by a two-photon
amplifier has been derived up to the lowest order in the time-dependent perturbation theory
without placing any restriction on the population of the state of the atom. It is shown that a
laser beam containing noise in addition to the harmonic signal exhibits anticorrelation after
being passed through such an amplifier, if less than one-sixth of the total number of atoms are
maintained in the excited state.

INTRODUCTION

Recently, there has been a good deal of discus-
sion' on the correspondence between the newly

developing quantum theory of optical coherence
and the older semiclassical theory. » ' The
classical definition of coherence functions is iden-
tical with the quantum definition, if the weight
functional P(fvr]) in the diagonal phase-space rep-
resentation of the density operator is real, non-
singular, and non-negative. There also exist fields
for which P((vr})takes negative values in some
regions of the complex e-„planes. These fields do
not have classical analogs. With such fields,
lesser photon coincidences than the random back-
ground may be recorded in a Hanbury Brown-Twiss
detector. ' Radiation in a pure Pock state is an
example of such fields. This effect, referred to
as anticorrelation, has not so far been observed
experimentally, because it is very unusual in

practice to have well-defined numbers of photons
and because the conventional sources of optical
fields have non-negative values of P((v j) through-
out the complex v& planes.

Recently, the authors have shown' that the sta-
tistical nature of photons is changed after interac-
tion with a one-photon oscillator. Photon oscilla-
tors can thus be used for producing optical fields
with photon statistics different from those of con-
ventional sources. In this paper, we shall show
that it is possible to obtain an optical field which
can exhibit anticorrelation from a laser beam, by
passing it through a two-photon oscillator. This
gives a practical method of observing anticorrela-
tion with the help of ideal photodetection. '

DENSITY MATRIX OF OUTPUT RADIATION

Let us consider an atomic system interacting
with a single-mode radiation fieM. The Hamilto-
nian of this system in Heisenberg representation can


