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The cross section Q(0) for energy transfer of at least U is given for the case where. the in-
cident particle is lighter than the target particle. Complete results for Q(U) are represented
with the aid of a diagram, the coordinates of which are nondimensionalized mass and nondi-
mensionalized energy of the target particle. Some remarks are made about scaling laws for
direct excitation.

I. INTRODUCTION

Classical methods for calculating energy-trans-
fer cross sections have recently found wide appli-
cation in the estimation of inelastic atomic- and
molecular-collision cross sections. The idea of
using classical methods for this purpose is due
to Thomson. ' His method consists of calculating
the cross section Q(U), for which an incident
charged particle transfers an amount of energy of
at least U to a stationary electron. This cross
section is taken to give the cross section for ion-
ization of an atom or molecule, with the U set
equal to the ionization energy of the orbital elec-
tron to be removed. Thomson's results were ex-
tended by Gryzinski, who took account of the
orbital motion of the atomic electrons, and who
emphasized the agreement with experiment which
could be obtained by making a number of semi-
empirical approximations (cf. also, Ref. 6).

A further extension was made by Gerjuoy, who
calculated the differential energy cross section
o(U) = —(d/dU)Q(U) for an arbitrary mass ratio of
the collision partners. The result for o(U) in the
special case of an incident particle having a mass
m2 much larger than the mass m& of the target
particle was also given by Vriens. Expressions
for the cross section Q(U) for the special case
m&=m2 were given in Refs. 9-12 and for the case
mg-m2 in Ref. 13.

In the present paper we extend the calculations
of Refs. 2-13 by obtaining the results for the
cross section Q(U) when m, &ma. These results
are of interest in view of the equality of the quan-

turn-mechanical and classical Coulomb cross
sections. So far, no applications have been found
of either the results for Q(U) or the previously
given results for o(U) when m, &m2.
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FIG. 1. Particles before collision.

II. RESULTS FOR Q(U) FOR ARBITRARY
RATIO ml/m&

The situation considered is sketched in Fig. 1.
A target particle (called field particle in Refs.
2-5) of mass m~ and velocity v~ is suffering a col-
lision with an incident particle (called test particle
in Refs. 2-5) of mass ma and velocity v~. That
the target particle may be part of an atom is ig-
nored in evaluating the consequences of the col-
lision. The force between the two particles is
assumed to be conservative, and derivable from
a spherically symmetric potential. It is possible
to calculate the amount of energy transferred
from the incident particle to the target particle
in the laboratory frame of reference as a function
of the impact parameter b, and of other variables
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characterizing the collision. Conversely, given
a threshold U for the energy to be transferred,
one can find the range of impact parameters b for
which this is accomplished. Integration over this
range yields the cross section for energy transfer
of at least U.

In general, both the target particle as well as
the incident particle belong to groups, the velocity
distribution function of which may be represented
by f, (v, ) and fz(vz), respectively. The energy
transfer cross section Q(U) of experimental
interest follows by dividing the number of col-
lisions of the type specified occurring per unit
time and per unit volume by the flux of incident
particles, and by the number density of the target
particles n, = ff, (v, ) dv, :

N, f f f ff, (v, )f2(v2) H(-dE —U)g dv, dvzbdbde

a v2 v2g va

(1)
Here, N, is the number of equivalent target par-
ticles per atom or molecule; H is the Heaviside
unit function: H(x) = 1 for x & 0, H(x) = 0 for x «;
and g= lv&-v&l is the initial relative speed be-
tween the colliding particles. The quantity —4E
is the amount of energy transferred from the in-
cident particle to the target particle. It is given
by

IB 2 1 p2 2
2 ~1(U1 + 1) 2 m2(U2 U2 )

where v~ and v2 are the speeds after the collision
of the target particle and the incident particle,
respectively. The angle e is the angle between
the fundamental plane, which is defined as the
plane containing v, and v2, and the orbital plane
which by definition contains g and the relative
velocity after the collision g'. In the calculations
of Refs. 2-5 and 7, the Heaviside unit function
was replaced by an integral over a Dirac h func-
tion, whereas here it is found convenient to keep
the unit function.

The problem of evaluating the numerator of (1)
is somewhat similar to that of evaluating the col-
lision integral of the Boltzmann equation for the
case in which the distribution function is Max-
wellian below, and zero above, a cutoff point. '
It is convenient to carry out the integral over b

first. The II function in the integrand is either
1 or 0, and the result of the integration over b

simply is —,
'

b taken between appropriate limits.
In order to evaluate these limits, one can use the
expression already given by Gryzinski [Eq. (17)
of Ref. 3] for the speed vf, of the incident particle
after the collision. The resulting calculation is
laborious, but straightforward. ' Here we only
present final results for the case of a Coulomb

force law between the colliding particles:

»2= C/~ia . (2)

When the particles have electric charges e& and

e&, respectively, the constant C is given by

C= 8)8g/47Jeo

where E& is the dielectric constant for a vacuum.
It is assumed that the energy E2= 2 m2u2 of the
incident particle is given, so that

f,(v, ) = C26(v2„—uz) 6(v2~) 6 (va, ) ~ (4)

For f, the simplest possible choice' is taken:

As a consequence, the kinetic energy of the target
particles is E, = —,m&u&. The normalizing constants
C, and C, cancel in Eq. (1). The results for Q(U)
can be presented conveniently with the aid of a dia-
gram in which the quantity M, = m, /(m, + m2) is
plotted as a function of the dimensionless variable

x= Z,/U, (6)
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FIG. 2. M& versus x diagrams.

with the dimensionless quantity

z= (m, /m, ) (E,/U)

as a parameter (See Fig. 2). The region of phys-
ical significance of the M& —x diagram is x&1,
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0'0 2 Mg+ '= V' '*'
M 4M'( ))'

in regions B.1 and B.2

(10)

Q(U) U2 1/2 .3(x 1) + 3 z+ + 3x
U xz

3/8 j. 1/2 j, Ma ]/ p+ 3Z + 2X + 2 Z + ~~~2I 1/2 1/2)lVl y

0 &M& &1. This region is divided into the sub-
regions A, B.1, B.2, and C by the curves

x1/ = (2M2) [(M1 -M2)z / +(z+ M2/M1) / ], (8)

= (2M2) [(M2 —M1) z + (z+ M2/M1) ] . (9)

The general form of these curves is shown in
Figs. 2(a) and 2(b), applicable when z & —,

' and z & —,',
respectively. The results for Q(U) are, in region
A,

o(U) = (o,/U'xz" ') —'.(2x--,')(x -1)"' (16)

for region C. Equation (14) agrees with the first
of Eqs. (17) of Ref. 4. The second of Eqs. (17)
of Ref. 4 applies to region A, and in addition is
subject to the condition x& g. However, the latter
condition is never satisfied in region A. Conse-
quently, the second of Eqs. (17) of Ref. 4 is with-
out meaning. No result corresponding to (15) was
given in Refs. 2-5. Equation (16) agrees with the
second of Eqs. (19) of Ref. 4. The first of Eqs.
(19) of Ref. 4 is meaningless. It applies to region
C, and in addition is subject to the condition
—U& 2m1M2(u1 —u2), which may be written
x&g+M, . The latter condition never is satisfied
in region C. For the special case M, = M2, (14)
and (16) reduce to Eqs. (28) of Ref. 4, allowing
for misprints which can be corrected by sub-
stituting (b,E) by I /2E I' in both, and (v2/v1) by
v2/v1 in the second of the latter equations.

where the upper signs apply to region B.1, the
lower ones to region B.2; and in region C

Q(U) = (o'2/U xz' ) 3 (x —1)' (12)

In these expressions,

o'0= mC
2 (13)

o(U) = (o,/U3x) ( 32 z+ M, /M,)-
for region A;

(14)

o(U) = (o,/U'xz"')[-,'(2x ,')(x-1)"'~ ,'—(2—z+,'M, /M, )——
x(z+M2/M1) + 3x + 3z /

~ -'+"+-'z"'M /M ] (15)

with the upper signs applying to region B.1, and
the 1ower ones to region B.2; and

The cross section Q(U) differs from zero only in
the regions A, B.1, B.2, and C; the boundary
of these regions is indicated by cross hatching.
Onthe boundary we have Q(U) = 0, except for the line
M, = 1 in region B.1. It can be verified that the
expressions given for Q(U) in any two adjacent
regi'ons agree on the curve separating those two
regions.

For the special case M, = M2, the present re-
sults (10) and (12) reduce to Eq. (29) of Ref. 4.
References 2-5 do not give any analytic results
for Q(U) when M, e M2. The present results
(10)-(12)agree with the corresponding results
given in Ref. 13 for M& - M2.

It is useful to compare the results for the dif-
ferential cross section o(U) = —(d/dU) Q(U) given
in Ref. 7 with some of the corresponding results
given by Gryzi6ski. In the present notation,

'

the
results of Ref. 7 are

III. REMARKS ABOUT APPLICATION TO
INELASTIC ATOMIC AND
MOLECULAR COLLISIONS

Application of results of the type obtained to the
estimation of cross sections for inelastic atomic
and molecular processes was first proposed by
Thomson. ' Interest in this was revived due to
the work of Gryzinski. An excellent review of
the present situation with respect to ionization of
atoms by electron impact has been given by Rudge
(Sec. 4 of Ref. 16). Among other things, he
mentions that taking account of the orbital motion
of the electrons, which was the main motivation
of GryziYiski's work, leads to results which are in
worse agreement with experiment than are Thom-
son' s. The good agreement of the final expres-
sions given by Gryzinski with experiment arises
only from making approximations. These approx-
imations are empirical in nature, and Gryzinski's
results must be viewed as being semiempirical.

In the present section, we wish to make some
remarks about the applications of classical energy
transfer cross section to direct excitation.
Gryziiski suggested setting the direct excitation
cross section equal to Q(U, ) —Q(U2), where U, is
the excitation energy of the state considered, and
U& the energy of the relevant next-higher state.
When 4U= Up —Uy «Uy as is often the case for
atoms and molecules, the cross section becomes
approximately equal to AUa(U, ), as noted before.
In analogy with the case of ionization, it can be
shown that taking account of orbital motion does
not improve the over-all agreement with experi-
ment of the direct excitation cross section. '

There remains the curious circumstance that
the approximate results of Gryzinski give rea-
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sonably good agreement with experimental results
for processes of direct excitation as well as for
ionization, while empirical formulas for the ion-
ization cross sections give rather poor agreement
when converted to direct excitation cross sections.
The reason for this can be understood by writing
Q(U) in the form

-19
5x 10

Q

(cm2)

He

expt.

Q(U) = (N.~o/U')f (x, y), (17)
eq.(75)

Q = (N,o'ob. U/U )f,„(x) . (2o)

Analogous formulas can be introduced for other
processes. The functions f;(x) and f„(x) are re.—
lated by Eqs. (20) and (18) with f replaced by f;.
Given f, (x) and f,„(x), these equations essentially
determine y Bf,/By. In general, it is not neces-
sary to invoke the relation between f, and f,„, or
even between functions for different elements.
Instead, it is better to make use of the similarity

where y =E&/U and where N, is the number of
equivalent electrons which may participate in the
ionization process. This leads to

o'(U) = N, 2f(x—, y) ~x (x, y)+y (x, y) . (18)
Bf Bf

'U ' ex '
ey

If y Bf//By is set equal to zero, as it effectively is
in the empirical formulas, the result for o(U) is
smaller than when y(8f/By) &0. It is only here, in
the comparison of experimental data for ionization
and for direct excitation, that taking account of
orbital motion helps to improve the over-all agree-
ment.

In many investigations concerned with the appli-
cation of classical energy transfer cross sections,
it was found that experimental cross sections for
similar processes agree quite well among them-
selves when plotted in appropriate dimensionless
form (see, for example, Refs. 5, 6, 17-20). As
a matter of fact, the reduced experimental cross
sections tend to agree better among themselves
than with any of the theoretical results. This
leads to the conclusion that an important result
of the classical calculation of energy transfer is
the possibility of writing down scaling laws. For
example, the scaling law for ionization is

(19)

Similarly, the scaling law for direct excitation is

3S

a' s

5'S

100 200 300
E2 (eV)

400

FIG. 3. Excitation cross section for the optically
forbidden transitions 1 8—n S of helium by electron
collision. Curves labeled Eq. (75) are based on
present Eq. (20).

The author wishes to thank the Heineman Foun-
dation, Hanover, Germany for a grant, and the
National Science Foundation for a NATO Senior
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of the functions for one given process. This
similarity even holds for many processes which
do not lend themselves to calculation by Gryzin-
ski's or other methods, such as excitation to opti-
cally forbidden lines. An example of this is given
in Fig. 3. The experimental O'S result of Ref. 21
was used together with Eq. (20) to calculate cross
sections for the processes 1'S-4'S and 1'S O'S.
The agreement with experiment ' is quite satis-
factory.
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A stationary afterglow system has been utilized to determine rate constants for thermal-
energy negative-ion-molecule reactions in photoionized NO-H20 mixtures. When the decay of
the plasma is controlled by ambipolar diffusion of positive and negative ions, quantitative deter-
mination of rate constants is shown to be feasible. The plasma transition from electron-posi-
tive-ion ambipolar diffusive domination of the transport loss processes to domination by posi-
tive-ion-negative-ion ambipolar diffusion is explained by a model which includes the effects of
negative-ion trapping. Prominant negative ions in the afterglow include NO2, its hydrates, and

clusters involving HNO2. Reaction-rate constants for the processes NO2+ H20+ NO NO2. H20
+NO and Cl + H20+NO Cl ' H20+ NO are found to be 1.3 +0.3 x10 28 cm /sec and 3.4+1.3
&&10 cm /sec at 293 K, respectively. Steady glows in NO-H20-02 mixtures revealed that

NO~ and the impurity HCO3 also formed multiple hydrates and clustered with HNO&. These
results indicate that the terminal negative ions in the D-region of the ionosphere will likely
be hydrated,

I. INTRODUCTION

Recently Lineberger and Puckett" reported
stationary-afterglow measurements of NO' re-
actions leading to the formation of NO' NO, NO' n

(H&O) and H,O' n(HaO) ions in photoionized NO-Hao

mixtures. These investigations elucidated a mech-
anism by which NO' ions can be lost in reactions
with atmospheric water vapor. As a consequence
of these reactions it is understandable that NO'

should not be regarded as a terminal positive ion
in the D region of the ionosphere.

Ferguson and LeLevier and Branscomb have
reviewed D-region negative-ion chemistry and
concluded that the "terminal" negative ions are
NO& and NO, . This conclusion was based on the
observation that these ions are formed through
chain-breaking reactions that do not permit the
electron to be freed again. Therefore, in their
context, "terminal" implies that the ions are inde-
structible except through ion-ion mutual-neutral-
ization processes. %e report results which
demonstrate that both NO2 and NO, ions do, how-

ever, undergo clustering reactions with H20 and

HNO2 at 293K.

The negative-ion-molecule reaction rate con-
stants reported in this paper are the first such
measurements known to the authors to be made
using stationary-afterglow techniques. In order
to obtain quantitative negative-ion reaction rate
information from a stationary afterglow, it is
necessary to make observations subsequent to the
disappearance of electrons from the decaying
plasma during the interval when positive-ion-
negative-ion ambipolar diffusion is the dominant
transport-loss mechanism. The transition from
positive-ion-electron ambipolar diffusive domi-
nation to positive-ion-negative-ion ambipolar dif-
fusive domination is marked by a sudden increase
in the negative-ion wall current, and a sudden
decrease in the positive-, ion wall current. A model
is presented which accounts for the features of
this transition.

II. EXPERIMENTAI. APPARATUS AND PROCEDURES

The basic apparatus employed in this experiment
is the photoionized stationary-afterglow instrument
described previously, ' and only a brief account of


