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This article presents a study of the propagation of small-area pulses of coherent light through
matter. It is found that the small-area pulses exactly obey an area theorem which, in the case
of an attenuating medium, requires that the pulse area decay to zero exponentially with increas-
ing distance of propagation. This, however, does not necessarily imply that the pulse energy
decays exponentially. Instead, it is found that pulses of duration comparable to or shorter
than the transverse relaxation time of the medium T2 (including both homogeneous and inhomo-
geneous broadening) propagate with low energy loss. The results are explained in terms of
simple physical arguments which indicate that the pulse envelope should oscillate between
positive and negative values, causing the area to decrease without a comparable decrease in
the pulse energy. Analytic solutions are presented for the case of a pulse whose envelope
varies as t e for t) 0, a rectangular pulse, an ultrashort pulse (i.e. , pulse width much less
than T&), and the leading portion of a step-function pulse. The propagation of a small-area
Gaussian pulse is studied numerically.

INTRODUCTION

Recent investigations' into the propagation of
coherent light pulses through a resonant medium
have revealed several interesting effects. Al-
though most of the phenomena observed so far are
unique to large-area pulses [the area of a pulse
with envelope S(z, t) is usually defined to be equal
to f"„p h(z, f) dt/hj, there still are interesting
pulse-shaping effects which occur for small-area
pulses. Furthermore, the propagation of small-
area pulses may be treated analytically to a much
greater degree than has been found possible for
large-area pulses. The analytic solutions obtained
for small-area pulses may serve as guides for in-
terpreting and checking the accuracy of machine
calculations for pulses of area up to &m.

This article is devoted to the study of the prop-
agation of small-area coherent pulses of light
through a resonant medium. It will be shown that
these pulses exactly obey an area theorem which,
in the case of an attenuating medium, requires
that the pulse area drop to zero exponentially with
increasing distance of propagation into the medium.
But this does not necessarily imply that the pulses
lose their energy exponentially. In fact, for pulses
short compared with the transverse relaxation
time T2 (including both homogeneous and inhomo-
geneous broadening), the electric-field envelope
oscillates between positive and negative values in
just such a way that the area theorem is satisfied
but the pulses lose little energy after their initial
reshaping. It will be shown that the formation of
these "zero-degree pulses" gives rise to signifi-
cant deviations from Beer's law.

The physical basis for the formation of the zero-
degree pulses which are described below can be

simply understood. As a small-area pulse enters
the resonant medium, its leading edge excites a
macroscopic polarization in the thin slice of me-
dium located at the surface. This polarization
radiates 1SO' out of phase with respect to the in-
put pulse for a time of the order of T2 after the
pulse has passed. If the trailing edge of the pulse
drops off faster than the decay of the macroscopic
polarization, then the envelope of the pulse leaving
this slice will go through zero and become negative.
The next slice of resonant material now sees a
field envelope whose trailing edge drops off faster
than before and then becomes negative. As a re-
sult, the polarization induced in the second slice
by the positive lobe of the pulse envelope radiates
180' out of phase with respect to that field and
adds to the negative lobe. In this way, a pulse can
develop a field envelope which has negative-area
regions that subtract from the total-pulse area.
Thus, the total-pulse area can go to zero while the
pulse energy remains finite.

Many of the results to follow can be understood
on the basis of another argument. A pulse of dura-
tion comparable to or less than the transverse re-
laxation time T2 will have a spectral content that
is comparable to or broader than the absorption
line of the attenuating medium. As such a pulse
propagates, the absorbing medium eats a hole in
the pulse spectrum. In this way, the pulse spec-
trum develops a dip and begins to resemble the
spectrum one would get from the superposition of
two quasimonochromatic beams which differ slight-
ly in central frequency. Such a light beam would
develop temporal beats. As the pulse propagates
in the medium, the hole in the pulse spectrum be-
comes deeper. This causes the two apparent cen-
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The basic equations which describe the propa-
gation of coherent pulses in a resonant medium
have been derived elsewhere in the literature '

and for this reason a cursory treatment seems ap-
propriate here.

The resonant medium will be assumed to consist
of N two-level atoms per unit volume embedded in
a homogeneous dielectric that may be characterized
by an index of refraction p which is constant over
the spectrum of the pulse. Any state of one of the
two-level atoms may be written

e(x, t) =a(t) @,(x)+b(t) +,(x)

where 4, and C„are eigenfunctions of the-unper-
turbed atomic Hamiltonian which correspond to
the eigenvalues & h 0 and —

& h 0, respectively.
Alternatively, the state of an atom may be repre-
sented by the real variables X, T, and Z, which
are defined according to

(X t lz)e-iv(t -t)zlz) +z (zit) —2ahs

Z =—aa* —bb*

(»)
(2b)

where y(z, t) is the slowly varying phase of the
electric field as defined in Eq. (5). These vari-
ables satisfy X2+ 72+ Z2 = 1 when aa*+bb* = 1. The
phases 4, and 4, can be chosen so that the electric
dipole moment matrix element between the two
states p, is real. The expectation of the dipole mo-
ment operator for an atom in the state given by
Eq. (1) becomes

( ~ ) ~ Re[ (X t lz) e-(ted(t -zz/c) t ( IP(z, t)]

in terms of the new variables. It will be assumed
that there is a distribution of atomic frequencies
0 which may be described by a normalized distri-
bution function g(h), where b, -=0 —+ is the amount
of resonance of a particular atom. For such an
inhomogeneously broadened medium, the polariza-
tion induced by the applied electric field would be

P(z, t ) =N)t Re( f [X(z, t, n) —i Y(z, t, h)]

& g(t).) d n exp [—i (d (t -q»/c) +i (p(z, t)]),
(4)

where X(z, t, 6) and Y'(z, t, n) are the variables, de-
fined in Eq. (2a), which refer to an atom with
transition frequency 0= co+ 4.

The coherent light pulse will be considered to be

tral frequencies to become further apart so that the
temporal beats become more rapid.

In terms of this spectral argument, the anoma-
lously low absorption can be simply understood as
the result of small absorption of those Fourier
components which are far off resonance.

FORMULATION

E(z, t) = S(z, t) cos[&u(t -)lz/c)- cp(z, t)] . (5)

In general, one would describe the evolution of
the plane-wave light pulse of Eq. (5) by the sec-
ond-order wave equation

82 ~2 g 2 4 g2~
Z(z, t)=~, (z, t) .

&z c ~t ' c (6)

But for the pulses that are used in most experi-
ments, S(z, t) and y(z, t) vary little during an op-
tical period or over the distance of an optical
wavelength. Under these conditions, one can re-
place Eq. (6) with the reduced wave equation '8'9

—+——iS(z t)e'""'"=8»', st)
''' ' =

qc [x(z, t, t),)

-i 1( zt, t)]g(t)dt et"' " (7)

The response of an atomic system which has a
transition frequency 0= (d+ & to an electric field
of the form of Eq. (5) is described by

X(z, t, ~)=- [~+ j(z, t)]y(z, t, ~)

-x(z, t, t)/r, ', (8a)

y( tz, t)=[t+j(z;t)]X(z, t, n)

+ [qS(z, t)/a]z(z, t, ~) —r(z, t, t))/T", ,

(8b)

z(», t, ~)=- [ttS(z, t, )/h]r(z, t, t).)

—[z(., t, t) —z, ]/T, . (8c)

Relaxation effects have been introduced phenom-
enologically by means of a longitudinal relaxation
time Tj and by a homogeneous transverse relaxa-
tion time T2. The description of resonant pulse
propagation is now obtained by solving Eq. (7) and
Eqs. (8) simultaneously. The boundary conditions

X(z, to, 6) = Y(z, t(), 6) = 0,
Z(z, t„ t),) =Z (0),

together with the time dependence of S(z, t) and

y(z, t) at the boundary of the media z = 0 are suf-
ficient to describe most experimental situations.
The time to is chosen to be immediately before the
entrance of the pulse into the medium. The study
of solutions of the equations is facilitated if one
defines the pulse area according to~

8(,)= """dt
«00 8

The pulse area so defined may be interpreted as
the angle through which the vector [X(z, t, 0),
y'(z, t, 0), Z(z, t, 0)] is turned during the pulse.

linearly polarized along the x direction and to prop-
agate in the positive z direction so it can be writ-
ten
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In Appendix A, it is shown that for field ampli-
tudes g(z, t) and times t such that

~g( )dt ((1
8 (10)

the energy of an atom does not change significantly,
and one can replace the variable Z(z, t, 6) by
Z(z, to, 6) =Z(0) in Eqs. (8). This "small-area" ap-
proximation linearizes the equations, and, as
shown in Appendix A, the propagation of the field
can then be described by a single equation

—+ ——S(z, t)e &e gt)
pz c ~t

~,f, G(x)S(z, t x)e'-""' "'dx . (11)

The quantity G(x) and the constant no are defined
according to

G(x) -=e "irz f g(t).)e '~"dt(

and no =-- (2mÃg'ru/bric)Z(0)

(12)

(18)

In the case of a resonant medium consisting of pink
ruby and with Z(0)- —1, no is of the order of 10i2

cm 'sec '. If one introduces the Fourier trans-
fol m

Equations (7) and (8) have been studied numerically
for both the attenuator case 0 Z(0) & 0 and the ampli-
fier casei" Z(0) &0. Previous studies have em-
phasized large-area input pulses [8(0) & m/4] since
several interesting pulse-shaping effects occur in
this region. In this paper, it will be shown that
small-area imput yulses [8(0) & w/32], which are of
short duration compared to the transverse relax-
ation time T2, undergo reshaping by the medium
and lose significantly less energy than predicted
by Beer's law.

SMALL-AREA APPROXIMATION

xexp{- iv[t- (ri/c)z]-A(v)z)dv . (18)

The expression for A(v) given by Eq. (16) takes
a particularly simple form when it is assumed that
the distribution of atomic frequencies is Lorentzian:

z(~) = (Tf/7))[1+ (»g)'j '

In this case, one obtains

(19)

A(v) =.
i Tz+v (20)

where the total transverse relaxation time T2 is
given by 1/Tz= 1/T, +1/Tf . With this specializa-
tion, Eq. (18) becomes

h(z, t)e"'""= — z(0, v)
2m

x exp —i v(t —qz/c) —. Ifv . (21)
io.oz i

2 T2+ v)

Equation (21) describes the evolution of the enve-
lope and phase of a small-area pulse in terms of
the Fourier transform of the envelope and phase of
the input pulse. The remainder of this paper will
be devoted to the study of Eq. (21) for various in-
put pulses. Equation (21) is reminiscent of re-
sults from classical dispersion theory. ' It should
be pointed out that the usual formulation of classi-
cal dispersion theory results in an expression sim-
ilar to Eq. (21) but containing E(z, t) which oscil-
lates at optical frequencies, rather than S(z, t)
&&e'"'""which oscillates at frequencies much less
than optical frequencies. On the assumption that
the host medium is characterized by an index of
refraction g and that S(z, t) and cp(z, t) vary little
in the time 2n'/&u, the interesting phenomenon of
precursors has been neglected. However, it will
be shown that there are still other interesting prop-
agational effects which can be described by Eq.
(21).

e(z, v) = f $(z, t)e'"'"' '"'dt

Eq. (11) may be rewritten

(

———v+2(v)) a(z |)=0(8 iq
(sz c

where A(v) is defined according to

(14) BEER'S LAW LIMIT

Suppose that e(0, v) is negligible for frequencies
I v ( &1/r This wou. ld be true, for example, in the
case of a Gaussian pulse of width w. Now if & is
large compared with the transverse relaxation
time T~, then

A(v) = a.o G(x)e'""dv= n
0

g(n)dt)
1/T,'+i(&- v)

2QpZ ~ 2~ Q0T38 +2(lpT3 Vg
2/ T2+ V

Equation (15) can be integrated as

z(z, v) = z(0, v) exp[(irL/c)vz -A. (v)z]

(16)

If one now takes the inverse Fourier transform,
the resulting expression for the complex pulse
envelope is

in the region where e(0, v) differs from zero.
Substituting this expression into Eq. (21), it is
seen that the pulses are exponentially damped in
the case np) 0 or exponentially amplified in the
case Qp(0 according to

&(z, t) e'"'""=e 0'2' h[0, t —(ri/c —n,T,')z]

$(z, t)e"""=— e(0, v)
2m

el i' EP, t - (ff/c - +p T2 )832
(22)
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The energy of the pulse is proportional to f" 8 (z, t)
&& dt a.nd is attenuated or amplified exponentially
with a Beer's law coefficient a = 2npT2. In addi-
tion, Eq. (22) indicates that a pulse is speeded up
in an attenuator (o.o & 0) and delayed in an amplifier
(o.'o &0) by an amount (o.oTo ) '. In the attenuator
case, the apparent speeding up is due to the fact
that the resonant dipoles absorb more energy from
the trailing half of the pulse than from the leading
half. The apparent slowing down of a small-area
amplified pulse results because the resonant di-
poles contribute more energy to the trailing half of
the pulse than to the front.

AREA THEOREM

It is easy to deduce an area theorem from Eq.
(21) [or more generally from Eq. (18)]by multi-
plying by i/, /k and integrating over all time; thus,

8(z) -=J p, S(z, t) e""'"dt/%=8(0)e o 2', (23)

where Eq. (14) has been used to conclude 8(0)
= p, e(0, 0)/h. This area theorem is quite similar
to the low-area limit of the theorem derived by
McCall and Hahn' with the exception that now the
effects of phase q(z, f) and both homogeneous and
inhomogeneous broadening are taken into account.
The area theorem expressed in Eq. (23) was de-
rived from Eq. (21) without approximation. In the
case of an attenuator it requires that the pulse area
go to zero exponentially with increasing z. How-
ever, this does not necessarily imply that the
pulses lose energy exponentially. In the following
section it will be shown that, for short pulses, the
electric-field envelope oscillates between positive
and negative values in just such a way that the area
theorem is satisfied, but the pulses lose little en-
ergy after an initial reshaping.

SOLUTIONS FOR AN ATTENUATOR

X p
—— &„.,(2Inoz(i-nz/ci]"')I

2
(26)

For the case of a pulse whose width is nearly
equal to the transverse relaxation time 1/7 = 1/To
just the first term in the series of Eq. (25) is sig-
nificant, and one concludes that

(t -qz/c) (f -qz/c)8 z, f =k!exp—
2 QpZ

x U(t gz-/c)Z„12 fnoz(t -gz/c)]'i ]. (26)

0.3

0.2

0.1

z =0

z= 4a

From the known behavior of the Bessel function,
it is seen that such a pulse envelope will oscillate
between positive and negative values. These oscil-
lations occur in just such a way that the area goes
to zero according to the exact result of Eq. (23).
Since the argument of the Bessel function is
[noz(t —qz/c)]', the rapidity of the oscillation
increases with increasing noz. (See Fig. 1. ) It
is interesting to note that the zeros of the field
envelope depend only on np and hence the predic-
tion of Eq. (26) along with the definition of Eq. (13)

The medium will be referred to as an attenuator
if it is prepared so that np &0. In the case where
the total area of the pulses is small, the require-
ment of Eq. (10) may be satisfied for all times t. '
For other pulses, the small-area approximation
will be valid for only limited time t, and hence the
analysis of the preceding section can only be ap-
plied to a portion of the leading edge of the pulse.

In Appendix 8 it is shown that the response to an
input pulse of the form

S(0, f) e'"' '" —So(t/T) e ' 'U(t) (24)

where U(t) is the unit step function, is given by"

-Iz= 8a

z =12a

z =16a

.=go. ' 5
o ~ z

I I I

4 6
(t-~z /c} / Tz

FIG. 1. Propagation of a pulse which is initially de-
scribed by Kq. (24) with k=1. Time is measured in
units of T2 and distance z is measured in Beer's law ab-
sorption lengths o. ~. The different graphs correspond
to different depths in the resonant medium.

$(z, t) = S,U(t —qz/c) e~
—(t -qz/c)

T2

X
ili(i sr*/ci/a, al"' -" in+a)! -(i ng/c)iI""-o

n=p n! QOZ
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00

U(z) =— h'(z, f)df.
Sm

(2V)

The integral in Eq. (2V) can be easily evaluated
with S(z, f) given by Eq. (26) with k = 0. In this
case, the energy may be expressed in terms of a
modified Bessel function

suggests a method for measuring the dipole moment
matrix element which does not require knowledge
of Tz. Similarly, the other solutions presented
in this section suggest an experimental determi-
nation of no.

The energy per cm of a pulse described by
Eq. (5) is given by

&t(2[~oz(q -7)]"'3,
(32)

where q = (f —tlz/c). As a result of the linearity
of Eq. (21), this is the same a.s the response to
two step functions, one of which is delayed by a
time 7 and differs in phase by 180' with respect to
the other.

If one takes the limit as 7 approaches zero in
such a way that the area of the input pulse 8(0)
= So& remains 'onstant, Eq. (31) becomes a delta
function. From Eq. (32) the response to the delta
function is'

I S(z, q)/n = 8(0)5(q) -8(0) U(q) e "8
U(z) = U(0)e o 8' Io(o.'oToz). (28) x [&oz/q]"'&t [2 (~o zq)"'] . (33)

This pulse starts off by decaying exponentially
with a decay constant equal to one-half the Beer's
law constant. For large noT2z, the decay is even
slower, decreasing as (o.'oTsz) '

Another interesting limit can be obtained from
Eq. (25); when k=0 and 7-~, one obtains

8(z, f) =S,U(f -~z/c)

(t -gz/c) .
" 1 t —gz/c)

'~'
x exp

To i=o Ts o'oz

The area under the first term of Eq. (33) re-
mains 8(0), while integration reveals that the area
under the second term is —8(0)[1—e "o 8']. Thus
the second term makes a negative contribution of
just the right magnitude to satisfy the area theorem
of Eq. (23).

The integral of Eq. (21) has been evaluated nu-
merically for Gaussian input pulses of the form

g (0 f)s ill ( &to) g -4t lt (34)

Figures 3 and 4 show the results of such a calcula-

xJ,(2[noz(t -tlz/c)]"' I. (29)

It can be seen from Eq. (24) that this limit is the
response of the resonant medium to a step func-
tion. As indicated above, this small-area solution
will be able to describe only the front part of the
propagating pulse. Figure 2 displays the result
of a computer solution of the full nonlinear prob-
lem of solving Eq. (7) and Eqs. (8) for the case
of a step-function input pulse with T&=~. Here the
leading part of the pulse develops positive and neg-
ative oscillations which serve to keep the left-hand
side of Eq. (10) small, and as a result the small-
area solution would be valid for longer times than
one would have anticipated. The leading part of the
pulse shown in Fig. 2 can be described by the limit
of Eq. (29) as To-~, i.e. ,

2.0

I.O

z =0

z = 0.26

z = 0.78
l/

5p

8 (z, f) = 8, U(t tiz/c) J fL2[c-t z(t -tiz/c)]'/ }.(30)

The integral of Eq. (21) has been evaluated for
the case of a rectangular pulse of the form

s(0, f)s"""=s, [U(f) —U(f -7)] .
Such a pulse propagates according to

1/2 l

8(z, q) =88U(q)s '/ 8 Z
g=o ~2 +0 g

xJt[2(nozq)'/'] SoU(q —r)e " "I 8—

I

2 ~ 4 5 6 7 8 8 iO

FIG. 2. Propagation of a step-function input pulse in
an attenuating medium for the case T2= ~. The depth z
is measured in units of O.sit Bo/@no and the field b is
measured in units of 80.
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I.O

0.9

0.8

z=Oa -I
0.7

-Iz=2a

"I
z =4a

0.5

-I
z =6a

-Iz=sa

-Iz= loa

-I
z =12a

0.4
E

i
4)
CL

g 03
i
0)

4)

-Iz=16a I

0

() —
C Z)/Ti

0.2

FIG. 3. Propagation of a Gaussian pulse of width
v = 2T2. The depth z is measured in Beer's law absorp-
tion lengths e ~.

tion for pulses of width comparable to 7&. It is
seen that the pulse envelope develops a negative
component and propagates many absorption lengths
without vanishing. The energy of the pulses was
calculated from E(l. (2V), and the results are dis-
played in Fig. 5. There are large deviations from

O. I

0 8a ' Isa
Distance in absorption lengths

FIG. . 5. Variation of pulse energy per cm with dis-
tance for Gaussian pulses of various widths.

Beer's law, which is indicated by the dashed line,
for pulses of width comparable to or less than T2.

SOLUTIONS FOR AN AMPLIFIER

z =0

z =2.0a

z=4a

z =Sa

If n() &0, the previous solutions are still valid
provided one uses the identity

Z, (2[ —
i a i z(t -g /zc)]'~')

= (i)'I, (2[lao iz(t )(Iz/c)]'~'). -
For example, the solution of Eci. (26) would be-
come

h(z, t)

=AMIS,

e-" """'zV(t -qz/c)

z =16a

z =20a -2

(t ——z)/Tq

FIG. 4. Propagation of aGaussian pulse of width &= T2.

in the case of an amplifying medium. The ampli-
fication of a very short pulse would be described
by

I h(z, q)/e=e(O)~(q)+e(O) V(q) e-"z[ia, lz/q]"'
xI [2(inoizq) ~ ] (36)

as derived from Eq (33). .
A study of the amplification of a short small-

area Gaussian pulse of the form given in Eci. (34)
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was made using E(I. (21) with o.o = —1o.01, and the
result is displayed in Fig. 6. The short pulse is
broadened because the macroscopic polarization
radiates more energy into the tail of the pulse than
into the front.

The study of amplification of pulses using the
small-area approximation is of limited usefulness
because the amplified pulses soon violate the con-
dition of E(l. (10).
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APPENDIX A

g(z t)e(@ 8, t)|t (
88 C

g( tr) ie (s, (') e-(t -t')/2'~2
ge

x g ~e ' " ' 'Zz, t', & d&dt'. (A3)

g(z t)e(P(zest)(
9 Q 8

ez c et
CO

27TN& Q)
g (

Sgg ~ 0

Now change to the variable x = t —t' in E(l. (AS).
The result is

Adding E(I. (Sa) to -i times E(I. (Sb), one ob-
tains

x -"]~' g(&)e ' " Z(z, t —x, &)d&dx. (A4)

x - ii' = — —+ i(t), + j)) (x -ir) -i z. (Al)—pg
yf

This equation can be rewritten as an integral equa-
tion as

[X(z, t, ~) -ir(z, t, ~)]e """
8 (IP (sy ( ) Z( tl g)I

x 1'(z, t', S)exp[ —(t —t')/T, ]dt'. (A5)

Since 1Z(z, t, 6) 1
~ 1, it follows from E(ls. (A2)

and (A5) that

In a similar manner, E(I. (Bc) can be converted
into an integral equation'7

Z(z, t, ~) = Z(O)— I'

x exp — —,+it) (t —t ) dt
1 I

2
(A2) l&(z, &, &)-&(o)(& I Jl

& (*' )dg'~a (A6)

Substituting this into E(I. (V), one obtains Thus, when the right-hand side of E(l. (A6) is
small, it is a good approximation to replace Z(z,
t, b ) by Z(0) in E(I. (A4), and the resulting expres-
sion appears in E(I. (11).

-I
z = 2.0a

z= 1,6a

-I
z = 1,2a

APPENDIX B

An example of how the integral in E(I. (21) may
be evaluated for a specific pulse shape will be pre-
sented here. Consider an input pulse of the form

g(O t)e'"""=g,(t/v)'e "'V(t),
where U(t) is the unit step function and k is zero
or a positive integer. The Fourier transform of
this input pulse shape is

z=08a
e(0, () =[eon ti""/r'() +i/&)' "] (B2)

-I
z =0.4e

z=0

((- —, z)/T,
'9

FIG. 6. Amplification of a small-area Gaussian pulse
whose initial width is 7 =2T,.

in the notation of E(I. (14). Substitution of E(I.
(B2) into E(l. (21) shows that the evolution of the
pulse is described by

8 ktz'"
g (z q) e +P (gy(() 0

2m v'

exp [ i(/q - io.
(& z/-(i/r, + (/)]

dv)
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where q = (f —gs/c).
The integral has two singularities in the lower

half of the p plane. If q &0, the contour of integra-
tion may be closed in the upper half -plane and the
integral is zero. If q&0, the contour may be
closed in the lower half-plane and deformed into a
circle centered at p = i/T—s and having a radius R
large enough to include the singularity at i/-r
Thus, the integral Eq. (83) becomes

g(, ,„(g,) gse '~ &i"'U(q)k I

x g exp [ ixq-in, -s/x]" "[i(i/r —i/r, )+x]'"
(84)

in terms of the variable x =i/Ts+ v. The fact that
I x l & ) i/v —1/Ts ) on the contour used in Eq. (84)
allows one to expand

[x+i(l/~ —l/7, )]-'-'

Furthermore, the exponential term in the integral
of Eq. (84) may be written in terms of the gener-
ating function for the Bessel function as

exp [-ixq —i nos/x]

1/2
= 5~ i-q x 'Z, [2(nssq)'~']. (86)

a0Z

Substituting Eqs. (86) and (86) into (84) and using
the fact that

one obtains

8(s, q)e'"""'=S,e 'r'U(q)

„(q/n, s)"" ~ (n+k)r
qlns ~)

7 n=0

& (~+ k) t [i(l/r, —i/~)]"
„.0 nike X"'~" (86) "(&»s &/&)—"~s.s[2(nosq)"'] (»)
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