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The 2-eV shape resonance in N2-electron scattering is calculated by a self-consistent-
field energy-variational procedure. The resonance state corresponds to the attachment of an
incident d-wave electron to the l~~ valence orbital of the metastable Ilz state of N2. The res-
onant behavior is due to the tunnelling of the electron through a 2(2+1)/x2 centrifugal barrier
and temporary trapping in an attractive field. This tunnelling is reflected in the bimodal be-
havior of the calculated 17(~ orbitals; the inner portion of the orbital defines the resonance state.
The "potential" curve for N2 is calculated in the Hartree-Fock approximation; a resonance
threshold of 2. 5eV is predicted, with 88=2.27a. u. and 8=2000cm ~. Expected correlation-
energy corrections would improve the agreement with experiment. A local potential for elec-
tron scattering is generated by inverting the 17t~ orbital, and resonance widths are calculated.
The widths vary from 0.13eV at the equilibrium distance of N2 to 0.8eV at the N2 equilibrium
distance.

INTRODUCTION

The resonance structure in electron scattering
from N2 is due to "attachment" of the d wave of the
incident electron to the first unoccupied m~ valence
orbital. In terms of a "local" potential, the inci-
dent electron penetrates or tunnels through a bar-
rier that can be represented asymptotically as

V„„-—o.c/2r +2(2+ 1)/x

At short range, of the order of the size of the mol-
ecule (- l. 5 a. u. ), the potential is attractive and,
for E-2eV, sufficient to support a metastable
"bound" state. This picture was developed by
Bardsley, Mandl, and Wood. ' A II~ configuration
for the N2 had been proposed earlier by Gilmore
on the basis of molecular-orbital theory and an es-
timate of a real N~ potential energy curve was
made. Chen has deduced a similar curve semi-
empirically and the angular dependence of the scat-

tered electron4 is consistent with the O~ resonant
state of Nz. Although the qualitative structure of
the resonance state now appears to be understood,
a Priori calculations based on the molecule itself
are lacking.

In this paper, we calculate the resonance state
of N2 from molecular-orbital theory and use this
to develop a, local potential for electron scattering.
The scattering wave function is assumed to be ex-
panded in terms of a tight resonance state with de-
caying boundary conditions and appropriate phase-
shifted continuum functions. Since we are con-
cerned only about resonant scattering, where the
electron penetrates into a well of the size of the
molecule, we assume that a knowledge of the res-
onance function alone can be used to determine the
"local" potential that supports the resonance state.
This potential includes both exchange effects and
the electrostatic polarization of the target mole-
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cule but does not include correlation. The long-
range part of the potential is approximated by the
centrifugal term plus the isotropic part of the as-
ymptotic adiabatic-polarization potential in Eq.
(1). This is joined to a potential that is obtained

by inverting the Schrodinger equation for the res-
onance state function. The one-electron potential
is then used to estimate the scattering phase shift
and the resonance width.

II. RESONANCE STATE AND APPROXIMATE
POTENTIAL ENERGY CURVE OF N2

The resonance state function is approximated by
a self-consistent field (SCF) wavefunction of N2

that is calculated with an expansion trial function
composed of Gaussian-type functions (GTF) cen-
tered at both of the atom centers and the center of
the molecule. The ground state of N~ is represen-
ted by the configuration

orbitals are the size of the ground state of the
molecules and the electron can be trapped within
the barrier because a large, attractive potential
is available. Rydberg-type orbitals on the other
hand are characterized by a large radius well
outside the initial ground-state distributions.
There are only a very few valence-type orbitals
normally available; excitation is primarily to
Rydberg-type states. In N2, for example, it is
normally presumed that there is one other valence-
type orbital that is available, the 30„, which could
support a p-type resonance. However, a calcula-
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the exponents of the GTF for the 1m~ orbital are
chosen so that the Gaussian half-widths are less
than 6 a.u. , it is found that the SCF variation of the
linear coefficients does not yield a continuumlike
orbital. In fact, the 1m~ orbital is barely distin-
guishable from a 1m~ orbital calculated for any va-
lence excited state of N&, e. g. ,
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The orbital senses the centrifugal barrier.
This is demonstrated in Fig. 1(a) where the Nz

1m~ orbital is compared to that of the G~ state of
N2. When the GTF are chosen with sufficiently
large exponents, they decay before the long-range
repulsive potential has dropped below the positive
orbital energy of the 1m~. In the spatial region of
the ground state Na, the 1m~ orbital agrees with the
excited valence orbital and decays as it encounters

the repulsive barrier. Varying the exponents on
the d functions at the molecule center permits the
charge density to accumulate at large distances
beyond the repulsive barrier. For GTF with half-
widths to 10 a.u. , the 1m~ orbitalbecomes bimodal
as shown in Fig. 1'; however the curvature of the
inner maximum remains the same and produces an
almost identical "local potential" as shown in
Fig. 1(b). This is discussed more fully in Sec. III.

The requirement that a low-energy valence or-
bital is available may be an important restriction
on the formation of resonance states. Valence

0 ~ 0 0 ~ 5 1 ~ 0 1 ~ 5 2 ~ 0 2 ~ 5 3 ~ 0 3 ~ 5 4 ~ 0 4 ~ 5
r (a.u. )

FIG. 1. (a) Plot of the 1=2 Legendre component of
the ~~ orbital wave functions. The dashed curve is from
the II& excited valence state of N2. The solid curves are
the N2 orbitals; both the constrained orbital which does
not contain any d functions, and the more extended, bi-
modal function which has three d functions which permit
the orbital to "tunnel" through the centrifugal barrier
exhibit a large amplitude peak at x = 1.2 which is sixni-
lar to the ~II~ orbital. The shape resonance state is
"defined" by this inner portion of the ~~ orbital of N2.

(b) The "local" potentials which are generated by the
three 7t~ orbitals in Fig. 1(a) are seen to be very simi-
lar. Since the 'II~ orbital is truly bound, the well is
slightly deeper. In spite of the marked redistribution
of the charge in the N2 orbitals, their potentials are
quite similar for r & 2.2; the invariability of the local
potential is used as a criterion for defining the shape
resonance state.
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tion of the configuration

10'10'2o'2o'1m'3o 3o

yields a 3o„orbital that is primarily Rydberg.
The variational determination of the 3a„orbital
prefers to find the charge density of a 3p function
rather than a tight valence-type density. This in-
dicates that a local potential is not sufficiently
deep to support such a valence state and no reso-
nance should be expected from attachment to the
3o„orbital. It is important that the valence or
Rydberg character of available orbitals be deter-
mined. Only the valence type f-unctions tvill sup-
port a shape resonance.

The decreased amplitude of the 1m~ in the vicin-
ity of 4 a.u. is indicative of the presence of the
barrier. The resonance state is defined essen-
tially for r less than 4 a. u. A sufficiently large
basis is used to provide an adequate description
of the wave function in the neighborhood of the bar-

rier. However, the wave function is not obtained
to very high accuracy on the periphery of the
molecule due to the energy weighting inherent in
an SCF calculation. This is in addition to the in-
accurate asymptotic dependence of the GTF which
manifests itself beyond 5 a. u. for the basis used.
The accuracy of the function in the neighborhood
of the first maxima was gauged by the invariabil-
ity of the local potential obtained with different
size trial functions. The results are all based on
"double P" quality GTF for the core functions
and up to a 4GTF set of d-type functions centered
at the c.m.

The energy curve for a GTF set that deletes the
d-type orbitals and retains only pm&- pm» 7t~-type
functions is given in Fig. 2. As long as the m~

electron is within the barrier, the variation of
total energy with and without the d-type functions
is only of the order of the anticipated width, i. e. ,
0. 1 eV. Although these curves can be in serious
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FIG. 2. Potential curves for
N2 and N2. The solid curves are
the calculated HF potentials and
predict a resonance energy of 2. 53
eV for the v =0 state of N2. The
dashed curves are the experimen-
tally observed potentials. A cor-
relation-energy correction of 0.67
eV with respect to N2 has been
applied to the N2 curve to bring the
v =0 level in coincidence with the
observed resonance at 1.89eV.
This correction is strictly valid
at the N2 equilibrium distance 8
= 2. 27 and we can not have much
confidence in the shape of the
curve at distances far from equi-
librium. The N2 curve is shaded
to indicate this in a metastable
state and must be defined by a
complex "potential" which includee
a width for auto-ionization. The
shaded area approximates our
calculation of the resonance
widths.
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error due to correlation errors as well as the
failure to obtain the Hartree-Fock (HF) limit, the
calculated HF resonance energy, = 2. 53eV, is re-
markably close to the experimental value of 1.89
eV. The correlation energy problem is compli-
cated by the asymptotic error in a HF calculation
of N~ or Na ground states as the internuclear dis-
tance goes to infinity. This will be less severe
in N2 than N2 and appears to offset the additional
correlation energy expected from adding a pene-
trating electron to N2. On comparison with ex-
periment the additional correlation energy ob-
tained by adding one electron to the ground state
is 0. 67eV. An estimate of these corrections can
be made by comparison of the HF calculations to
the experimental values in 02- 02. These esti-
mates predict a relative lowering of the 02 curve
by about 0. 8 eV and are consistent with the N&-N&

observations. Only a correlation-energy calcula-
tion can properly answer what the correction
should be.

One feature of these energy curves of interest is
the equilibrium internuclear distance. The metas-
table N~ curve is not clearly defined but, if the real
parts of the inherently complex nuclear potential
behave like the N2 curve, it is expected that the
R, is to the right of the present calculated value

by about 0. 02 a.u. or R, is 2. 27 a. u. This would
imply that the N~ and Na curves do not cross until
much larger R. " The predicted HF spectroscopic
constants for Na ar QPe=1960cm

y e+e=
however there is usually a considerable correla-
tion correction to the spectroscopic constants.

III. DETERMINATION OF LOCAL POTENTIAL
FOR ELECTRON SCATTERING BY Ng

The molecular-orbital function le~ which is ob-
tained in the SCF calculations is expanded in
spherical harmonics

|j.=~ Vi, (e, V)b~(r)/r1 (2)

to obtain a "local" potential V which reproduces
the orbital in the regions r &r, where Eo is the
energy difference between the N3 and Na states.
This potential differs from the usual polarization
potential' since g& describes an electron distri-
bution and not a point electron but it includes both
exchange and all the proper electrostatic inter-
actions, including the relaxation of the N& core in
an SCF manner.

To a first approximation we neglect coupling to
higher partial waves and take

about the molecule center. The function is used to
obtain a scattering potential by solving the equation

(~V~+Eo- V)tJ), =0,

q, = Y, ,(8, cp)[p,(r)/rj,
and determine the radial potential

V2(r) = U(r) + 2(2+ 1)/ra .

(4)

The "local" potentials are determined for three
N2 internuclear distances, ' R=2. 0, 2. 15, and
2. 3 a. u. The largest GTF set that retained the
electron density within the barrier is identified
with the resonance state. An arbitrary criterion is
used, i. e. , the amplitude of the m~ orbital at the
first maximum r = 1.2 should not decrease by
more than 10%%uo compared to the orbital without any
d functions, in which case the energy of N~ de-
creases by not more than 0. 1-0.2 eV. The most
extended basis set can be used for R = 2. 3, while
the most contracted is required for R = 2. 0, sug-
gesting that the degree of tunnelling, and hence the
width, increases markedly with decreasing R.

As in Fig. 1(b) all the calculated w~ orbitals
yield an attractive potential of about 3 a. u. in the
vicinity of r = 1.2 a. u. , pass through zero at
r = 2. 0 a. u. , and mount to a repulsive "centri-
fugal" barrier at about r = 3.0-3. 5 a. u. For
r &2. 2 a. u. , the potential is invariant to wide
variations in the basis sets. Even when 75% of the
charge is outside the barrier, as in the bimodal
function in Fig. 1 (a), only minor changes occur.
This is indicated by the orbitals of the target mol-
ecule which undergo only minor changes as the
tight part of the m~ orbital is gradually filled with
increasing charge; this is a reflection of the low
polarizability of N~.

'
Unfortunately, these potentials are not well rep-

resented beyond r = 2. 2, and the shape and height
of the barrier are very dependent on the basic set.
A typical barrier is shown by the solid curve in
Fig. 3, which is obtained with four d functions for
R = 2. 3. Varying the number of d functions causes
the height to vary in the range from 4 to 5. 5 eV.
The d functions were chosen to span tM.s region,
but the energy obtained in the SCF calculation is
insensitive to the shape of the orbital in the region
of the barrier.

Fortunately, the magnitude of the widths is
dominated by the tunnelling through the long-range
polarization potential. Two approximations were
made, as indicated by the dashed curves in Fig. 3.
The calculated local potential was employed up to
either case (I) r = 2. 1, or case (II) just past the
ma::imum at r = 3. 5, and the asymptotic form (1),
chosen with an appropriate polarizability to match
V(r), was used for larger r. ' The widths calcu-
lated with both potentials agree to within 10-20%
(see Figs. 4 and 5) which is well within the range
of other uncertainties.

Because of this difficulty in generating a proper
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FIG. 3. Local potential for
N~ (2.3) in the vicinity of the bar-
rier. The solid curve is the po-
tential calculated from the 7t~ or-
bital using a basis set containing
five p functions at each atom and
four d functions at the center.
The height of the barrier varies
by 0.07 a.u. depending on the
number of d functions used, and
the shape, particularly to the
right of the barrier, is variable
and meaningless. However the
potential to the left of r= 2.»s
invariant to the basis set. Two
approximations were made for
calculation of the tunnelling
widths. Case I, the asymptotic
polarization potential was fitted to
the V(y) potential at x=2. 2, withan

0 3e = 3.5 A3, and case II, a fit was
made at the barrier, x=3.5 with
e =1.7 AS. The position of the
resonance is shown; case I pre-
dicts a width of 0.12 eV, and case
II, a width of 0. 10 eV.
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FIG. 4. Plot of calculated
widths 1" versus resonance energy
&~~ for a large variety of case-I
(points) and case-II (crosses) po-
tentials. Included on the graph
are widths for three A values,
different values of Eo,and basis
sets with variable number of d
functions. The curves are
drawn through the two sets of
points to demonstrate the range
of widths that are obtained with
these rather diverse centrifugal
barriers (see Fig. 3). The agree-
ment is quite good and demon-
strates that it is the long-range
tunnelling through the barrier
which dominates the width calcu-
lations. The important feature
to note is the marked sensitivity
of the width to the resonance
energy, and hence to the value of
Eo which is employed in the radi-
cal equation (3).
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FIG. 5. Plot of phase shift
q(e) and sin g versus incident
kinetic energy e calculated for
the potentials in Fig. 3. The
solid curves are for case I using
two different values of Eo. The
experimental value of the reso-
nance energy is intermediate (see
arrow in upper plot) between the
calculated resonance positions
and the width, which is 0.12 and

0.155 eV for the two calculations,
is predicted to be about 0.13 eV
at the exact position. The dashed
curve is the corresponding calcu-
lation using the case-II potential
and predicts a width of 0.10 eV at
the lower energy and 0.13 eV
(not shown) at the higher Eo.
Greater confidence is given to
the case-I potential, and the
width at R = 2. 3 is estimated to
be 0.13+0.03 eV.
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local potential in the region between &= 2. 2 where
the resonance function is valid, and some unknown

distance where the asymptotic potential is valid,
we are convinced that the ultimate use of the res-
onance wave function should be as a basis function
in a full variational scattering calculation, "or in
a configuration-interaction calculation along the
lines taken by Altick for atoms. However, until
such time as correlation effects can be incorporat-
ed into the wave function it is felt that the present
approach is more accurate, since adjustments can
be made for the neglected correlation energy
which significantly affects the calculated width.

IV. CALCULATION OF RESONANCE WIDTHS

It is straightforward to integrate the radial
equation (3) and obtain the phase shift q(e) for a
d-wave electron in these local potentials. There
is a rapid variation of g with incident kinetic ener-
gy e in the vicinity of the "resonance energy"
e„,=ED, and the slope can be used to define a res-
onance width I":

For potential scattering, where the well cannot
support a true bound state, the phase shift is zero
at c = 0, and may come close to, but never reach

g in the vicinity of the shape resonance, .and then
gradually tails off to zero at very large energies.
This shape resonance behavior is seen in Fig. 4,
which shows thephase shifts and cross sections cal-
culated for the potentials plotted in Fig. 3. It is
somewhat different from the usual Pano or Fesh-
bach closed-channel resonance, which is a many-
body effect, where the phase shift must increase
by m, and (as it passes through m) yield a zero
cross section (a Pano-Beutler shape) in the vicini-
ty of the resonance for a single open channel.

The calculated widths are critically dependent on
the "resonance energy" Eo, since this determines
the thickness of the barrier through which the wave
function must penetrate, and it is for this reason
that correlation-energy corrections can play a
critical role in determining the width. This is in-
dicated in Fig. 5 where the calculated width is plot-
ted vs &„,=ED for a large variety of basis sets and
R values, and for different choices of Eo. The cir-
cles correspond to case-I potentials [matching Eq.
(I) to V(r) tra=3. 0] and the crosses to case-II po-
tentials [matching E|I. (I) to V(r) at the barrier].
Note the rapid increase in I with increasing reso-
nance energy. The correlation correction can
change F.o by 0.05 a. u. and lead to a factor of 2

change in the predicted width.
As shown by the dashed curves in Fig. 2, a

correlation correction of 0. 67 eV must be applied
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to our calculated values of Es=@„v (Ns) g» (N )
to bring the position of the N&, v= 0 vibrational
level into agreement with experiments. The
widths, calculated with these corrected energies,
are those given in Table I. The estimated errors
are somewhat arbitrary, and are as likely imposed
by uncertainties in the proper resonance energies
as any subtleties in the shape of the barrier.
Greatest confidence is given to case-I calcula-
tions, and case-II widths are used primarily to
judge the sensitivity of the widths to changes in the
potential barrier.

V. CONCLUSIONS

The conclusions of this study can be summarized
as follows:

(a) The molecular-orbital description of a shape
resonance exhibits the qualitative features predict-
ed by Bardsley et al. of tunnelling through a cen-
trifugal barrier and attachment to a penetrating
valence-type low- energy orbital.

(b) Resonance energies which are obtained are
in quantitative agreement with observations if
proper account is taken of correlation-energy
corrections to the HF energies.

(c) The potential-energy curve calculated for
N2 predicts a shift of 0. 20 a. u. in R, from N2

to N2 and a, +,= 1960 cm ' for N, .

TABI E I. Resonance widths and energies.

R (a.u. ) Width (eV) Eres ~res+ ~VN (R) —VN (Rgq)]

2.3 0.13+0.03 1.947 eV
2. 15 0.29 + 0.06 2.07
2.0 0.8 +0.3 3.07

(d) Inversion of the penetrating orbital to obtain
a local potential yields an invariant and probably
valid potential throughout the attractive region.
This potential properly includes exchange and po-
larization effects. However, it is difficult to make
a proper connection to the asymptotic polarization
potential, and a crude joining was made either in
the region of the centrifugal barrier, or at V(x)
=0.

(e) The width of shape resonances will be very
sensitive to correlation effects because of the crit-
ical role played by the exact location of the reso-
nance energy in determining the extent of tunnel-
ling. If the energy is scaled to the experimental
value the calculated width is of the order of 0. 13
eV at Nz (R,).

(f) The resonance width is a rapidly varying
function of R for N~, and increases from 0. 13 at
R=2. 3 to 0. 8 eV atR=2. 0.
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