²H. Margenau and M. Lewis, Rev. Mod. Phys. <u>31</u>, 569,(1959).

- ³G. M. Harris, Phys. Rev. <u>125</u>, 1131 (1962).
- ⁴C. R. Smith, Phys. Rev. <u>134</u>, A1235 (1964).

⁵H. M. Schey and J. L. Schwartz, Phys. Rev. <u>139</u>, B1428 (1965).

- ⁶C. A. Rouse, Phys. Rev. <u>159</u>, 41 (1967); <u>176</u>, 423 (E) (1968).
- ⁷J. L. Jackson and L. S. Klein, Phys. Rev. <u>177</u>, 352 (1969).

⁸L. D. Landau and E. M. Lifschitz, *Quantum Mechanics*, *Non-Relativistic Theory* (Pergamon, London, 1958), Sec. 16.

⁹L. D. Landau and E. M. Lifschitz, *Quantum Mechanics*, *Non-Relativistic Theory* (Pergamon, London, 1958), Sec. 19.

- 10 S. R. deGroot and D. A. ten Seldam, Physica <u>12</u>, 669 (1946).
- ¹¹C. A. Rouse, J. Math. Phys. <u>46</u>, 63 (1967).
- $^{12}\mathrm{R.}$ G. Sachs and M. Geoppert-Mayer, Phys. Rev. $\underline{53},$ 991 (1938).
- $^{13}L.$ Hulthén and K. V. Laurikainen, Rev. Mod. Phys. 23, 1 (1951). $^{14}C.$ Lovelace and D. Masson, Nuovo Cimento <u>26</u>, 472
- ¹⁴C. Lovelace and D. Masson, Nuovo Cimento <u>26</u>, 472 (1962).
- ¹⁵G. J. Iafrate and L. B. Mendelsohn, Phys. Rev. <u>182</u>, 244 (1969).
- ¹⁶C. A. Rouse, Phys. Rev. <u>163</u>, 62 (1967); <u>176</u>, 423 (E) (1968).
- 17 T. Nakayama and H. E. DeWitt, J. Quant. Spectr. Radiative Transfer $\underline{4}$, 623 (1964).

PHYSICAL REVIEW A

VOLUME 1, NUMBER 6

JUNE 1970

Spin-Optimized Self-Consistent-Field Function. II. Hyperfine Structure of Atomic Nitrogen

Uzi Kaldor

Department of Chemistry, Tel-Aviv University, Ramat-Aviv, Israel (Received 18 December 1969)

The spin-optimized self-consistent-field (SOSCF) method, based on optimizing the spin function in the whole (S, M_s) space simultaneously with spatial orbital optimization, is applied to the ⁴S ground state of the nitrogen atom. The maximally paired Hartree-Fock (MPHF) function, where both 1s and 2s electron pairs are associated with the singlet factor $\alpha\beta - \beta\alpha$, is also calculated, as are functions in which either the 1s or the 2s electrons are thus paired. The SOSCF energy is -54.42167 Hartree, compared with -54.40093 by the restricted Hartree-Fock (RHF) and -54.41722 by the MPHF methods. The net spin density at the nucleus, responsible for the hfs of nitrogen, is 0.1200 a.u., compared with 0.1853 a.u. by the spineextended Hartree-Fock method and the experimental value of 0.0972 a.u. (the RHF and MPHF methods give 0). The contributions of the 1s and 2s pairs, obtained from two separate calculations employing two-dimensional subspaces of the six-dimensional spin-function space, add very nearly to the full SOSCF results for the energy and spin density. The SOSCF orbitals are also described. Their most interesting feature is the nonexistence of radial nodes in any of them.

INTRODUCTION

The spin-optimized self-consistent-field (SOSCF) function described in a recent $paper^{1}$ is of the form

$$\Psi = \alpha \Xi \Theta \quad , \tag{1}$$

where $\boldsymbol{\Xi}$ is a product of one-electron spatial functions

$$\Xi = \chi_1(1)\chi_2(2)\cdots\chi_n(n) , \qquad (2)$$

and Θ is a linear combination of all independent spin functions θ_k spanning the space of appropriate S and M_s

$$\Theta = \sum_{k} t_{k} \theta_{k} \quad . \tag{3}$$

The orbitals χ_i and the coefficients t_k are opti-

mized to obtain the SOSCF function. Similar methods have been recently described by other authors.² The SOGI function of Ladner and Goddard^{2a} is equivalent to our SOSCF function, though obtained in a different way. The BRNO method^{2b} is somewhat inferior, not involving reoptimization of the spatial orbitals for the best spin function.

In paper I,¹ we investigated three- and fourelectron atoms. These systems have only two independent spin functions [k=1, 2 in Eq. (3)], and the optimal Θ is found to be very close to θ_1 , the maximally paired Hartree-Fock function (MP HF, equivalent to Goddard's G1³), with a singlet factor of $\alpha\beta - \beta\alpha$ corresponding to the two 1s electrons (and to the 2s electrons in Be). The contribution of the other function t_2 is two orders of magnitude lower than t_1 . The small admixture of θ_2 , while hardly affecting the total energy, greatly improves the description of the wave function at the vicinity of the atomic nucleus, as shown by spin-density results. Thus, while the spin density at the lithium nucleus in the ²S ground state as given by the MPHF function is 9% in error, the SOSCF result is within 2% of the experimental value. Even more significant improvement is achieved for Li (²P). The deviation from experiment, which is 100% for the MPHF function, goes down to only 7% when the SOSCF method is used.¹

While these results are encouraging, it is known that several methods utilizing independently optimized one-electron orbitals, one orbital per electron, such as the unrestricted Hartree-Fock⁴ (UHF) and spin-extended Hartree-Fock⁵ (SEHF, equivalent to Goddard's GF^3), reproduce closely the experimental spin density at the lithium nucleus, but fail rather miserably for other first-row atoms, notably nitrogen. 4,6,7 Nitrogen is a good test case also because the electron spin density at its nucleus in the ⁴S ground state is directly obtainable from hfs data and is therefore accurately known, which is not the case for the lighter atoms boron and carbon.⁸ We therefore present in this paper an investigation of the ground state of atomic nitrogen by the SOSCF method.

SOSCF FUNCTION OF ATOMIC NITROGEN

The branching diagrams method of Kotani et al.⁹ shows that seven electrons can form 14 independent quartet spin functions. Not all these functions survive, however, the restrictions imposed on the spatial orbitals. The spatial orbitals are chosen to be eigenfunctions of the oneelectron momentum operators L^2 and L_z , and the p orbitals are equivalent (i.e., connected by the angular momentum raising and lowering operators L^+ and L^-). It is this last-mentioned requirement in particular (*l*-equivalence restriction) that eliminates eight of the possible 14 spin functions (see Appendix). It should be noted that the spin-equivalence restriction is not applied, leading to four independent s orbitals in Ξ of Eq. (2). Lifting the l-equivalent restriction would yield an over-all function not representing a pure S state, or else necessitate the application of angular momentum projection operators, greatly complicating the calculations and taking us beyond the scope of the present SOSCF method.

The construction of the six allowed spin functions is described in the Appendix, where the resulting functions are given explicitly [Eq. (A4)]. Of these functions, θ_1 is referred to as "maximally paired," as it has factors of $\alpha\beta$ - $\beta\alpha$ corresponding to both the 1s and 2s electron pairs. The same factor is connected with the 1s pair in θ_4 , and functions of the form (1) which have only t_1 and t_4 [Eq. (3)] different from zero will therefore be called "1s-paired." Similarly, a "2s-paired" function will have all $t_k = 0$ except t_1 and t_3 . If Θ is optimized in the whole six-function space, we obtain the SOSCF function. It should be emphasized that the spatial orbitals χ_i are separately optimized for each of these functions. The method of obtaining the optimal Θ and χ_i , using a generalized form of Brillouin's theorem, has been described in I.¹

RESULTS

The basis sets used to expand the atomic orbitals are listed in Table I. They fall into two classes. Type-I sets are those satisfying (approximately) the cusp condition¹⁰ for the s orbitals; other sets are denoted type II. Sets 1 and 2 are taken from Bagus and Gilbert, ¹¹ set 3 from Clementi, Roothaan, and Yoshimine, ¹² and sets 4-10 are those given by Goddard. ⁷ All these sets were optimized for the RHF function. The additional sets 1a and 2a were obtained from sets 1 and 2, respectively, by using the SEHF energy as a criterion for optimization. ⁶ Set 10a was arbitrarily chosen to test the sensitivity of the results to small variations in the basis functions (*vide infra*).

The MPHF and SOSCF energies and spin densities are presented in Table II. As in the SEHF case, ^{6,7} we find that the total energy is not particularly sensitive to the s-orbital cusps and varies fairly regularly with the size of the basis sets. The same is not true for the spin density at the nucleus. Type-II basis sets yield erratic values (note the big differences between sets 1 and 1a or 2 and 2a) which are of the wrong sign, whereas results obtained with type-I sets seem to have converged to two decimal places (compare sets 7-10, also 10 with 10a). A similar behavior was observed by Goddard in his GF calculations.⁷ The final SOSCF result of 0.12 a.u.¹³ is 23% higher than the experimental value of 0.0972 a.u.¹⁴ Our method is compared in Table III with results calculated by other workers. We see that ours is the best value given by a method associating only one spin orbital with each electron. Better agreement with experiment has so far been obtained only by abandoning this conceptually pleasing one-to-one correspondence between electrons and orbitals.

The results reported above involved optimizing the spin part Θ in the whole six-dimensional function space (see Appendix). The dimensionality of this space increases rapidly with the number

1587

UZI KALDOR

 TABLE I. Basis sets for nitrogen. (A) Not satisfying cusp condition (type II). (B) Approximately satisfying cusp condition for s orbitals (type I).

(A)	
1	1s - 10.507, 6.346 ; $3s - 3.715$; $2s - 1.697$; $2p - 5.573$, 2.555 , 1.352 .
1a	1s - 10.5064, 6.3463 ; $3s - 3.6667$; $2s - 1.6545$; $2p - 5.5743$, 2.5409 , 1.3488 .
2	1s - 10.586, 6.037 ; $3s - 7.334$; $2s - 2.539$, 1.588 ; $2p - 7.677$, 3.270 , 1.890 , 1.222 .
2a	1s - 10.5873, 6.0403 ; $3s - 7.3232$; $2s - 2.4419$, 1.4838 ; $2p - 7.6785$, 3.2676 , 1.8946 , 1.210 .
3	1s - 6.4595, 10.8389; $2s - 1.4699$, 1.9161, 3.156, 5.0338; $2p - 1.1937$, 1.7124, 3.0012, 7.101.
(B)	
4	1s - 6.98; 3s - 7.45, 3.690, 2.012; 2p - 1.4948, 3.236.
5	$1s - 7.01; \ 3s - 8.06, \ 5.58, \ 3.34, \ 1.921; \ 2p - 1.495, \ 3.236.$
6	1s - 7.011; 3s - 8.07, 5.53, 3.326, 1.920; 2p - 1.3527, 2.56, 5.6.
7	1s - 7.015; 3s - 8.1, 5.48, 3.302, 1.938, 1.0; 2p - 1.353, 2.56, 5.6.
8	1s - 7.0; 3s - 8.1, 5.48, 3.327, 1.935, 0.93; 2p - 7.677, 3.270, 1.890, 1.222.
9	1s - 7.02; 3s - 8.2, 5.49, 3.438, 2.054, 1.03; 4s - 1.13; 2p - 1.353, 2.56, 5.6.
10	1s - 7.02; 3s - 8.2, 5.49, 3.438, 2.054, 1.03; 4s - 1.13; 2p - 7.677, 3.270, 1.890, 1.222.
10a	1s - 7.00: 3s - 8.1. 5.4. 3.5. 2.0. 1.0: 4s - 1.2: 20 - 7.7. 3.3. 1.8. 1.2.

of electrons, and it will therefore be necessary to work with a smaller subspace if we hope to tackle larger systems. We carried out several calculations in which not all of the spin functions of Eq. (A4) were allowed to contribute to Θ , in order to investigate the feasibility of eliminating them from future work. The spin functions optimized under these limitations are shown in Table IV together with the SOSCF spin parts, and the energies and spin densities are collected in Table V. We find that the energy of the 1*s*-paired function is very close (within $1-2 \times 10^{-4}$ hartree) to the full SOSCF result, meaning that practically all the energy reduction with respect to the MPHF value is due to unpairing the 2s shell. Moreover, most of the difference may be obtained by separately estimating the effect of unpairing the 1sshell, using the 2s-paired function. The spindensity results are even more encouraging. Here the contributions of the 1s and 2s electrons, as given by the 2s- and 1s-paired functions, respectively, are much larger in absolute value than the SOSCF value and of opposite signs, yet their sum is very close to the SOSCF result (the difference is 2-4%, except for set 4 which is very small and gives poor results). We may therefore be able to carry out two two-dimensional calculations instead of a six-dimensional one. This result,

				Energy ^a			Spin	density at 1	nucleus ^a
Basis	s set ^b	RHF	UHF	SEHF	MPHF	SOSCF	UHF	SEHF	SOSCF
1	(4/3)	- 54.40080	- 54.40308	- 54.40439	- 54.41617	- 54.41950	0.0263	0.0118	-0.0498
1a				- 54.40455	- 54.41608	- 54.41967		0.0381	-0.0233
2	(5/4)	- 54.400 93	- 54.40385		- 54.41689	- 54.42102	0.3187		-0.0666
2a				- 54.40584	- 54.41667	- 54.421 27		0.3208	-0.0438
3	(6/4)	- 54.400 91	- 54.40451		- 54.41684	- 54.421 26	0.2127		-0.0341
4	(4/2)		- 54.40084		- 54.41238	- 54.41585	-0.0313		-0.0852
5	(5/2)		- 54.40174		- 54.41479	- 54.41881	0,1611		0.0663
6	(5/3)		- 54.40392	- 54.40562	- 54.41685	- 54.42103	0.1751	0.1461	0.0847
7	(6/3)		-54.40437	- 54. 406 21	- 54.41693	- 54.42135	0.1922	0.1629	0.1135
8	(6/4)		- 54.40444		- 54.41697	- 54. 421 38	0.1940		0.1149
9	(7/3)		- 54.40446		- 54.41715	- 54.421 59	0.1835		0.1177
10	(7/4)		- 54.40456	- 54.40642	-54.41722	- 54. 421 67	0.1853	0.1579	0.1200
10a						- 54. 421 29			0.1165

TABLE II. Energies and spin densities with different basis sets (a.u.).

^aThe RHF results are from Refs. 11 and 12, the UHF from Ref. 7, and the SEHF values from Refs. 6 and 7.

b(n/m) denotes a set consisting of n s orbitals and m p orbitals.

1588

	Energy	Spin density at nucleus
Methods involving one	spin orbital p	er electron
RHF (Ref. 11) UHF (Ref. 7) SEHF (Refs. 6 and 7) MPHF SOSCF	-54.40093-54.40453-54.40642-54.41722-54.42129	0 0.1853 0.1579 0 0.120
Other Methods		
CI (Ref. 8) CI ^a Bethe-Goldstone ^b Many-body ^c	-54.45176 -54.45663	0.0730 0.0722 0.101 0.098
Experiment	-54.6142^{d}	0.0972 (Ref. 14)

TABLE III. Comparison of different methods.

^aH. F. Schaefer, R. A. Klemm, and F. E. Harris, Phys. Rev. <u>181</u>, 137 (1969).

^bR. K. Nesbet, Colloq. Intern. Centre Natl. Rech. Sci. (Paris) <u>164</u>, 87 (1967).

^cN. C. Dutta, C. Matsubara, R. T. Pu, and T. P. Das, Phys. Rev. <u>177</u>, 33 (1969).

 $^{\rm d}$ C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. <u>127</u>, 830 (1962). The nonrelativistic energy is -54.5892 Hartree.

should it be confirmed in other cases, will greatly facilitate investigations of larger systems.

SPATIAL ORBITALS

Each spatial orbital in the SOSCF function is varied independently, thus "splitting" the doubly occupied RHF orbitals. The same is true for the SEHF function, ^{6,7} but the splitting produced in that case is very small whereas it is considerable in the functions described in this work (see Tables VI and VII). This does not apply to the 2p orbitals, which are not split, and are virtually identical with their RHF counterparts. The SOSCF orbitals are shown in Fig. 1. The 1s orbitals are of the same general shape as the corresponding RHF function. The splitting at the origin is somewhat larger for MPHF orbitals than for SOSCF ones, and considerably larger with type-II than with type-I basis sets (Table VII); the total overlap of corresponding α and β orbitals does not however change much with basis sets or spin functions (Table VI).

The greatest departure from RHF character is offered by the 2s orbitals. The over-all RHF

TABLE IV. Coefficients of spin functions for nitrogen.

	SOSCF						1 <i>s</i> p	aired	2 <i>s</i> p	aired
Basis set	θ_1	θ_2	θ_3	θ_4	θ_{5}	θ_{6}	θ_1	θ_4	θ_1	θ_3
3	0.5551	-0.0124	0.0054	-0.1308	-0.0010	-0.0008				
4	0.5638	-0.0190	0.0082	-0.0993	-0.0051	-0.0009	0.5684	-0.0999	0.5800	0.0078
5	0.5561	-0.0153	0.0060	-0.1139	-0.0018	-0.0008	0.5595	-0.1146	0.5734	0.0059
8	0.5572	-0.0144	0.0059	-0.1277	-0.0013	-0.0009	0.5601	-0.1286	0.5734	0.0058
10	0.5569	-0.0139	0.0058	-0.1312	-0.0011	-0.0009	0.5595	-0.1320	0.5728	0.0057

TABLE V. Results with paired functions.

Basis set	En	ergy relative	e to MPHF val		Spin density at nucleus				
-	1s paired	2s paired	sum	SOSCF	1s paired	2s paired	sum	SOSCF	
4	-0.00328	-0.00013	-0.00341	-0.00347	0.4966	-0.5689	-0.0723	-0.0852	
5	-0.00388	-0.00009	-0.00397	-0.00402	0.5999	-0.5352	0.0647	0.0663	
8	-0.00427	-0.00009	-0.00436	-0.00445	0.6409	-0.5302	0.1107	0.1149	
10	-0.00432	-0.00008	-0.00440	-0.00445	0.6467	-0.5302	0.1165	0.1200	

TABLE VI. Orbital overlaps.^a

		(1s 1s')	(2s 2s')	(1 <i>s</i> 2 <i>s</i>)	(1 <i>s</i> ' 2 <i>s</i> ')	(1 <i>s</i> 2 <i>s</i> ')	(1 <i>s</i> ' 2 <i>s</i>)
MPHF	Set 3	0.9728	0.9346	0.3036	0.2462	0.1759	0.4015
	Set 10	0.9683	0.9307	0.3039	0.2484	0.1540	0.4253
SOSCF	Set 3	0.9745	0.9336	0.2392	0.2220	0.1830	0.3035
	Set 10	0.9724	0.9335	0.2414	0.2267	0.1838	0.3105
1s paired	Set 10	0.9732	0.9351	0.2497	0.2393	0.2117	0.3044
2s paired	Set 10	0.9697	0.9344	0.2978	0.2523	0.1713	0.4072

^aFor RHF $1s \equiv 1s'$, $2s \equiv 2s'$. For SEHF (Ref. 6), $(1s \mid 1s') = 1.0000$, $(2s \mid 2s') = 0.9934$.

		1s	1s'	2s	2 <i>s'</i>
MPHF	Set 3 Set 10	12.2276 11.5474	7.4018 8.0737	$0.7557 \\ 0.9428$	0.2457 0.1731
SOSCF	Set 3 Set 10	12.2709 11.5759	$7.5462 \\ 8.2277$	$0.4696 \\ 0.5339$	$0.5548 \\ 0.5834$
2s paired Set 10		11.5306	8.0899	0.8077	0.2808
1s paire	ed Set 10	11.5657	8.2432	0.5675	0.8071
RHF ^a Set 3SEHF ^c Set 2a		9.9 10.0163	100 10.0480	- 2.1 - 1.6291 ^b	837 ^b -1.4036 ^b

TABLE VII. Orbital densities at nucleus.

^aReference 12.

^bSign is chosen so that the asymptotic behavior of all 2s orbitals will be similar (see Fig. 1).

^cReference 6.

function is invariant under any linear transformation among its orbitals, which may therefore be made orthogonal. Similarly, the SEHF orbitals associated with the same spin factor may be chosen orthogonal to one another. The orthogonality introduces radial nodes into all atomic orbitals but the lowest one of each l value. Such transformations are not allowed in the SOSCF (and MPHF) case, and the 2s orbitals need not, and indeed do not, have nodes (see Fig. 1). A nodeless 2s was first encountered in Goddard's G1¹⁵ (equivalent to our MPHF) calculations for atomic

FIG. 1. SOSCF orbitals (basis set 10). Dashed lines are RHF orbitals, shown for comparison. The RHF 2p orbital falls on the SOSCF one.

FIG. 2. 2s orbitals for different spin functions (basis set 10). Solid lines are 2s and dashed lines are 2s' orbitals. Spin functions (see Table IV) are (a) SOSCF, (b) MPHF, (c) paired 1s, and (d) paired 2s.

lithium, ³ and more recently in SOSCF functions for the same atom.^{1,2} This is probably the most striking feature of SOSCF orbitals. It is of interest to note that the details of the 2s orbitals near the origin depend strongly on the spin function used (Fig. 2). The dependence on the type of basis set is smaller, but still significant (Fig. 3). All these differences die rapidly away from the origin.

CONCLUSION

The SOSCF method yields considerable energy reduction with respect to the RHF value, while not abandoning the concept of one orbital per electron. More important, it gives a much better agreement with experiment for the rather sensitive spin density at the nitrogen nucleus than other methods based on this concept. It may be possible to forego the use of the whole spin function space in favor of separate calculations with appropriately chosen subspaces, followed by summation of the individual contributions. Other systems are now being investigated in order to check the generality of these results.

FIG. 3. Effect of basis set type on 2s orbitals. Shown are MPHF 2s orbitals with basis sets 10 $(2s_{II})$ and 3 $(2s_{I})$.

APPENDIX: SPIN FUNCTIONS FOR $N(^4S)$

The spin functions for the ${}^{4}S$ ground state of atomic nitrogen may be constructed in various ways. We choose to do it by first writing down all possible states of four nonequivalent *s* electrons, and then combining them with the functions of three equivalent *p* electrons.

Four nonequivalent s electrons give rise to one ${}^{5}S$, three ${}^{3}S$, and two ${}^{1}S$ states. The corresponding spin functions (with $M_{S} = S$) are 16

$${}^{5}S_{2}(4) \quad \alpha \alpha \alpha \alpha ;$$

$${}^{3}S_{1}(4) \quad (\alpha \alpha \alpha \beta - \alpha \alpha \beta \alpha) / \sqrt{2} ,$$

$$(\alpha \beta \alpha \alpha - \beta \alpha \alpha \alpha) / \sqrt{2} ,$$

$$\frac{1}{2} (\alpha \alpha \alpha \beta + \alpha \alpha \beta \alpha - \alpha \beta \alpha \alpha - \beta \alpha \alpha \alpha) ;$$

$${}^{1}S_{0}(4) \quad \frac{1}{2} (\alpha \beta \alpha \beta - \beta \alpha \alpha \beta - \alpha \beta \beta \alpha + \beta \alpha \beta \alpha) ,$$
(A1)

 $(2\alpha\alpha\beta\beta + 2\beta\beta\alpha\alpha - \alpha\beta\alpha\beta - \beta\alpha\alpha\beta) - \alpha\beta\beta\alpha - \beta\alpha\beta\alpha) / \sqrt{12};$

where in ${}^{2S+1}S_M(n)$ the superscript indicates the spin multiplicity, the subscript is M_S and n is the number of electrons. Of the three terms

that may be built of three equivalent p electrons, namely ${}^{4}S$, ${}^{2}P$, and ${}^{2}D$, only the first, the spin part of which is

$$^{4}S_{3/2}(3) \quad \alpha \alpha \alpha,$$
 (A2)

can combine with the four-electron states of (A1) to yield ${}^{4}S$ functions for the whole atom. Six such functions may be obtained, one for each entry in (A1), by the relations

$${}^{4}S_{3/2}(7) = {}^{1}S_{0}(4) \times {}^{4}S_{3/2}(3) ,$$

$${}^{4}S_{3/2}(7) = \sum_{m=0, 1} {}^{3}S_{m}(4) \times {}^{4}S_{3/2-m}(3) \left(1\frac{3}{2}m\frac{3}{2} - m \left| 1\frac{3}{2}\frac{3}{2}\frac{3}{2} \right) ,$$
(A3)

$${}^{4}S_{3/2}(7) = \sum_{m=0, 1, 2} {}^{5}S_{m}(4) \times {}^{4}S_{3/2 - m}(3) \left(2\frac{3}{2}m\frac{3}{2} - m \left|2\frac{33}{222}\right|\right)$$

where $(j_1 j_2 m_1 m_2 | j_1 j_2 jm)$ are the usual Clebsch-Gordan coefficients. The resulting spin functions are as follows:

$$\theta_1 = \frac{1}{2} (\alpha \beta \alpha \beta - \beta \alpha \alpha \beta - \alpha \beta \beta \alpha + \beta \alpha \beta \alpha) \alpha \alpha \alpha$$

$$\begin{aligned} \theta_2 &= (2\alpha\alpha\beta\beta + 2\beta\beta\alpha\alpha - \alpha\beta\alpha\beta - \beta\alpha\alpha\beta \\ &- \alpha\beta\beta\alpha - \beta\alpha\beta\alpha)\alpha\alpha\alpha/\sqrt{12} \end{aligned}$$

 $\theta_{3} = \left[2(\alpha \alpha \alpha \beta - \alpha \alpha \beta \alpha)(\alpha \alpha \beta + \alpha \beta \alpha + \beta \alpha \alpha) \right]$

 $-3(\alpha\beta\alpha\beta-\alpha\beta\beta\alpha+\beta\alpha\alpha\beta-\beta\alpha\beta\alpha)\alpha\alpha\alpha]/\sqrt{60},$

 $\theta_{4} = [2(\alpha\beta\alpha\alpha - \beta\alpha\alpha\alpha)(\alpha\alpha\beta + \alpha\beta\alpha + \beta\alpha\alpha) \quad (A4) \\ -3(\alpha\beta\alpha\beta + \alpha\beta\beta\alpha - \beta\alpha\alpha\beta - \beta\alpha\beta\alpha)\alpha\alpha\alpha]/\sqrt{60}$

$$\theta_{5} = \left[(\alpha \alpha \alpha \beta + \alpha \alpha \beta \alpha - \alpha \beta \alpha \alpha - \beta \alpha \alpha \alpha) (\alpha \alpha \beta + \alpha \beta \alpha + \beta \alpha \alpha) \right]$$

$$-3(\alpha\alpha\beta\beta-\beta\beta\alpha\alpha)\alpha\alpha\alpha]/\sqrt{30}$$
,

$$\theta_{6} = \left[2\alpha\alpha\alpha\alpha(\alpha\beta\beta + \beta\alpha\beta + \beta\beta\alpha) \right]$$

 $-(\alpha\alpha\alpha\beta+\alpha\alpha\beta\alpha+\alpha\beta\alpha\alpha+\beta\alpha\alpha\alpha)$

 $\times (\alpha \alpha \beta + \alpha \beta \alpha + \beta \alpha \alpha) + (\alpha \alpha \beta \beta + \alpha \beta \alpha \beta + \beta \alpha \alpha \beta + \alpha \beta \beta \alpha$

$$-\beta\alpha\beta\alpha+\beta\beta\alpha\alpha)\alpha\alpha\alpha]/\sqrt{30}$$
.

The first two electrons in θ_4 are paired to a singlet by the factor $\alpha(1)\beta(2)-\beta(1)\alpha(2)$. The same holds for electrons 3 and 4 in θ_3 , while θ_1 has two such pairs and is, therefore, the "maximally paired" function.

The appearance of only six of the 14 seven-electron quartet spin functions can be traced to the nonexistence of a ${}^{2}S$ state for the p^{3} configuration. This state does exist (with two independent spin functions) if the p electrons are nonequivalent, and can then combine with the ${}^{5}S$ and ${}^{3}S$ states of the four s electrons. As there are two ${}^{2}S(3)$ functions and four ${}^{5}S(4)$ and ${}^{3}S(4)$ ones, eight additional ${}^{4}S(7)$ functions would then appear, bringing the total to 14.

¹U. Kaldor and F. E. Harris, Phys. Rev. 183, 1 (1969), hereafter called I.

²(a) R. C. Ladner and W. A. Goddard, J. Chem. Phys. 51, 1073 (1969). (b) S. Hameed, S. S. Hui, J. I. Musher, and J. M. Schulman, *ibid.* 51, 502

(1969).

³W. A. Goddard, Phys. Rev. 157, 81, 93 (1967). ⁴R. K. Nesbet in Quantum Theory of Atoms, Molecules and the Solid State, edited by P. O. Löwdin

(Academic, New York, 1966), p. 157.

⁵U. Kaldor, J. Chem. Phys. <u>48</u>, 835 (1968).

⁶U. Kaldor, Phys. Rev. <u>176</u>, 19 (1968).

⁷W. A. Goddard, Phys. Rev. 182, 48 (1969).

⁸H. F. Schaefer, R. A. Klemm, and F. E. Harris, Phys. Rev. <u>176</u>, 49 (1968).

⁹M. Kotani, A. Amemiya, E. Ishiguro, and T.

Kimura, Table of Molecular Integrals (Maruzen, Tokyo, 1955).

¹⁰C. C. J. Roothaan and P. S. Kelly, Phys. Rev. $\frac{131}{11}$, 1177 (1963). ¹¹P. S. Bagus and T. L. Gilbert, quoted in A. D.

McLean and M. Yoshimine, IBM J. Res. Develop.

Suppl. 12, 206 (1968).

¹²E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).

¹³The atomic unit for spin density is one electron spin $(\frac{1}{2}\hbar)$ per bohr³.

¹⁴L. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev. <u>116</u>, 87 (1959). ¹⁵W. A. Goddard, Phys. Rev. <u>169</u>, 120 (1968).

¹⁶Electron indices are suppressed, so that a term like $\alpha\alpha\beta\alpha$ stands for $\alpha(1)\alpha(2)\beta(3)\alpha(4)$.

PHYSICAL REVIEW A

VOLUME 1, NUMBER 6

JUNE 1970

Molecular-Orbital Calculation of the Shape Resonance in N_2^{-+}

M. Krauss and F. H. Mies

National Bureau of Standards, Washington, D.C. 20234 (Received 12 December 1969)

The 2-eV shape resonance in N_2 -electron scattering is calculated by a self-consistentfield energy-variational procedure. The resonance state corresponds to the attachment of an incident d-wave electron to the $1\pi_{g}$ valence orbital of the metastable ${}^{2}\Pi_{g}$ state of N₂. The resonant behavior is due to the tunnelling of the electron through a $2(2+1)/r^2$ centrifugal barrier and temporary trapping in an attractive field. This tunnelling is reflected in the bimodal behavior of the calculated $1\pi_g$ orbitals; the inner portion of the orbital defines the resonance state. The "potential" curve for N_2 is calculated in the Hartree-Fock approximation; a resonance threshold of 2.5 eV is predicted, with $R_e = 2.27$ a.u. and $\omega_e \approx 2000 \,\mathrm{cm^{-1}}$. Expected correlationenergy corrections would improve the agreement with experiment. A local potential for electron scattering is generated by inverting the $1\pi_g$ orbital, and resonance widths are calculated. The widths vary from 0.13 eV at the equilibrium distance of N_2 to 0.8 eV at the N_2 equilibrium distance.

I. INTRODUCTION

The resonance structure in electron scattering from N_2 is due to "attachment" of the *d* wave of the incident electron to the first unoccupied π_g valence orbital. In terms of a "local" potential, the incident electron penetrates or tunnels through a barrier that can be represented asymptotically as

$$V_{r \to \infty} \sim -\alpha_0 / 2r^4 + 2(2+1)/r^2 \quad . \tag{1}$$

At short range, of the order of the size of the molecule (~ 1.5 a.u.), the potential is attractive and, for $E \sim 2 \,\mathrm{eV}$, sufficient to support a metastable "bound" state. This picture was developed by Bardsley, Mandl, and Wood. ¹ A ${}^{2}\Pi_{g}$ configuration for the N_2 had been proposed earlier by Gilmore² on the basis of molecular-orbital theory and an estimate of a real N_2 potential energy curve was made. Chen³ has deduced a similar curve semiempirically and the angular dependence of the scat-

tered electron⁴ is consistent with the ${}^{2}\Pi_{g}$ resonant state of N_2 . Although the qualitative structure of the resonance state now appears to be understood, a priori calculations based on the molecule itself are lacking.

In this paper, we calculate the resonance state of N₂ from molecular-orbital theory and use this to develop a local potential for electron scattering. The scattering wave function is assumed to be expanded in terms of a tight resonance state with decaying boundary conditions and appropriate phaseshifted continuum functions. Since we are concerned only about resonant scattering, where the electron penetrates into a well of the size of the molecule, we assume that a knowledge of the resonance function alone can be used to determine the "local" potential that supports the resonance state. This potential includes both exchange effects and the electrostatic polarization of the target mole-