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The spin-optimized self-consistent-field (SOSCF) method, based on optimizing the spin
function in the whole (S, M) space simultaneously with spatial orbital optimization, is applied
to the %S ground state of the nitrogen atom. The maximally paired Hartree~Fock (MPHF)
function, where both 1s and 2s electron pairs are associated with the singlet factor aB - Sa,
is also calculated, as are functions in which either the 1s or the 2s electrons are thus paired.
The SOSCF energy is — 54.421 67 Hartree, compared with —54.400 93 by the restricted Har-
tree-Fock (RHF) and —54.417 22 by the MPHF methods. The net spin density at the nucleus,
responsible for the hfs of nitrogen, is 0.1200 a.u., compared with 0,1853 a.u. by the spin-
extended Hartree-Fock method and the experimental value of 0.0972 a.u. (the RHF and MPHF
methods give 0). The contributions of the 1s and 2s pairs, obtained from two separate calcu-
lations employing two-dimensional subspaces of the six-dimensional spin-function space, add
very nearly to the full SOSCF results for the energy and spin density. The SOSCF orbitals
are also described. Their most interesting feature is the nonexistence of radial nodes in
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any of them.

INTRODUCTION

The spin-optimized self-consistent-field (SOSCF)
function described in a recent paper! is of the form

T=QZ0 , (1)

where = is a product of one-electron spatial func-
tions

== X1(1)X 2(2)"'Xn (n) ’ (2)

and ©is a linear combination of all independent
spin functions 9, spanning the space of appropri-
ate S and M,

O =70 t,0, . (3)

The orbitals x; and the coefficients ¢, are opti-

mized to obtain the SOSCF function. Similar
methods have been recently described by other
authors. 2 The SOGI function of Ladner and God-
dard® is equivalent to our SOSCF function, though
obtained in a different way. The BRNO method?
is somewhat inferior, not involving reoptimization
of the spatial orbitals for the best spin function.

In paper I! we investigated three- and four-
electron atoms. These systems have only two
independent spin functions [k=1, 2 in Eq. (3)],
and the optimal © is found to be very close to 6,
the maximally paired Hartree-Fock function (MP
HF, equivalent to Goddard’s G1%), with a singlet
factor of a@p— Ba corresponding to the two 1s
electrons (and to the 2s electrons in Be). The
contribution of the other function ¢, is two orders
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of magnitude lower than {;. The small admixture
of 6,, while hardly affecting the total energy,
greatly improves the description of the wave func-
tion at the vicinity of the atomic nucleus, as shown
by spin-density results. Thus, while the spin den-
sity at the lithium nucleus in the 25 ground state
as given by the MPHF function is 9% in error, the
SOSCF result is within 2% of the experimental
value. Even more significant improvement is
achieved for Li (2P). The deviation from experi-
ment, which is 100% for the MPHF function, goes
down to only 7% when the SOSCF method is used. ?

While these results are encouraging, it is
known that several methods utilizing independent-
ly optimized one-electron orbitals, one orbital
per electron, such as the unrestricted Hartree-
Fock* (UHF) and spin-extended Hartree-Fock®
(SEHF, equivalent to Goddard’s GF®), reproduce
closely the experimental spin density at the lith-
ium nucleus, but fail rather miserably for other
first-row atoms, notably nitrogen. %7 Nitrogen
is a good test case also because the electron spin
density at its nucleus in the %S ground state is
directly obtainable from hfs data and is therefore
accurately known, which is not the case for the
lighter atoms boron and carbon.® We therefore
present in this paper an investigation of the
ground state of atomic nitrogen by the SOSCF
method.

SOSCF FUNCTION OF ATOMIC NITROGEN

The branching diagrams method of Kotani et
al.® shows that seven electrons can form 14 in-
dependent quartet spin functions. Not all these
functions survive, however, the restrictions im-
posed on the spatial orbitals. The spatial orbit-
als are chosen to be eigenfunctions of the one-
electron momentum operators L% and L, , and
the p orbitals are equivalent (i.e., connected
by the angular momentum raising and lowering
operators L*and L-). It is this last-mentioned
requirement in particular (I-equivalence restric-
tion) that eliminates eight of the possible 14 spin
functions (see Appendix). Tt should be noted that
the spin-equivalence restriction is not applied,
leading to four independent s orbitals in = of
Eq. (2). Lifting the I-equivalent restriction
would yield an over-all function not representing
a pure S state, or else necessitate the applica-
tion of angular momentum projection operators,
greatly complicating the calculations and taking
us beyond the scope of the present SOSCF method.

The construction of the six allowed spin func-
tions is described in the Appendix, where the
resulting functions are given explicitly [Eq. (A4))].
Of these functions, 6, is referred to as “ maxi-
mally paired, ” as it has factors of af-Ba corre-
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sponding to both the 1s and 2s electron pairs. The
same factor is connected with the 1s pair in 6,,
and functions of the form (1) which have only #,
and £, [Eq. (3)] different from zero will therefore
be called “1s-paired.” Similarly, a “2s-paired”
function will have all {,=0 except ¢, and ;. I

O is optimized in the whole six-function space,

we obtain the SOSCF function. It should be em-
phasized that the spatial orbitals x; are separate-
ly optimized for each of these functions. The
method of obtaining the optimal © and y;, using a
generalized form of Brillouin’ s theorem, has
been described in I.1

RESULTS

The basis sets used to expand the atomic or-
bitals are listed in Table I. They fall into two
classes. Type-I sets are those satisfying (ap-
proximately) the cusp condition! for the s orbit-
als; other sets are denoted type II. Sets 1 and 2
are taken from Bagus and Gilbert, !! set 3 from
Clementi, Roothaan, and Yoshimine, !? and sets
4-10 are those given by Goddard.” All these sets
were optimized for the RHF function. The addi-
tional sets 1a and 2a were obtained from sets 1
and 2, respectively, by using the SEHF energy as
a criterion for optimization.® Set 10a was arbi-
trarily chosen to test the sensitivity of the results
to small variations in the basis functions (vide
infra).

The MPHF and SOSCF energies and spin den-
sities are presented in Table II. As in the SEHF
case, " we find that the total energy is not par-
ticularly sensitive to the s-orbital cusps and
varies fairly regularly with the size of the basis
sets. The same is not true for the spin density
at the nucleus. Type-II basis sets yield erratic
values (note the big differences between sets 1
and la or 2 and 2a) which are of the wrong sign,
whereas results obtained with type-I sets seem
to have converged to two decimal places (compare
sets 7-10, also 10 with 10a). A similar behavior
was observed by Goddard in his GF calculations.”
The final SOSCF result of 0.12 a.u.!® is 23% high-
er than the experimental value of 0,0972 a.u.'
Our method is compared in Table III with results
calculated by other workers. We see that ours
is the best value given by a method associating
only one spin orbital with each electron. Better
agreement with experiment has so far been ob-
tained only by abandoning this conceptually pleas-
ing one-to-one correspondence between electrons
and orbitals.

The results reported above involved optimizing
the spin part © in the whole six-dimensional func-
tion space (see Appendix). The dimensionality
of this space increases rapidly with the number



1588 UZI KALDOR

(L

TABLE I. Basis sets for nitrogen. (A) Not satisfying cusp condition (type II). (B) Approximately satisfying cusp
condition for s orbitals (type I).

(a)

1 1s-10.507, 6.346; 3s—3.715; 2s—1.697; 2p—5.573, 2.555, 1.352.

la 1s-10.5064, 6.3463; 3s—3.6667; 2s— 1.6545; 2p—5.5743, 2.5409, 1.3488.

2 1s-10.586, 6.037; 3s—17.334; 2s—2.539, 1.588; 2p—"7.677, 3.270, 1.890, 1.222.

2a 1s—10.5873, 6.0403; 3s—7.3232; 2s—2.4419, 1.4838; 2p—7.6785, 3.2676, 1.8946, 1.210.

1s—6.4595, 10.8389; 2s—1.4699, 1.9161, 3.156, 5.0338; 2p—1.1937, 1.7124, 3.0012, 7.101.

3
(B)

4  1s—6.98; 3s—17.45, 3.690, 2.012; 2p—1.4948, 3.236.

5 1s—7.01; 3s—8.06, 5.58, 3.34, 1.921; 2p—1.495, 3.236.

6 1s—7.011; 3s—8.07, 5.53, 3.326, 1.920; 2p—1.3527, 2.56, 5.6.

7 1s-7.015; 3s—8.1, 5.48, 3.302, 1.938, 1.0; 2p—1.353, 2.56, 5.6.

8 1s—7.0; 3s—8.1, 5.48, 3.327, 1.935, 0.93; 2p—17.677, 3.270, 1.890, 1.222.

9 1s—-7.02; 3s—-8.2, 5.49, 3.438, 2.054, 1.03; 4s—1.13; 2p—1.353, 2.56, 5.6.
10 1s-7.02; 3s—8.2, 5.49, 3.438, 2.054, 1.03; 4s—1.13; 2p—7.677, 3.270, 1.890, 1.222.
10a 1s—-7.00; 3s—-8.1, 5.4, 3.5, 2.0, 1.0; 4s—-1.2; 2p—-"7.7, 3.3, 1.8, 1.2.

of electrons, and it will therefore be necessary
to work with a smaller subspace if we hope to
tackle larger systems. We carried out several
calculations in which not all of the spin functions
of Eq. (A4) were allowed to contribute to ©, in
order to investigate the feasibility of eliminating
them from future work. The spin functions op-
timized under these limitations are shown in
Table IV together with the SOSCF spin parts, and
the energies and spin densities are collected in
Table V. We find that the energy of the 1s-paired
function is very close (within 1-2 x 10~ * hartree)
to the full SOSCF result, meaning that practically
all the energy reduction with respect to the MPHF

value is due to unpairing the 2s shell. Moreover,
most of the difference may be obtained by sepa-
rately estimating the effect of unpairing the 1s
shell, using the 2s-paired function. The spin-
density results are even more encouraging. Here
the contributions of the 1s and 2s electrons, as
given by the 2s- and 1s-paired functions, respec-
tively, are much larger in absolute value than
the SOSCF value and of opposite signs, yet their
sum is very close to the SOSCF result (the dif-
ference is 2-4%, except for set 4 which is very
small and gives poor results). We may therefore
be able to carry out two two-dimensional calcula-
tions instead of a six-dimensional one. This result,

TABLE II. Energies and spin densities with different basis sets (a.u.).

Energy? Spin density at nucleus?
Basis set? RHF UHF SEHF MPHF SOSCF UHF SEHF SOSCF
1 (4/3) —54.40080 —54.40308 —54.40439 —54.41617 —54.41950 0.0263 0.0118 —0.0498
la —54.40455 —54.416 08 —54.41967 0.0381 -0.0233
2 (5/4) —54.40093 —54.40385 —54.416 89 —54.42102 0.3187 —0.0666
2a —54.40584 —54.416 67 —54.42127 0.3208 —0.0438
3 (6/4) —54.40091 - 54,404 51 —54.416 84 —54.421 26 0.2127 —-0.0341
4 (4/2) —54.40084 —54.41238 —54.415685 —0.0313 —0.0852
5 (5/2) —54,40174 —54.41479 —54,.41881 0.1611 0.0663
6 (5/3) —54.40392 —54.40562 —54.41685 —54,42103 0.1751 0.1461 0.0847
7 (6/3) —54.40437 — 54,406 21 —54.416 93 —54.42135 0.1922 0.1629 0.1135
8 (6/4) —54.404 44 —54.416 97 —54.42138 0.1940 0.1149
9 (7/3) —54.404 46 —54.41715 —54.42159 0.1835 0.1177
10 (7/4) —54.404 56 —54.40642 — 54,417 22 —54.42167 0.1853 0.1579 0.1200
10a — 54,421 29 0.1165

2The RHF results are from Refs. 11 and 12, the UHF from Ref. 7, and the SEHF values from Refs. 6 and 7.
Y(n/m) denotes a set consisting of » s orbitals and m p orbitals.
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should it be confirmed in other cases, will great-

Energy Spin density

at nucleus

ly facilitate investigations of larger systems.

Methods involving one spin orbital per electron

RHF (Ref. 11) —54,40093 0

UHF (Ref. 7) —54.40453 0.1853
SEHF (Refs. 6 and 7) —54.40642 0.1579
MPHF —54.41722 0
SOSCF —54,42129 0.120
Other Methods

CI (Ref. 8) —54.45176 0.0730
cr? —54.45663 0.0722
Bethe-Goldstone® 0.101
Many-body® 0.098
Experiment —54.6142%  0.0972 (Ref. 14)

SPATIAL ORBITALS

Each spatial orbital in the SOSCF function is
varied independently, thus “splitting” the doubly
occupied RHF orbitals. The same is true for the
SEHF function, ®'7 but the splitting produced in
that case is very small whereas it is considerable
in the functions described in this work (see Tables
VI and VII). This does not apply to the 2p orbit-
als, which are not split, and are virtually identi-
cal with their RHF counterparts. The SOSCF or-
bitals are shown in Fig. 1. The 1s orbitals are
of the same general shape as the corresponding
RHF function. The splitting at the origin is some-

2H. F. Schaefer, R. A. Klemm, and F. E. Harris,
Phys. Rev. 181, 137 (1969).

PR. K. Nesbet, Colloq. Intern. Centre Natl. Rech.
Sci. (Paris) 164, .87 (1967).

°N. C. Dutta, C. Matsubara, R. T. Pu, and T. P.
Das, Phys. Rev. 177, 33 (1969).

dC. W. Scherr, J. N. Silverman, and F. A. Mat-
sen, Phys. Rev. 127, 830 (1962). The nonrelativistic
energy is —54.5892 Hartree.

TABLE IV. Coefficien

what larger for MPHF orbitals than for SOSCF
ones, and considerably larger with type-II than
with type-I basis sets (Table VII); the total over-
lap of corresponding o and 3 orbitals does not
however change much with basis sets or spin
functions (Table VI).

The greatest departure from RHF character
is offered by the 2s orbitals. The over-all RHF

ts of spin functions for nitrogen.

SOSCF 1s paired 2s paired
Basis set 0 0, 03 04 05 O¢ 04 0, A 03
3 0.5551 -0.0124 0.0054 -0.1308 ~—0.0010 —0.0008
4 0.5638 -0.0190 0.0082 —-0.0993 —0.0051 —0.0009 0.5684 —0.0999 0.5800 0.0078
5 0.5561 —-0.0153 0.0060 -0.1139 -0.0018 —0.0008 0.5595 —0.1146 0.5734 0.0059
8 0.5572 -0.0144 0.0059 -—0.1277 -0.0013 ~-—0.0009 0.5601 —0.1286 0.5734 0.0058
10 0.5569 -0.0139 0.0058 -0.1312 -0.0011 -0.0009 0.5595 —0.1320 0.5728 0.0057
TABLE V. Results with paired functions.
Basis set Energy relative to MPHF value Spin density at nucleus
1s paired . 2s paired sum SOSCF 1s paired 2s paired sum SOSCF
4 —-0.00328 —0.00013 —0.00341 —0.00347 0.4966 —0.5689 -0.0723 -—0.0852
5 —0.00388 —0.00009 —0.00397 —0.00402 0.5999 —0.5352 0.0647 0.0663
8 —0.00427 —0.00009 ~—0.00436 —0.00445 0.6409 —0.5302 0.1107 0.1149
10 —0.00432 ~-0.00008 —0.00440 —0.00445 0.6467 —-0.5302 0.1165 0.1200
TABLE VI. Orbital overlaps.?
(1s11s’) (2s12s") (1s12s) (1s’ 1 25") (Isl2s") (1s" 1 2s)
MPHF Set 3 0.9728 0.9346 0.3036 0.2462 0.1759 0.4015
Set 10 0.9683 0.9307 0.3039 0.2484 0.1540 0.4253
SOSCF Set 3 0.9745 0.9336 0.2392 0.2220 0.1830 0.3035
Set 10 0.9724 0.9335 0.2414 0.2267 0.1838 0.3105
1s paired Set 10 0.9732 0.9351 0.2497 0.2393 0.2117 0.3044
2s paired Set 10 0.9697 0.9344 0.2978 0.2523 0.1713 0.4072

2For RHF 1ls=1s", 2s=2s'.

For SEHF (Ref. 6), (ls|1s’)=1.0000, (2s]2s’)=0.9934.
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TABLE VII. Orbital densities at nucleus.

1s 1s’ 2s 2s’
MPHF Set3 12,2276 7.4018 0.7557 0.2457
Set 10 11.5474 8.0737 0.9428 0.1731
SOSCF Set 3 12.2709 7.5462 0.4696 0.5548
Set 10 11.5759 8.2277 0.5339 0.5834
2s paired Set 10 11.5306 8.0899 0.8077 0.2808
1s paired Set 10 11.5657 8.2432 0.5675 0.8071

RHF®> Set 3 9.9100 - 2.1837P
SEHF® Set2a 10.0163 10.0480 —1.6291° —1.4036"

3Reference 12.

bSign is chosen so that the asymptotic behavior of all
2s orbitals will be similar (see Fig. 1).
°Reference 6.

function is invariant under any linear transforma-
tion among its orbitals, which may therefore be
made orthogonal. Similarly, the SEHF orbitals
associated with the same spin factor may be cho-
sen orthogonal to one another. The orthogonality
introduces.radial nodes into all atomic orbitals
but the lowest one of each ! value. Such trans-
formations are not allowed in the SOSCF (and
MPHF) case, and the 2s orbitals need not, and
indeed do not, have nodes (see Fig. 1). A node-
less 2s was first encountered in Goddard’s G1%°
(equivalent to our MPHF) calculations for atomic

100 10~
\ 1 2s 2s
ll ) 05‘%&._,
80 ; 1SR /// ;
0 7 L
! 1s // 05 10
! /
| - 2s
w B0H1 05 TR
\!
o /
"3' ‘\ -10| I/
= \ o
s 1\ /
['0_
< 15/
/
|
-20’
- i
2s 28’ 2p
o L I ———————
- 05 10 15

R(BOHRS)

FIG. 1. SOSCF orbitals (basis set 10). Dashed
lines are RHF orbitals, shown for comparison. The
RHF 2p orbital falls on the SOSCF one.

[

AMPLITUDE

10 1%
R(BOHRS)

FIG. 2. 2s orbitals for different spin functions
(basis set 10). Solid lines are 2s and dashed lines
are 2s’ orbitals. Spin functions (see Table IV) are
(a) SOSCF, (b) MPHF, (c) paired 1s, and (d) paired
2s.

lithium, ® and more recently in SOSCF functions
for the same atom. 1*? This is probably the most
striking feature of SOSCF orbitals. It is of in-
terest to note that the details of the 2s orbitals
near the origin depend strongly on the spin func-
tion used (Fig. 2). The dependence on the type
of basis set is smaller, but still significant (Fig.
3). All these differences die rapidly away from
the origin.

CONCLUSION

The SOSCF method yields considerable energy
reduction with respect to the RHF value, while
not abandoning the concept of one orbital per elec-
tron. More important, it gives a much better
agreement with experiment for the rather sensi-
tive spin density at the nitrogen nucleus than
other methods based on this concept. It may be
possible to forego the use of the whole spin func-
tion space in favor of separate calculations with
appropriately chosen subspaces, followed by sum-
mation of the individual contributions. Other sys-
tems are now being investigated in order to check
the generality of these results.
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FIG. 3. Effect of basis set type on 2s orbitals.
Shown are MPHF 2s orbitals with basis sets 10 (2s;7)
and 3 (2s)).

APPENDIX: SPIN FUNCTIONS FOR N(4S)

The spin functions for the *S ground state of
atomic nitrogen may be constructed in various
ways. We choose to do it by first writing down
all possible states of four nonequivalent s elec-
trons, and then combining them with the functions
of three equivalent p electrons.

Four nonequivalent s electrons give rise to one
5S, three 3S, and two 'S states. The correspond-
ing spin functions (with Mg =S) are 6

’S,(4) awcaa;
35,(4) (acaB-aaBa) /V2 ,
(aBaa-Baaa) /V2 ,
3 (daaBf+ aaa-aBaa-Baaa);
150(4) 3 (aBap-BaaB-aBBa+BaBa),
(2aaBp +2B8aa—apap-Baas
- appa-Papa) /V12;

(A1)

where in 25*1 §, (») the superscript indicates the
spin multiplicity, the subscript is Mg and » is
the number of electrons. Of the three terms
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that may be built of three equivalent p electrons,
namely S, P, and 2D, only the first, the spin
part of which is

15,/5(3) aaa, (A2)

can combine with the four-electron states of (A1)
to yield %S functions for the whole atom. Six such
functions may be obtained, one for each entry in
(A1), by the relations

4Sa/z (7)= 150(4)X483/2(3) )
18, 5(1)= 2 3S,(4)X*S; /5. n(8) (LEmE-m[1339) ,
m=0,1 .
(A3)

S3a(N= T *S,(4)x'Sy/2. (3) @ImE-m[2859)
m=0,1,2

where (jyj.mymy lj1jsjm) are the usual Clebsch-

Gordan coefficients. The resulting spin functions

are as follows:

6,=3(apap - Baap - appa + fapa)aaa |,
6,= (2aapp+2pBaa — apap - Baap

- appa - BaBa)aaa/Vi2 ,
6, = [2(aaap - aafa)(aaB+ afa+ Baa)

- 3(apap - appa+paap - Bapa)aaa]/Ve0 ,
0, = [2(aBaa - Baaa)(aaB+ apa + Baa) (A4)

- 3(aBaB+appa - Baap - Baga)aaa]/V60 ,
0s=[(aaapf+aapa - afaa - Baaa)aaf+ afa+pBaa)

- 3(aapp - pRaa)aaa]/V30 ,
0¢=[2aaaal(aBp+BaB+ppa)

- (aaaf+aafa+apaa+paaa)

X(aaB+aBa+paa)+(aapp+ apaf+paaf+ apBa
+Bapa + ppaa)aaal/V30 .

The first two electrons in 6, are paired to a sin-
glet by the factor a(1)8(2)-p(1)a(2). The same
holds for electrons 3 and 4 in 6;, while 6, has
two such pairs and is, therefore, the “maximally
paired” function.

The appearance of only six of the 14 seven-elec-
tron quartet spin functions can be traced to the
nonexistence of a 25 state for the p° configuration,
This state does exist (with two independent spin
functions) if the p electrons are nonequivalent,
and can then combine with the 55 and 3S states
of the four s electrons. As there are two 25(3)
functions and four °S(4) and 3S(4) ones, eight ad-
ditional *S(7) functions would then appear, bring-
ing the total to 14.
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The 2-eV shape resonance in Ny-electron scattering is calculated by a self-consistent-
field energy-variational procedure. The resonance state corresponds to the attachment of an
incident d-wave electron to the 1w, valence orbital of the metastable QHg state’'of N3. The res-
onant behavior is due to the tunnelling of the electron through a 2(2+1)/7? centrifugal barrier
and temporary trapping in an attractive field. This tunnelling is reflected in the bimodal be-
havior of the calculated 1w, orbitals; the inner portion of the orbital defines the resonance state.
The ‘“potential” curve for Nj is calculated in the Hartree-Fock approximation; a resonance
threshold of 2.5eV is predicted, with R,=2.27a.u. and w,~ 2000 cm™!, Expected correlation-
energy corrections would improve the agreement with experiment. A local potential for elec-
tron scattering is generated by inverting the 1m, orbital, and resonance widths are calculated.
The widths vary from 0.13eV at the equilibrium distance of N3 to 0.8eV at the N, equilibrium

distance.

I. INTRODUCTION

The resonance structure in electron scattering
from N, is due to “attachment” of the d wave of the
incident electron to the first unoccupied 7, valence
orbital. In terms of a “local” potential, the inci-
dent electron penetrates or tunnels through a bar-
rier that can be represented asymptotically as

Vyow ~—ag/2r*+2(2+1)/7% . (1)

At short range, of the order of the size of the mol-
ecule (~1.5 a.u.), the potential is attractive and,
for E ~2eV, sufficient to support a metastable
“bound” state. This picture was developed by
Bardsley, Mandl, and Wood.! A ?II, configuration
for the N; had been proposed earlier by Gilmore®
on the basis of molecular-orbital theory and an es-
timate of a real N, potential energy curve was
made. Chen® has deduced a similar curve semi-
empirically and the angular dependence of the scat-

tered electron® is consistent with the *II, resonant
state of N,. Although the qualitative structure of

the resonance state now appears to be understood,
a priori calculations based on the molecule itself

are lacking.

In this paper, we calculate the resonance state
of N, from molecular-orbital theory and use this
to develop a local potential for electron scattering.
The scattering wave function is assumed to be ex-
panded in terms of a tight resonance state with de-
caying boundary conditions and appropriate phase-
shifted continuum functions. Since we are con-
cerned only about resonant scattering, where the
electron penetrates into a well of the size of the
molecule, we assume that a knowledge of the res-
onance function alone can be used to determine the
“local” potential that supports the resonance state.
This potential includes both exchange effects and
the electrostatic polarization of the target mole-



