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Accurate numerical solutions have been obtained for Schrodinger's equation for a two-
particle system interacting through a static screened Coulomb potential (SSCP) V(r)
= —Ze2e~ o/r Th.e numerical integration of the wave equation uses a one-dimensional dif-
ference method which is simple, accurate, and efficient. Solutions have been computed for
45 eigenstates, 1s through n= 9, l =8, yielding the eigenfunctions and energy eigenvalues for
a wide range of D, the screening length which characterizes the range of the interaction.
Under screening, all energy levels are shifted away from their unscreened values toward the
continuum, the energy increasing as D decreases. For each n, l eigenstate, there is a finite
value of the screening length Do(n, l), for which the energy becomes zero. The value of Do
for the ground state of a two-particle bound system in a potential of this type, such as the
Debye or Yukawa potential, is 0.83991 ao/Z in agreement with certain previous studies. The
total number of different energy levels is finite for any finite D, and is approximately linearly
dependent on D The nu. mber of bound s states g~ is given by the relation +)2=1.2677 DZ/ao.
For given n, the l degeneracy is destroyed, lowest l levels lying lowest in energy. At suf-
ficiently high n, this behavior results in level crossing, high l levels of eigenstate n having
higher energies than low l levels of eigenstate n+1. This produces increasingly complex
deviations of the level order from the unscreened order, commencing with the 5s-4f cross-
over. Because of the displacement of high n states into the continuum, the density of states
in the SSCP for any finite D is lower than in the unscreened potential, especially near the
continuum.

I. INTRODUCTION

The problem of finding the energy levels (or at
least the number of them) of a hydrogenic atom in
an ionized gas has received the attention of a num-
ber of authors' in the past. The present authors
became interested in this problem through a need
to calculate the partition function for such hydro-
genic atoms. The partition function for the iso-
lated hydrogen atom, given by

g= Q 2n exp
Ry

n=1 nkvd '

clearly diverges. In any real physical situation,
of course, the atom is not truly isolated and the
upper bound levels mill be perturbed into the con-
tinuum of unbound states by even a very small
interaction.

The partition function is then given by a finite
sum. The upper limit of this sum g*, the max-
imum bound principal quantum number, has been
calculated previously in various approximations.
We give it below as very nearly proportional to
the square root of the screening length. It is also
important to note that a knowledge of g* alone
does not merit the importance that has sometimes
been attached to it since in order to calculate the
partition function one needs to know not only the
number of energy levels (including their degener
acy) but also how the energy eigenvalues vary as

v(~) = -(ze'/~) e "~ (2. 2a)

and the shifted SSCP, '7

V(~) = -(Ze'/~) e "~ -e'/D (2. 2b)

where D is the screening length. Although the
difference in the statistical machanics of the gas
can be significant for these two forms, the solu-
tions to the Schrodinger equation are equivalent.

a function of the screening length. These energy
eigenvalues for some of the lower-lying states
(the most important ones for calculation of a parti-
tion function) have been calculateda, nd the results
are presented here.

II. QUALITATIVE DISCUSSION

OF THE SPECTRUM

The radial Schrodinger equation for this prob-
lem is given by

Ss 1 d s d l(l+ 1)
2' J' A &' p

x Jt(y)+v(~) R(~) =g ft(~) .

Several forms have been suggested for the shielded
Coulomb potential of an atom surrounded by a plas-
ma. The two basic forms are the static screened
Coulomb (Debye) potential (SSCP)s
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where T is the temperature of the ionized gas, p&

is the density of particles of type j, and e g,- is
the charge. This potential is the same as that of
Rouse in the case that A (his "mean minimum
radius of the ion atmosphere") is set to zero.

By making the substitutions,

y' =iz px/Z, D = ap5/Z,

and E =Z'e e/(2ap),
(2. 3)

where ap =h /m e, Eq. (2. 1) may be written in
the form

dR 2 dR 2 „ip I(I+1)
(, + ——+ &+—e"'—

dx x dx x x

For very large values of 5, the eigenvalues e„
of this equation are expected to be very little dif-
ferent from those of the isolated hydrogen atom
for which &„=-n . If we expand the exponential
to first order, e "~ ' = 1 -x/5, Eq. (2.4) looks like
the equation for an isolated hydrogenic atom with &

replaced by e —2/5, or from (2. 3), the energy will
contain an additive term Z e /D. In other words,
the first-order effect of the screening is to simply
add the constant energy term Z e /D to each energy
level. Of course, the uppermost states will be
raised above the ionization energy and we see right
away that even for very large screening lengths,
the problem has changed from one with an infinite
number of bound states to one with a finite number
of bound states.

This same result may be shown by means of a
classical approximation, valid for large radial
quantum numbers. If the force derived from the
potential (2. 2) is set equal to the mass times the
centripetal acceleration v /r, we see

m v'/~ = (Ze'/~') (r+D)/D e "~v . (2. 5)

The total energy is

The resultant eigenvalues for the shifted SSCP
differ by a constant term -e /D from those for the
SSCP. In the following analysis, we refer to the
first form [Eq. (2. 2a)].

The potential is effectively restricted to a range
of the order of D. When D is large we say that the
screening is weak, and when D is small the screen-
ing is strong. In plasma theory, the screening
length is called the Debye screening length and is
given by

Z, &eZ, -4m 2 2 -i/2
kT

or substituting from (2. 5), we find

E = (-Ze'/2~) (D —~)/D e "". (2. 7)

This expression clearly recovers the correct
energy value for infinite screening length, and in
fact if an expansion is made in r/D we see

E = Ze-/2r+Ze /D —~ ~ ~, (2. 8)

u(x) = x R (x),
xt becomes

(2. 9)

I(1+1)
PP x/ 6 g gg

—0
x x

which may be regarded as a one-dimensional
Schrodinger equation with an effective potential
I(l +1)/x —(2/x) e "~'. It is easily shown that for
a given value of / the energy eigenvalues E„, are
not n degenerate. It is also expected that the ac-
cidental degeneracy peculiar to the Coulomb po-
tential will be destroyed for any finite value of the
screening length and hence the energy will depend
upon the azimuthal quantum number /. As for all
central potentials, the energy is independent of the
magnetic quantum number m [it does not appear in
Eq. (2. 4)], and hence the energy levels will have
degeneracy 2l + 1.

III. NUMERICAL METHOD

which shows the same first-order correction to the
energy as was obtained previously. Moreover, it
is apparent from (2. 7) that for sufficiently small
values of D (D less than approximately the average
orbit radius), the energy of these high-lying states
cannot be negative. Thus, we see again that the
upper levels will all be cut off at some critical
value of the screening length Dp(n, I), and the num-
ber of energy levels will be finite. This critical
screening length at which a level is cut off is Do-r,
where i is the average orbit radius. For the hy-
drogenic atom with no screening, r -a~ /Z. Thus,
replacing n by g*, the maximum-bound principal
quantum number, we expect Dp apg¹ -/Z

It can be shown by an elementary argument uti-
lizing the uncertainty principle that any attractive
potential which approaches zero faster than —x
as z approaches infinity can have, at most, a finite
number of energy levels. The screened Coulomb
potential (2. 2a) certainly qualifies in this respect.
This conclusion that only a finite number of energy
levels exist for finite screening is contrary to a
recently published report of Rouse.

If in Eq. (2. 4) we substitute

& =-2mv' —(Ze'/~)e "', (2. 5)
We are interested in obtaining an accurate solu-

tion of Eq. (2. 1). It has been pointed out' that
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approximate analytic solutions involve consider-
able numerical work while yielding accurate re-
sults only for restricted ranges of n, l, and D.
For this reason we use a direct numerical ap-
proach.

A numerical solution in z space would present
some difficulties, as solutions for a given (n, l)
state do not exist for D &Do(n, f), as demonstrated
above, where Do(n, f) is some unknown positive
critical screening length. Consider the transfor-
m ations 6

p = (2Z/a o) ~/X„, ,

e „,g
= —Z'I'/2 a', p. X„' g,

d = (2Z/a, )D/X„,

(3.1)

(&p)'

where i is the space index. The resulting differ-
ence equation for the wave amplitude is

+[) (2+-,'(b. p)') +l(l+1)/i -X„,&pe '~']R;).
(3. 3)

The starting condition for s states is obtained by
noting that as p-0, Eq. (3. 2) has the asymptotic
solution R = 1 —2X„, p, where R(0) has been chosen
equal to unity. For f & 0, R(0) = 0 so that R(b p)

where X „,is the eigenvalue of the radial Schro-
dinger equation in p space, and d is the trans-
formed screening length. The transformed form
of Eq. (2. 1) is

dR 2 dR ) „,e'~' I l(1+1)) Rdp2pdp+p4p2
(3.2)

This transformation maps the range Dp~D~~ of
the screening length into the range O~d ~ ~ of the
transformed screening length. This is evident,
since &„,= 0 only if X „,= ~ for which value d = 0.
Therefore, solutions of Eq. (3.2) with discrete
eigenvalues exist for all d &0, and the cutoff value
of the screening length for any particular state
can be systematically determined by assigning
successively smaller values to d and extrapolating
to find lim(D) as d 0. For these reasons, we
find solutions to Eq. (3. 2) and convert the results
according to Eq. (3. 1).

A simple linear difference equation was found
to produce stable, accurate, computationally
fast solutions to the radial Schrodinger equation.
Specifically, the derivatives were replaced by

dR; R;, ~ -R;
dp 24p

=R, is arbitrary. A convenient choice is R, = (&p) .
The boundary condition R =0 at z= is of necessity
replaced by the condition R = 0 at x = zp which takes
the form pp= 2ZxpX„, ap in p space. Note that for
a constant pp, the corresponding xp as X„,-~.

An eigenvalue of the difference Eq. (3.3) will
have the characteristic that the values of R(po),
obtained if X„, is incremented by + &, will have
opposite sign. The searching procedure to find
values of X „& which satisfy this condition can be
systematized for a given / and d by checking for
changes in sign of R(po) for successively increas-
ing values of X „, =Xp, Xp+hA, , Xp+2hX, ~, with
Xp=l+1, where 4X is smaller than the eigenvalue
spacing obtained with a larger value of d. In this
way, the eigenvalues ~,'",'», X,'",'2, are bracketed
within a range 4X. An iterative quadratic root-
solving method is then used to isolate the eigen-
value to the desired accuracy. The long-range
tail of the Coulomb potential is exponentially
damped at large p so that for small d the potential
becomes short range. For this reason, the nu-
merical solution uses a variable step size, 4 p be-
ing smaller near the origin than at large values of
p.

In the calculation of each wave function a total
of 4000 steps were taken, except near the con-
tinuum where about 20000 steps were taken. The
first 2000 steps were approximately of magnitude
Ap=0. 005d if d~1; otherwise they were approxi-
mately 4 p = 0. 005. The second 2000 steps were
an integer multiple of the initial step size and
were approximately of magnitude 6p = 0. 015. To
ensure that the value chosen for pp did not affect
the accuracy of the solution, po was moved out 10%%up

by increasing the number of steps. Next, to en-
sure that the chosen step sizes were sufficiently
small to produce negligible error, they were de-
creased 10%%uo, keeping the boundary at the larger
radius. In all cases, it was found that the three
eigenvalues agreed to at least five significant
figures ~

The procedure outlined above was tested on
three problems which have exact analytic solu-
tions —the harmonic oscillator, the hydrogen
atom, and the hydrogen atom confined to a spher-
ical box of radius zp. In all cases, excellent
agreement with the analytic solutions was obtained.
In particular, seven-place accuracy was obtained
for the hydrogen atom to quite large values of n
and E. The confined atom problem, solved analyti-
cally by DeGroot and ten Seldam, ' is obviously a
limiting version of the present SSCP problem for
D-~. The confined atom has as radial eigenfunc-
tions the confluent hypergeometric functions, and
the energy levels are perturbed in a manner sim-
ilar to the SSCP levels.
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IV. RESULTS

The results of applying this numerical technique
to the problem of the SSCP are in agreement with
the theoretical conculsions presented above. In
what follows, except where indicated, the results
and conclusions refer to real space (x space).
The normalized probability density distribution
[x R„,(x) ] for the Sp state is illustrated in Fig. 1

for four values of the screening length. The larg-
est value DZ/ao=~ corresponds to the unscreened
case; the intermediate value DZ/ao= 50 represents
the weak screening case, while the smallest values
DZ/ao= 20 and 10 are strongly screened atoms

0. 16

0, 14—
0.12—
0. 10

0.08

0.06
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0. 02

I l

3p
DZ/0 = yy0----- DZ/0 = 50
DZ/0 = 20

0
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0

/0 = 8.8712

10 20
I

30 40

r/00

FIG. l. I&83&(~) I versus x for various screening
lengths.

The choice of x0 must be made carefully, to en-
sure that the perturbation due to confinement is
not a factor in the present problem. As noted
earlier, when the calculations are performed in

p space the boundary xo automatically moves out
as X „, increases for a constant value of pp It
was found that sufficiently large values of po could
always be chosen from the range 20-60, with the
lower values of p0 being used with the high screen-
ing or low n and the larger values with low screen-
ing or high n.

Other studies" have claimed that this approach
is unsatisfactory and have consequently gone to
more elaborate numerical methods which use
Taylor series expansions around the origin, high-
order difference equations, and match the numer-
ical solution to the asymptotic solution for large y.
A major reason for this disagreement seems to be
that the previous studies have used a constant step
size throughout the entire calculation.

These calculations were performed on a CDC
6600 computer, a 14-digit machine, at the rate of
54 eigenvalues per min. To ensure that round-off
and/or truncation errors were not important, a
few duplicate calculations were made on a CDC
3600 computer, a 10-digit machine (and also
slower as only 14 eigenvalues were calculated per
min). These calculations were in agreement with
the CDC 6600 results.

I l Ill0— I I I I I I Ill I I I I I I II

CI

+I-0 5—
C

-1.0—
I I I ll

10 10

DZ/00

FIG. 2. Dependence of the energy levels on the screen-
ing lengths for the six lowest-lying states.

The expected features are present: The density
distribution is shifted away from the origin, and
the peak values are reduced, both effects increas-
ing with decreasing D. It should be noted that the
normalized radical density distribution is changed
by a relatively small amount at values of D where
the energy eigenvalue is strongly perturbed.

The eigenvalues and energy levels were com-
puted over a wide range of D for 45 one-electron
eigenstates. The energy levels of the SSCP show
a strong dependence on D, and agree with the qual-
itative dependence first demonstrated by Harris's
perturbation and variational solutions to the prob-
lem. The numerical solutions also verify that
there is a critical value for D, below which
there is no stable two-particle configuration with

negative energy. This disappearance of the
bound states in the limit of strong screening ex-
hibits some well-defined regularities which
will be discussed below.

The destruction of the l degeneracy of the un-
screened-case results in SSCP eigenstates of low-
est f (for a given n) lying lowest in energy. The
states of different E for a specific value n vanish
(are perturbed into the continuum) in inverse
order of their l value.

The energies of the first six eigenstates are
plotted in Fig. 2. The long-range nature of the
screening perturbation is exhibited by the fact that
the lowest-lying states are perturbed by more than
1% at ranges of the order of hundreds of angstroms.
The energies of these six states are tabulated in
Table I for a range of D. These numerical results
demonstrate that the lower / states not only have
the lowest energy at a chosen D, but they also have
the smallest slope eE„,/BD near the continuum.
This increasingly steep gradient as l increases
results in crossing of levels at sufficiently high
values of n. In Fig. 2, the vertical lines at E = 0
indicate the critical values of D at which E„,(D)
for each state goes to zero.

The energies of the eigenstates 4s through 9l
are tabulated in Table II. It will be seen that in
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lytic approximation is given by Smith, by expand-
ing the SSCP exponential and solving the resultant
perturbation expression term by term. The re-
sults of this form are also shown in Fig. 4, in
terms of the energy difference relative to the
numerical result. As expected, the expansion
approximation is considerably less accurate than
the unexpanded perturbation result, although the
two results approach the numerical result in the
limit DZ/a p ~. The expansion result has a mod-
erate l dependent error. The results of the per-
turbation approximation are useful in the limit
DZ/ap» 1, but for values of DZ/a p (10, the use
of fitting expressions such as those developed by
Rouse is clearly indicated.

The numerical solutions demonstrate that in the
limit d 0, which corresponds to D-Dp, the en-
ergy of the bound states goes to zero. For all
D &Dp, the bound state does not exist. A complete
tabulation of these critical screening lengths is
presented in Table III for the first 45 one-electron
eigenstates. For specified n, lower / values have
lower Dp values. The increase of Dp with increas-
ing l leads to a crossover of levels, or deviation
from the unscreened order, at the 5s state. The
5s energy level crosses the 4f slightly above
Dp(5s )Z/a p = 12.691.

Harris' also computed values of Dp for the one-
electron SSCP eigenstates using perturbation and

variational techniques. These results are within
5-10% of the numerical solution results for the
levels n, l =n —1. For levels with lower l values,
the discrepancies become much larger.

Schey and Schwartz developed a technique for
counting the bound states in a short-range central
potential and applied this to the SSCP. This
method involves the numerical integration of the
radial wave equation in the neighborhood of Dp for
each n, l eigenstate, and the isolation of the criti-
cal value by monitoring a counting function. It
provides an alternative method for computing cut-
offs, but offers no particular advantage over the
present method for the specific case of the SSCP.
Their results for 1s through n ( 8, l & 4 are very
accurate and show excellent agreement with the

1 I I 1 I 1

to-' =

-2
10

't0 I I I l1 I I I I I I III I I Is IIII

10 10 10

DZ/aO

FIG. 4. Error in two approximate expressions for the
energy levels given by Smith (Ref. 4) as a function of
screening length for some of the lower-lying states. The
solid lines give the comparison of the direct perturbation
method with the numerical results, while the broken lines
represent the approximate expanded perturbation method.

present results. They were able to predict the 5s,
4f crossover and point out the inaccuracies in
Harris's cutoff results'.

A quantity of special interest is the critical
screening length for the ground state of the two-
body system in the SSCP, or Yukawa type poten-
tial Dp(ls). This parameter has been computed
by a variety of techniques. Sachs and Geoppert-
Mayer' used numerical methods to compute the
critical interaction range for the zero-energy
deuteron ground state in a Yukawa potential. Hult-
h6n and Laurikainen~s used a detailed variational
calculation to carry out complete solutions for two-
particle eigenstates of the Yukawa potential. Love-
lace and Masson developed a numerical technique
for calculating Regge trajectories, and apply this
to the Yukawa potential. They obtain a value for
Dp(1s) by interpolating in a set of computed ener-
gies for s-wave binding.

The most recent study of the SSCP is that of
Iafrate and Mendelsohn, ' who use both large-Z
asymptotic expansion theory and perturbation theo-
ry to solve the wave equation for the 1s and 2s
states. Their numerical results for the energy
eigenvalues as a function of screening agree quite

TABLE III. Critical screening length for one-electron n, I eigenstates, ZDp/ap

0.8399
3.223
7.171

12.687
19.772
28.423
38.64
50.44
63.81

4.541
8.872

14.731
22.130
31.079
41.581
53.641
67.258

10.947
17.210
24.985
34.285
45.122
57.501
71.426

20.068
28.257
37.950
49.159
61.894
76.162

31.904
42.018
53.630
66.752
81.392

46.458
58.500
72.028
87.064

63.730
77.691
93.143

83.720
99.604 106.43
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well vzith the present study. They have also dem-
onstrated, using a rigorous theorem developed by
Schwinger and Bargmann, that there must be a
finite number of bound states for the SSCP with
finite D.

The plasma theorists have also studied this
problem in the SSCP or Debye form. Schey and
Schwartz's method gives a value of Do for any
value of n, /. Harris's value obtained by her best
variational approximation is also reasonably ac-
curate. All the foregoing values, together with
the result of the present study, are given in Ta-
ble IV.

The results of Hulthdn and Laurikainen, Schey
and Schwartz, and the present study are in ex-
cellent agreement. The values found by Sachs and
Mayer and by Lovelace and Masson are within 1%
of the present result.

Examining next the systematic behavior of Do
(n, I), at first appearance the results are rather
complicated. In Fig. 3, the values of Do are in-
dicated for all states with cutoff values in the
region 50& DoZ/ao& 80. It can be seen from this
segment of D space that the higher value n has the
more I-level crossing there is, leading to consid-
erable mixing of the level order. If we examine
the dependence of the total number of states n*
which have negative energy at a given D, indepen-
dent of the unscreened n, l order, a simple and
regular relationship is noted. In Fig. 5, the total
number of bound states n* is plotted as a function
of the critical screening length. The relation be-
tween n* and Do is very close to linear, the devia-
tion being extremely small for n* ~ 9. It should be
noted that this same relationship is obtained from
the results of Schey and Schwartz, ~ since their
DD values are the same'as those of the present
study. If we require the data to fit an equation of
the form

n* =a, +aoDZ/ao

and reduce the data from both studies to form a
least-squares fit, the results are those given in
Table V. This relation can be used to count the
number of states remaining bound at a given value
of D, or it may be inverted to compute the value of
Do for successive values of n*.

Another quantity of interest is the "maximum

TABLE IV. Critical screening lengths for the 1s
state as calculated by various authors.

60

I
1

I

0 40
0

0
o 20

0
0 40 80 100

D0Z/a0

FIG. 5. Number of bound states n*, and the square
of the maximum bound principal quantum number g*, as
a function of the critical screening length Dp.

20

bound" principal quantum number g*, or the num-
ber of bound s states. The quantity (g*)o is also
plotted against D in Fig. 5. It exhibits the linear
dependence on D that is predicted by theoretical
considerations. ' Previous studies have arrived
at various values for the slope of this curve. The
analytical studies generally give a relationship of
the form

(g*)'=b,DZ/ao .
The numerical studies obtain results which are
best fit by a relationship

(g+) =bo+boDZ/ao .
The values obtained from the various studies are
given in Table V. Although theoretical considera-
tions support the assignment of b&= 0, the numer-
ical results indicate the existence of the small
negative constant. The exact value of the g*-D
relation is no longer as important as previous
studies have indicated. The E-dependent and level-
mixing behavior of the states renders the use of
g* in a partition function calculation inaccurate.
For example, for D ~ Do(g*), all states with n ~g*
would be counted in the sum-over-states if g*
were used to terminate the sum. However, those
states with n=g*, l &0 and with n=g* —1, 1=g* —2,
g* —3, ' (having higher cutoffs than the ~ =g*,
I =s eigenstate) are cut off at higher D values and
hence should not be included in the sum.

Throughout this paper, discussion has been re-
stricted to the case of point charges. A more
general set of potentials includes a parameter A
representing the radius of the interacting charges,
as given by Rouse,

Source

Sachs and Mayer (Ref. 12)
Hulthdn and Laurikainen (Ref. 13)
Lovelace and Masson (Ref. 14)
Harris (Ref. 3)
Schey and Schwartz (Ref. 5)
Present study

Dp(1s)Z/ap

0.841 5
0.839 910
0.832 605
0.87
0.840
0.839 908

V(x) = —(Ze /x) [1-x(D+A)j, y &A

V(~) = -(Ze'/~)D/(D+A) e- ~-"&~,

The general conclusions given above apply to
this form of the potential forA &0 as well as A=0.
This is most readily seen by applying the theorem
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TABLE V. Fitting coefficients for the number of bound states and the square of the maximum bound principal
quantum number as a function of the screening length.

Source

Kcker and Weizel (Ref. 1)
Kelly and Margenau (Ref. 2)
Kelly (Ref. 2)
Harris (Ref. 3)
Harris (Ref. 3)
Smith (Ref. 4)
Schey and Schwartz (Ref. 5)
Present study

Method

analytic approximation
perturbation
variational
perturbation
variational
perturbation
numerical integration
numerical integration

a&

0.583
0.5829

0.499
0.4993

«1
0.86
0.804
0.83
1.30

«1
1.267
1.2677

—0.46

—0.081
—0.1045

1.38

1.269
1.2701

given by Iafrate and Mendelsohn' to this potential.
One finds a finite number of states predicted for
finite D at all values of A. , although the range of
physical interest is best restricted to 0 &A & D.
Although the result one obtains for the critical
screening length is only approximate (for A = 0 the
formula predicts ZD,/ao= 1, above the actual value
of 0. 889 908), if it is adjusted to the correct value
one is able to use it to predict Do as a function of
A. For example, the adjusted formula predicts
the Do/ao for the ground state with A. = ,' D to be-
0. 78, while a numerical solution yields 0. 77. For
A =D, the ground state ZDO/ao drops to 0. 68.

The disappearance of the bound states under
screening reduces not only the number of states
but obviously the density of states. Contrary to
Rouse's claim that the SSCP has a higher density
of states near the continuum than the unscreened
potential, the SSCP has a lower density of states
for all finite D. While it is true that the separa-
tion between n levels is lessened under screening,
the concentration of low n levels toward the con-
tinuum is more than compensated for by the re-
moval of high-n levels into the continuum. The
result is a significantly lower density of states
near the continuum in the screened potential. In
the limit D- ~, the density of states of the two
potentials (screened and unscreened) becomes
equal.

To compute an atomic partition function using
the SSCP, the energy eigenvalues and critical
screening lengths calculated above are applicable.
Jackson and Klein, ' in a study of these two forms,
(2. 2a) and (2. 2b), find the shifted SSCP to be the
better potential for use in hydrogen statistical
mechanical calculations. To compute an atomic
partition function for the shifted SSCP, one adds
to all SSCP energy eigenvalues the term -e /D.

A different approach to this problem was used

by Rouse, ' who approximated the SSCP atom with
its finite number of levels by an atom with an in-
finite number of levels, using a screening-depen-
dent normalization factor to terminate the sum.
That this method leads to approximately equiva-
lent partition functions is a consequence of the
existence of the critical values of D. By using
standard starting conditions for the numerical
integration, choosing some constant for the value
of the eigenfunction or its nth derivative at the
origin, one finds the unnormalized probability
integral increasing as D is increased. This is a
result of the screening perturbation, which causes
the electronic charge distribution to move farther
away from the origin. Thus, the normalization
factor must decrease as D decreases from its un-
screened value at D =~ approaching zero as D-
Do. If one then uses the criterion that the level
be cut off when the ratio of the screened to the un-
screened normalization factor equals some arbi-
trary small fraction, as a result the level is cut
off for some D slightly larger than Do.

In conclusion, it should be noted that recent
studies have questioned the correctness of using
either form of the SSCP potential to represent the
dynamic screened Coulomb potential, which ap-
plies to an atom in a plasma. Jackson and Kleinv
have demonstrated inconsistencies arising from
use of SSCP eigenvalues in a hydrogen partition
function. Nakayama and DeWitt'7 have found
some evidence that the damping effects included
in the dynamic potential are of the same order
as the level shifts computed from the static poten-
tial. A more complete treatment of the screened
Coulomb potential would seem to be indicated.
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II. Hyperfine Structure of Atomic Nitrogen
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The spin-optimized self-consistent-field (SOSCF) method, based on optimizing the spin
function in the whole (S, M,) space simultaneously with spatial orbital optimization, is applied
to the 4S ground state of the nitrogen atom. The maximally paired Hartree-Fock (MPHF)
function, where both ls and 2s electron pairs are associated with the singlet factor eP-Pe,
is also calculated, as are functions in which either the ls or the 2s electrons are thus paired.
The SOSCF energy is —54. 421 67 Hartree, compared with —54. 400 93 by the restricted Har-
tree-Fock (RHF) and —54. 417 22 by the MPHF methods. The net spin density at the nucleus,
responsible for the hfs of nitrogen, is 0.1200 a.u. , compared with 0.1853 a.u. by the spin-
extended Hartree-Fock method and the experimental value of 0.0972 a.u. (the RHF and MPHF
methods give 0). The contributions of the ls and 2s pairs, obtained from two separate calcu-
lations employing two-dimensional subspaces of the six-dimensional spin-function space, add
very nearly to the full SOSCF results for the energy and spin density. The SOSCF orbitals
are also described. Their most interesting feature is the nonexistence of radial nodes in
any of them.

INTRODUCTION

4=@"8
where " is a product of one-electron spatial func-
tions

(2)

and eis a linear combination of all independent
spin functions g~ spanning the space of appropri-
ate S and M,

~k tk~k (3)

The orbitals y &
and the coefficients t„are opti-

The spin-optimized self-consistent-field (SOSCF)
function described in a recent paper' is of the form

mized to obtain the SOSCF function. Similar
methods have been recently described by other
authors. The SOGI function of Ladner and God-
dard ' is equivalent to our SOSCF function, though
obtained in a different way. The BRNO method2b
is somewhat inferior, not involving reoptimization
of the spatial orbitals for the best spin function.

In paper I, we investigated three- and four-
electron atoms. These systems have only two
independent spin functions [k = 1, 2 in Eq. (3)],
and the optimal 6 is found to be very close to 6)„
the maximally paired Hartree-Fock function (MP
HF, equivalent to Goddard's Gl ), with a singlet
factor of nP —Pn corresponding to the two ls
electrons (and to the 2s electrons in Be). The
contribution of the other function ta is two orders


