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We consider theories in which s kinetic-energy correction (Vs /32m m) f(V'p) /p] (p = density) is
added to the usual Thomas-Fermi term. A treatment based on the WKB method and expected
to be valid for large ~ shows 1=1here, as found experimentally. For small x, A. =1 is needed
to give proper behavior of p, but other arguments suggest that the Thomas-Fermi term be
dropped here.

The Thomas-Fermi and related theories, ' at-
tractive because of their simplicity, are not sat-
isfactory for atomic problems because they yield
an electron density with incorrect behavior very
close to and very far away from the nucleus. Von
Weizsacker suggested the addition of an inhomo-
geneity correction

Ug = (h'/32m'm)( )n'/pp

to the kinetic-energy density. Here, p is the den-
sity in Weizsacker's theory. The differential equa-
tion for p now becomes

2v'-'~~"'+, p — p +V=E,
327T Sl p p

with E as a Lagrange multiplier. This leads to a
density which has the proper qualitative behavior
in both the large and small r limits (p-const and

p- decreasing exponential, respectively), but is
quite unsatisfactory from a quantitative point of
view. It seems that simply by adding the Weizsacker
term to the usual Thomas-Fermi kinetic-energy
term, ~~ p gives too much kinetic energy. The
original derivation of U has been questioned,
and it was suggested by Berg and Wilets that a
term XU be used with X&1. It was found that
X- 8 works well for the harmonic oscillator, and

& & X&1 for the square-well problem.
There have been attempts to calculate correc-

tions to the simple Thomas-Fermi theory as ex-
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where v„ is the classical frequency, given by the
size of the energy quantum divided by Il, and v„
=P„/m is the speed at the point in question. The
density, making the correspondence

Zz»k f B„vzvz/v„vzvzdPzdPzdPz

is p=2Z„@„-2k Jd p=8mp'/8k

(4)

(5)

where it is assumed that the distribution in mo-
mentum is spherically symmetric at each point,
P (r) being the maximum value of momentum. In
the zeroth approximation, the speeds are taken as
constant in (8) and the kinetic-energy density,
using (5), is

yansions in @, and some of these derive terms of
the form XU . For instance, Golden'found A. =~4,

and several Russian authors & =
g It seems,8 1

however, that the expansions a,re not valid ' for
very large or very small x, just where the correc-
tion is important. In fact, poor results are ob-
tained'"' for energies with these corrected the-
ories. Taking an experimental point of view,
Yonei and Timoshima considered noninteracting
electrons in a Coulombic field using the correc-
tion X U with X varying from 0 to 1 in steps of 0. 2.
They found that X = 1 led to densities in good accord
with quantum-mechanical ones for large ~, while
X = 0. 2 gave the best results with respect to the
small-x density. Later work on the rare gases
with X= 0. 2 by these authors' confirmed this: p
was accurate near r =0 but not for x- ~. In this
payer we wish to make several observations which
suggest a slightly different way of using the
Weizsacker correction.

We first consider large r, using a "derivation"
of the Weizsacker term given by F6nyes' in terms
of the WKB method. We employ the forma. lism of
Brillouin' here. At some point in space, let the
potential be locally separable along axes x, y, z.
Then the WKB one-electron wave functions are
written in the form

- (mk') ')j~ip —~ kvin(zo) d'p,

where w=P„P,P, . We again obtain ('7) but also an
additional term, which we may write

U'=(16momk) ' f ln(m)
I

dw (8)

Some calculations by Gombas' bear much resem-
blance to the above up to this point.

Fenyes~ noted that if Vln(w) is constant it can
be taken out of the integral and evaluated for w

equal to its maximum value, which is o
mp'', and

this is —,k'p according to (5). Then we have

U (16wmkp) (Vp) fdgg=U„

the Weizsacker correction. When can Vln(w) be
considered constant'P When the range of integra-
tionin(8) is small, i.e., when p and hence pis
small. This is for large values of x, which may
help explain Yonei and Tomishima's results: The
full Weizsacker correction should be used for
large z.

Turning to small x, we note that the singularity
of the Coulomb field places a restriction on the
behavior of the correct density. It is reasonable
to demand that the modified Thomas-Fermi theory
give a density obeying this restriction. One can
show' that the correct density obeys

Bp
~& r=O

= —2Zao~p~. o (9)

where ao is the Bohr radius. This follows from a
theorem by Kato concerning the wave functions,
and is valid for the n-electron system, whether
or not the electrons are interacting. It is easily
understood when one realizes that, when very near
a nucleus, the electrons see essentially a pure
Coulombic field, and the electron density is es-
sentially that of one or two 18 electrons:

gZ8/ )e-2zziao

One might as well have used plane waves here. In
the next approximation, we must consider that
dv„/dx is not zero (inhomogeneity), although our
choice of axes means that v„does not depend on

y or z, and so on. Then

kg~ ~p

I g v„v„v gp V5„)~
vl ~ Pl g vgvyvz Il 2v„)

2 1/2 Zi 2I g »
o 5 ~~ VzVzVz

-(mk') ' Pad'P

and we recover the Thomas-Fermi term

4m P 3k 3 5/3 5/3

(6)

with C=1 or 2. Differentiating, we recover (9).
Now we consider the modified Thomas-Fermi
equation (2) near the nucleus, multiplying U„by X.
All potential energy terms are negligible compared
to that due to the nucleus, —Ze /r. The only other
terms which are not finite come from U„, and such
terms must cancel the —Ze /x according to (2).
Thus we require
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Xb p 4p +2xp '

Ze
327l' PP2 p pt'

It suffices to keep the most singular term, and we
find

X[p„/p]„,=- 2Ze'm 'h '
which agrees with (9) if X= 1. Thus one should use
the full Weizsacker correction for small x.

Now this argument says nothing about the other
term (7), and one knows that adding U„to that term
gives too much kinetic energy. In particular, if
there are n electrons in one quantum state with
wave function 0, so that the density is given by

p=n/ef'

the kinetic-energy density is

(nl /2m) Ve '=(n'/sm)[(Vp)'/p]

Thus the Weizsacker term gives all the kinetic en-
ergy in this case. As noted above, close to the
nucleus one has essentially two electrons in a 1s
orbital. This suggests that the Thomas-Fermi
term should be corrected, by writing it as f(x)U»
where f(r) goes to zero for r- 0 and approaches
unity when x is such that the assumptions of the
Thomas-Fermi theory are valid, say for x Z 'ao. '
Here the Weizsacker term becomes relatively unim-

portant. For large x, we have argued that Uw+ U»
be used. Eventually, U~will dominate U», per-

hays due to the fact that the density is due to elec-
trons all in one quantum state.

To summarize, our arguments suggest that the
full Weizsacker correction (X= 1) be used through-
out along with the Thomas-Fermi kinetic-energy
term, except that the Thomas- Fermi term be
dropped near the nucleus. Tomishima and Yonei'
have given the electron density for calculations on
the rare gases where UTF+ U„was used. One can
use their results to get a rough estimate of the
validity of our method, by calculating Jkso I~d v

over a sphere of radius Z ao around the nucleus.
We find this quantity to be roughly half of the dif-
ference between the calculated and correct ener-
gies. This suggests that f (v) be essentially zero
out to x larger than Z ~ao. The correct cutoff
should in fact be such that the 1s density no longer
dominates the total density.

Gombas has in fact suggested"2 that the
Thomas-Fermi term U» be multiplied by a cor-
rection factor. For the electrons with principal
quantum number n, the kinetic energy would be
the Weizsacker contribution plus (2n —2)/(2n+1)
times the Fermi contribution [Eq. (7)]. In the
present interpretation, the factor of X =0. 2 in the
Weizsacker term near the nucleus (while keeping
the full Fermi term) found by Yonei and Tomishima
has no deep significance. It is suggested that
0 2 Uw+ UTF is roughly equivalent to Uw +f(x)UTr
over the important region.
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