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A liquid cluster of identical molecules is considered, and it is concluded that in the case of
classical systems: (i) The macroscopic rotation can be defined irrespective of the molecular
mobility. (ii) The canonical partition function is approximately separable into translational,
rotational, and internal partition functions, and the numerical value of the rotational parti-
tion function is approximately the same as that of a rigid system with the same density and

shape. (iii) The rotational symmetry number need not be considered when dealing with the
usual phase integral of nonrigid systems, such as that used in this paper. (iv) These con-
siderations lead to a value of about 10 for the rotational partition function of a cluster of
about 100 water molecules.

I. INTRODUCTION

It has been assumed by Lothe and Pound' ' in the
theory of homogeneous nucleation of liquid from
vapor, that the canonical partition function Q of a
small liquid cluster of molecules (typically about
100 molecules) can be approximated by the product
of the translational partition function Q„ the rota-
tional partition function Q„, and the internal parti-
tion function Q, , i. e, ,

Q=- Qg Q, Q;.

i,othe and pound' further assumed that Q„ is ap-
proximately given by taking the cluster to be rigid
and by using a symmetry number of unity. In this
case, the rotational partition function is of the or-
der of 10 in a typical case.

It has been shown that the approximation (1) is
valid in the case of semirigid systems like poly-
atomic molecules or crystallites. The rotational
partition function of these semirigid systems is
well defined, and the symmetry number associ-
ated with the rotational partition function is clearly
understood. ' It should be emphasized, however,
that the possibility of defining the lattice sites in
these systems has crucial importance for the va-
lidity of the approximations used.

In the case of nonrigid systems like liquid clus-
ters, it is impossible to define the lattice sites.
Hence, the validity of the Lothe-Pound approxi-

mation is by no means obvious. On the basis of
qualitative considerations, Abraham and Pound"
concluded that the rotational partition function of
a liquid cluster could approach unity for liquids of
high molecular mobility. However, the qualitative
considerations used by them are not satisfactory in
the present authors's opinion. Since Lothe and
Pound's approximation has critical importance in
the capillarity-approximation theory of homoge-
neous nucleation, it is desirable to investigate its
validity in a quantitative way.

II. DEFINITION OF ROTATION

The concept of rotation is well defined in semi-
rigid systems like polyatomic molecules or crys-
tallites. Since the molecular structure or the lat-
tice sites can be defined in those systems, one can
use the reference axes fixed to those structures to
describe the rotation. On the other hand, the
concept of rotation of a nonrigid system, a liquid
cluster in the present case, is not clear, because
the lattice on which one can fix the reference axes
is not defined in this case. Recently Meyer and
G~nthard' used the internal-motion axis system to
define the rotation of a general asymmetric-top
molecule undergoing almost arbitrary deforma-
tions. The angular velocity of the reference axes
is well defined in their treatment, but the angular
orientation of the reference axes is not explicitly
defined. The internal-motion axis system will be
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extended and applied to a liquid cluster in the fol-
lowing.

Consider a liquid cluster of n identical mole-
cules. Assume monatomic molecules for simplic-
ity. The atoms can be treated as particles accord-
ing to the adiabatic approximation" and the parti-
cles are assumed to be interacting quite strongly
to form a liquid cluster. The classical statistical
mechanics is assumed to be applicable throughout
this paper, and this is usually a good approximation
for liquids. '

The system (a liquid cluster) may be translating
in space and colliding with the other clusters, mo-
nomer molecules or the walls, as in the case of
homogeneous nucleation of liquid from vapor. How-

ever, the collision time is very short compared
with the time period between successive collisions,
and hence the system can be represented by an en-
semble of systems which are free from all external
forces. ' It is noted, however, that this may not
be the case for a system whose temperature is
close to the critical temperature, because the pe-
riod of interaction between a cluster and other
clusters and monomers becomes appreciable, and
correspondingly the classical states corresponding
to this time period will contribute appreciably to
the partition function of the entire system of super-
saturated vapor. A situation of this kind is ex-
cluded from the following argument. '

In the absence of external forces on the system,
the angular momentum L is conserved. The angu-
lar momentum about the origin 0 of the laboratory
Cartesian coordinate system Z is given by

n

r,.xmr, ,
i=1

where m is the mass of each particle, and r,. is the
,position vector with origin at O. Equation (2) can
be rewritten as follows' &

' in terms of the position
vector R of the center of mass 0', the position
vector r,.' of particles with the origin at 0', the
velocity v, of the particles relative to the trans-
lating and rotating Cartesian coordinate system Z.'
whose origin is at the center of mass 0', and the
angular velocity ~ of Z' relative to Z:

turn due to the spin of the system about 0', and we
denote it by 8, i. e. ,

S=I -RxnmR

n n
=m Q r)xv;+m Q r)x((gxr. ) .

i=1 i=1

Let us define ~ such that the first term on the
right-hand side in (4) vanishes, i. e. , zero angular
momentum relative to Z'. Since the last term in

(4) can be rewritten

n
m Z r,'x(&uxr, ') =& ~,

i=1

where 6 is the instantaneous moment of inertia
tensor, the defining equation of ~ is

(6)

Since S and Bare known functions of positions and
velocities of the particles, & can be obtained at
any instant by solving (6).

Since g(d is the spin angular momentum of the
system, it is reasonable to define the rotational
angular velocity of the system by &, in analogy
with the case of rigid systems. In order to com-
plete the definition of rotation, we need to define
the angular orientation of the system. Let us de-
fine the orientation of the system by the orientation
of Z' relative to Z. Once the orientation of Z' is
arbitrarily chosen at some instant t„ the orienta-
tion is defined at any instant t. Thus, it is con-
cluded that the rotation of a liquid cluster of mole-
cules can be defined by specifying the orientation
and the angular velocity of Z' relative to Z. It is
noted, however, that the specification of time t is
necessary to define the orientation. The argument
given above is applicable to any nonrigid system as
well as to a liquid cluster.

III. COORDINATE TRANSFORMATION FOR
SEPARATING THE CLASSICAL PHASE INTEGRAL

n n
L=RxnmR+m Q r,'&v,'+m Z r,'x(a»&r,').

i=1

The first term in (3) is the angular momentum of
the c.m. about 0, the second term is the angular
momentum about 0' and relative to Z', and the
third term is due to the rotation of Z'. The sum
of the last two terms in (3) is the angular momen-

The classical phase integral of a conservative
system of n identical particles is given by the fol-
lowing, in terms of the position vectors r; and

their conjugate momenta p& with respect to the
laboratory coordinate system Z:

exp[-H (r, p)/k T] dr dp, (7)
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where 0 is the classical Hamiltonian and r and p
stand for r&, ... , r„and p„.. . , p„. The inte-
gration domain covers the entire phase space.

The variables in the phase integral are not lim-
ited only to r and p, but any other variables can
be used if the following conditions are satisfied:
(a) The new variables are canonical variables. (b)
There is one-to-one correspondence between the
sets of values of old and new variables. (c) If the
new Hamiltonian does not represent the total ener-

gy, the Hamiltonian in the phase integral is re-
placed by the total energy.

Liouville's theorem holds when the first condition
is satisfied. ' Hence, the distribution function of
the phase points in the new phase space remains a
function of constants of motion at thermodynamic
equilibrium, and the canonical partition function is
given by the same form as that in (7). It is noted
that the second condition assures that all the clas-
sical states are counted once and only once in the
new-variable system. When the Hamiltonian is
not the total energy under the new variables, the
Hamiltonian in (7) has to be replaced by the total
energy in order to associate -kT InQ with the
Helmholtz free energy. Since it is shown, for ex-
ample by Tolman, ' that the volume elements in the
old and in the new phase space have exactly the
same numerical magnitudes under canonical trans-
formation of variables, the three conditions given
above will assure that the classical phase integral
in terms of the new variables has exactly the same
numerical value as that in terms of the old vari-
ables.

The argument given above holds generally for
canonical transformations, including those which
involve time explicitly. Consider a special canoni-
cal transformation which transforms from r and p,
at a time t, to their initial values ro, and po, at
t= 0. The equations of transformation are

where the time is taken to be t&. The phase inte-
gral can be evaluated in terms of (ro, po), given
by (8) with i= tq, and obviously the same is true in
terms of (r, p), as given by (9).

Let us introduce a new set of variables as fol-
lows:

(i= 1,2, . . . , n), (lo)

S,

(i=1, 2, . . . , g),

where R, R are the position vector of the center
of mass and its velocity relative to the laboratory
frame Z; r,' are the position vectors of particles
relative to the center of mass; v,' are velocities of
particles relative to Z' which was introduced in
Sec. II; (d is the angular velocity of Z' relative to
Z as defined in Sec. II; and 8 ' is the inverse ma-
trix of the instantaneous moment of inertia tensor
under the matrix representation. Of course r;
are given by p; /m . It can easily be seen that the
following relations exist between r,-' and v,', on
account of the definition of R, R and ~.

ro = ro (r, p, i),

po po(rq p& i) ~

(8)

n

v,.'= o,
1=1

n

r,.'x v!= O .
i=1

The Egs. (8) are uniquely determined when the
Hamiltonian is given. In order to make a one-to-
one correspondence between the old variables (r,
p) and the new variables (ro, po), the time in (8) has
to be fixed at a value t= t&. Since the solution of the
'equations of motion is unique, (8) can be inverted
as

r=r(ro, p„ i,),

The angular orientation of Z' can be represented
by three Eulerian angles 8, P and g, which de-
scribe the relative orientation of three unit vectors
e&, e&, and es along the Cartesian axes of Z' to
three unit vectors i, j, and k along the Cartesian
axes of Z. e&, e&, and e3, are given by integrat-
ing the following equations under an arbitrary
chosen initial orientation at t= 0:

p = p(ro po 4) ( 12)
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The initial condition can be chosen, for example,
as follows:

is given by I'-U under the new variables, where T
is the kinetic energy and U is the potential energy.
The kinetic energy is given by the following':

e& llr„', e~ llr„' x r„', ,

(13)

n
Z =-,'m(X'+ I'+i')+ —Q m(xl'+y, "+&,' ')'2.

i=-1
e3= e&xe2, at g= p

It is noted that (13) does not give a proper initial
condition if r„' llr„', . However, since those
states form a subset of measure zero in the set of
all the classical states, they can be neglected in
evaluating the classical phase integral. Equation
(13) implies the following:

where

+ -, A&„"+ -,'S~", + -, C(d', I+ D(d, I~I

+ +4) &I CO&I+ +4)ZI Q)Z

n
M=nm, 2= Q m(y,"+z['),

i=1

y„'= g„'= y„',= 0, at t= 0, (14)

n
8= Q m(z,"+x,"),

i=1

where y„'= r„' e&,
n

C= Q m(x,"+y,."),
i=1

n
D= —Q mx;y;I I

i=1
I ~I

and y„~ =r„&~ ez.

Since ~ (t) is a known function of t if (ro, p ) are
given, e„e2, and e, can be known by solving (12);
hence 8, P, and ( can be known as functions of
time. Thus 8, P, and g can be formally written

8= 8(ro, po, t),

4=4(ro, po, t),

q=q (r„p„ t) .

Similarly all the new variables defined by (10) can
be written as functions of ro, po, and t. Inasmuch
as there are 6n+ 12 new variables, there must be
12 constraint equations on them.

The phase integral can be evaluated in terms of
(r „p,), as seen by taking t= 0 in (8). The phase
integral cari also be evaluated in terms of the new
variables if we choose t to be a constant t, in (15)
and in the other new variables expressed as func-
tions of ro, , p, and t. Let us choose t&=0. The
variables which will be used in the phase integral
are now 6n new variables. These are obtained by
eliminating 12 variables from 6n+ 12 variables
[Gn+ 9 new variables defined by (10) together with
8, g, and g] through 12 constraint equations given
by (11) and (14).

Since these new variables are not canonical vari-
ables, we need to introduce canonical variables in
terms of them in order to get the Jacobian of the
transformation to be unity. It seems to be reason-
able to assume that the Lagrangian I, of the system

n
P I&=- g my, z, ,

i=1

n
&= —Z m z,'x,',

i=1

4

sin8 sin P'+ 8 cos P,

~„I=j sin8 cosP —8 sing,

ar, &= P cos8+ 0,
0

X=R ~ z, F= R ~ j, g=R ~ k,

P ~P ~ p ~px] =r)'eg, g] =rg 'eg,

I ~ I8] =z] oe3

o I & p 0 I ~ p
x& = v, e& , y&

= v, e~,

z,'= v,' ~ e, , (i = 1, 2, . . . , n) .

n —1
I ~ Ix —— xn-

j=1
I I I

n-3
yn-2 =

i=1

n-2
z„',= —g

i=1

and that x„', j„', y„' „y„'&, z„', and z„', are func-
tions of

Using the constraint equations (11) and (14), we ca,n
eliminate 12 variables from T. For example, we

~ ~ I I I I I ~ Ican eliminate xn~ Xgg~ ~n"g~ Sn-p& n& ~n-g~ +n ~

j„', j„' &, y„' 2, ~„', and i„', . It can be easily seen
that
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( r J ~ r e r r
xn-1 &

' ~ ~ p xt. o xn-1 ~ ~ ~ y x1 ) gn-3) ' ' ~ y

r 0 r ' r r o I
31 & 3n-3 r ~ ' ' r X» ~n-~& ~ ~ ~ q Z» ~n-2r ~ ~ ~

p Zi i ~

The potential energy is formally written

r r r ' r r rU(xl»' ' ' x »1 &71»' ' ' yn-3&»l& ~ ~ ~ &»»-2)

g; p„', p&,', and p,'stand for p„.; etc. , as defined by
(18), and similarly x', y ', and z ' represent the
3n-6 variables x,', etc. The first bracket in (19) is
the translational kinetic energy of the c.m. and
will be called the translational energy, while
T;+ U may be termed the internal energy. The
third bracket is the kinetic energy due to the ro-
tation of Z ' and will be called the rotational energy.

The generalized momenta are given as follows: IV. ROTATIONAL PARTITION FUNCTION

QL, 0 0

p =—.=MX p =MY
8X

0

Pz= MZ, The canonical part&tron function of the system zs

given by the following, in terms of the new vari-
ables:

, ex„'
~pi = e =mx +mx ~"

eXp i n 8 r

0 p 0 p
Xn ~ r ey„g+$n o r+mgn

ex~ ex. 1
Q=,„~~ exp(- E/k T)

nrem

~ r
~ r ~gn-a ~ r

+mXn g
—

~ r +m
Bxi

0 r 0 r

o"r+mZn y . rexi xg
xdX dp» ~ dp dpe d»„', dp„ (20)

(i = 1, 2, ~, n 1);-

and similarly for p, ' and p, r-:

i

where E is expressed by (19) . Transforming the
variables from pz, p~, and p& into (d„r, ~,r, and

(20) becomes

81:
pe = —.= A cos 4 id„'- B sing ie ~

9
~g

x y

+D(cosg ie, —sing &0„') —E sin'pie, +F costi', ,

Q= Qi Q„;,

where Q, is the translational partition function

(21)

BI
pe= —.=A sin8sinte„+B sin8 costar ~

8

+ C cos8 ie, + D(sin8 sin'pie„+ sin8 cos~'+„)

+E(sin8 costumd, + cos8ie, )

+ F(cos8 ie„+ sin8 sin&' ice ),

BI.
py = =CD) +E +Ega '

~

8

The total energy is

E= T+U

dXdYdZdpxdprdpz

and Q„; is the rotational and internal partition
function

1
Q&' ~ & i &„3&& 6n ~ fb

Xdx dp r ~ ' 'd& -2dpz r — . ~ ~
r 1

1 n 2 p3

x exp[- (—,
'

Aid„,+ + Fie, id„.)/AT]

(22 )

(P»+Pl" +Ps) + Ti (pp&t »& &P&t& x
& 3 &

~ )
x d8d&f&did)did'„d&&e &did) /Z, (23)

+ (fiPe +fepe+fsPe +fapepe

+fep, p, +f,p„pe)+ ~(x', y', &'), (1.9)

in which J is given by

8(~ox & id'" fez') S(pe& Pe& Pe)
(Pet Pe & Pe) 8(id && ie ~ &id ~ )

where the second term T; is the kinetic energy due
to the motion of the particles relative to g' and will
be called the internal kinetic energy. f„.. . , fe
are known functions of x', y', z', 8, and

= [(ABC AE —BF —CD-+ 2DEF)sin8

—(EF cos 4 -E'F sin t)cos8] ' . (24)
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The first integral in (23) corresponds to the in-
ternal motion of the particles, and the second part
corresponds to the rotational motion of Z'. How-
ever, it should be noted that those two pa, rts in (23)
are coupled, because the integrand (including J)
of the latter part is a function of the internal co-
ordinates x', y', and z'. And yet, since U(x', y',
a') is a strong function of the distribution of the

particles in the case of a liquid, only the configu-
rational states which correspond approximately to
the minimum value of U will contribute appreciably
to the configurational integral. The moment of
inertia coefficients and the products of inertia
A, I3, C, D, E, and F are nearly constants for
those configurations. Thus the following approxi-
mation should be valid:

1

J( 8
—

)
exp{-[T)(x' y' a' P,', P„' P, ')+U(x', y', 8') + —,'A (x', y', &')J'(x, y, z, 8,

x'+ ' ' '+ ( ' y ' l&g Rpp ]/~&)dx) ~ da„2 =——exp[-(~@A ~„e+ ~ ~ ~ +F e e(g e)/)e'T]
0

where 4, , A„~, F, are the values corresponding to the distribution of particles which minimizes U.
Under this approximation,

1
where Q =— exp[-(—,'A a„e+ ~ ~ +Fore, e ~„e)/kT]d8dgd gd+„e d~ e d~, e;

Q

(27)

1
Qg t I 3ee-6 ~ ~ exp — T, + U k T dx', dP„,' ~ ~ dk„' ~ dp,

'
~n-2 ' (28)

Q„can be referred to as the rotational partition
function, and Q,. as the internal partition function.

If we assume a macroscopically. spherical-sym-
metric liquid cluster as the system, then

AO=BO= Co, D =EO=F =0, J =1/(Ao sin8).

Hence, (27) becomes in this case

Q„= f f Ae eep[- A (te, te, +tee )/ jep
&&sin8 d8dgdgdu„ed+ p

~ da, e

(29)

The result given by (2g) is the same as the rota-
tional partition function of a spherical rigid sys-
tem with the moment of inertia Ao.

V. ROTATIONAL SYMMETRY NUMBER

Although a rigorous treatment of the rotational
symmetry number has to be carried out in terms
of quantum mechanics, ' ' it is also possible to
understand it in terms of classical statistical me-
chanics when the classical approximation is valid.
The canonical partition function of pg identical par-
ticles is given by (7) in the classical approximation.
It must be noted that the indistinguishability of
identical particles is taken care of through the fac-
tor 1/n! and that all the identical particles are
treated as if they were distinguishable in the inte-
gration„ in other words all the classical states
which differ only by permutation of particles have
to be counted as distinct states. In the case of
semirigid systems like polyatomic molecules, it is
convenient to carry out the integration by assuming
that each particle is localized at its site, for ex-
ample, through the normal mode analysis. How-

ever, since the states which differ only by permuta-
tions of particles have to be counted as distinct, the
result obtained under the localized situation has to
be multiplied by n t if the lattice does not have ro-
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tational symmetry. When the lattice has rotati. onal
symmetry, multiplication by n l yields too large a
result and this must be corrected by dividing it by
the symmetry number in order to count all the clas-
sical states once and only once. Thus the symme-
try number is defined only when the phd. se integral
is performed under the localized situation. The
details on this point are discussed by Ehrenfest and
Trkal and Mayer and Mayer, ' and were recently
reviewed by Nishioka and Pound.

As discussed above, the symmetry number need
not be considered when (7) is directly evaluated
without using the localized situation. Since (7) and

(20) are the same physical quantity represented by

two different choices of variables, the symmetry
number need not be considered in the present argu-
ment. Ther efore the rotational partition function
of a spherical liquid cluster is approximated by (29).

VI. CONCLUSION

The rotation of a liquid cluster of molecules can

be defined irrespective of the molecular mobility.
The canonical partition function of a liquid cluster
can be approximately separated into translational,
rotational and internal partition functions. The
symmetry number need not be considered in non-
rigid systems. The numerical value of the rota-
tional partition function of a liquid cluster is approx-
imately the same as that of a rigid system with the
same density and shape and this yields a value of
about 10 for a liquid cluster of about 100 water
molecules, as assumed by Lothe and Pound. ' It
should be possible to extend the argument of this
article to nonrigid systems in general.
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