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The long-wavelength dispersion of the phonon spectrum in liquid He can be computed from
first principles. Part of the dispersion coefficient enters through the Feynman spectrum Ep(k),
and the other part enters through corrections to eo(k) . The latter has been investigated by
Jackson, Feenberg, and Lee using a perturbation expansion in the free-phonon basis. We
define here a more plausible ordering scheme for the expansion and carry out the computation
to second order.

I. INTRODUCTION

Departure of the phonon spectrum «(k) in liquid
He' from the linear dependence Ack is of impor-
tance for phonon-phonon interactions. At small k,
this departure can be characterized by a dispersion
coefficient y defined by

«(k) = fice(l —yk )

Due to the smallness of the effect, y as yet cannot
be determined from experimental data. A recent
theoretical calculation derives y from the hydro-
dynamic Hamiltonian; however it involves a cutoff
momentum which lies beyond the hydrodynamic
limit.

A perturbative procedure developed by Jackson
and Feenberg employs as basis functions the set
of "tree-phonon" wave functions: density fluctua-
tions operating on the ground-state eigenfunction.
Using matrix elements interpreted as phonon-split-
ting or coalescing processes, they calculated the
second-order correction to the Feynman spectrum
«3(k):

«3(k) = 8'f3'/2mS(k)

where S(k) is the liquid-structure function at T = 0.
Their results are consistent with those of Feynman
and Cohen, and with experiment. Lee extended
the calculation to include some third-order terms,
obtaining numerically the departure of the spec-
trum from «3(I2) at long wavelengths. It is the
purpose of this paper to define a more plausible

ordering scheme for the perturbative procedure
and to complete the Jackson-Feenberg-Lee calcu-
lation under the new scheme.

First we construct the free phonon functions

lk)= pre, /[s(u)]'",
lf —h, h)=p„- ~„e,/[s(lk —T )s(a)]"',

k —h —h, h, h ) p=22-2 php'h@0

x [S( f-h-h' )S(f3)S(I3')]-'", etc. , (S)

where 4O is the ground-state eigenfunction of liquid
He4, and

p2= (1/VN)Z e' ' m,

S(k) = 1 p p Je '
[g (y) —1)d'r

X(X- 1)
8(+12) 2 J O~r34' ' ' N

P

These functions are normalized' but not orthogonal.
A convenient partial orthogonalization can be achieved
by applying the Schmidt procedure to functions con-
taining different numbers of free phonons. Thus,

lk&= lip,

lk —h, h& = [lg-h, h) -P ll & ( l$-h, h]/I
1

I
-h-h', h, h'&= [lk-&-h, h &')

-~ l»(ilk-h-h', h, h')
1
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-~ IT, m&&T, ml&-f-h'-, h, f')]/I', «', (5)
lm

where the prime on the double summation reminds
us to avoid double counting, and the denominators
j and I' are normalization factors each differing
from unity by a term of order I/N. It is in the set
of basis functions (5) that we compute all matrix
elements of the unity operator and the Hamiltonian,
the latter being given by

(b) (c)

FIG. l. Schematic representation of matrix elements
calculated.

The matrix elements relevant to our present cal-
culation are schematically represented in Fig. 1.
The computation of these matrix elements is
straightforward, though tedious, if proper trans-
formations are made to take advantage of the fact
that 40 satisfies the Schrodinger equation

&+0= So+0 ~

Thus the two-particle potential v(x) becomes com-
pletely absorbed into the liquid-structure function
S(k), which is directly related to the two-particle
distribution function. %here three- and four-
particle distribution functions appear, one may em-
ploy the convolution approximation which expresses
them as functionals of the two-particle distribution
function. %e shall mention briefly in Sec. II the
computation of these matrix elements and refer to
Ref. 4, where matrix elements of types (a) and (e)
were obtained.

Using the nondiagonal matrix elements as per-
turbations, we can carry out a perturbation ex-
pansion for the energy ~„-in the one-phonon state,
taking k «p'~' Since the unperturbed energy is
given by the diagonal matrix element

&k H k&=EO+&0(k)= Elo'-

all terms in the perturbation series give rise to
corrections to the Feynman spectrum eo(k). Here
we call attention to the fact that the basis is not
completely orthogonal, therefore each vertex ac-
tually contains the nondiagonal element of JI as well
as of 1, in the combination

&T, . . . la lm, . . . & -E,"&
&T, . . . m, . . . &

=&T, . . . la'lm, ... ) . (9)

II. MATRIX ELEMENTS OF H'

The matrix elements of II' may be computed
with the a'd of Eels. (9) and (5). We first express
them in terms of the free-phonon functions, Eq.
(3). To order 1/N, we find

&k k —f, f&=0 (1o)

&klk-f —h', f, f'&=0

&k —f, h k —f', f'&=(k-f, f k-f', f')
—(f—f, f k)(k k —h', f'), etc. , (12)

(14)

x(klk-h~, e) -(k-f, flk)(f Hlk-f', h') +E'"(k-h, flk)(kl&-h~. h'& «c. (15)

& IHlk-f, f&=(k IHlk-f, f)-E„-'"(klk-»f) (13)

&flHlk-f-f', f, f'& =(klHlk-f-f', f, f ) -E,-"'(fl&-f-f', f, f') - [(klHlk-f, @-E-„'"(&&-f, f)]
[(k —h, flk —f—f, f, h) —(k —f, hlk)(k k —f—h', h, f')]

—[(k Hlk —h', h') —E"„(klk—h', h')][(k-h', h' k —h —h', f, h')]-[(k H k —f—f', h+h')

-E'-'(k k-f-f', f+f')][(k-f-h', h+h'lk-f-h', f, h')]-[(k-f-f', f+f' k)
x(flk —f-h, f, f')],

&k-»flail&-f'

h'& =(k-h, hlHlf-h~, h~)-(&-f, hler &)

Using the convolution approximation for three-, four-, and five-particle distribution functions, we find
that the matrix elements on the right-hand sides of Eqs. (12)-(15)are given as
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(f k —f-h, f, f') = N ' [s( f-f—h
I
)s(h)s(h ')s(k)] ' &' [-2+ s(

I
h+ h'

I ) +s(
I
k - h

I ) + s( lk - h'
I )], (17)

(k-»hlk-h', h')=N '[s(lk-hl)s(a) s(lk-h'l)s(a')]'" [-2.s(».s(lh-h'I)+s( k-h-h'I)], (16)

(f—f, flf —f—f', h, f')= (f-flf -f-f', h ), etc

(klHlk-h f)=Ego)(flf-f, f)+(h'/2m) [Ns(k)s(lf-fl)s(h)] '"
[f ~ (k —f)s(h)+f'fs(lk -h ) -k's(lk -hl )s(a)]

(i9)

(2o)

k-h-h»h')=~[;"(klk-h-h', h, h')+(h /2mN)[s(lk-h-h'I)s(h)s(h')s(k)]-'~a

&&&f (f-f-f')s(a)s(a' )s(lf+f'I)+(f i)s(lk-h-h'I)s(lk-hl) s(a')+(f f')s(lf-f-f'I)

xs(lf-f'I»(»- [k'/'(»] s(lf-f- f'1)s(a)s(h')s(k) [- 2+s(lf+f'I)+s( f-f'I)+s( f-f )]] (21)

(k —h, hlHlf —f', f')=8 (f-h, Klf —f', f )+(a /2mN)[s( k —K )s(a)s(lf —f' )s(a')] ~ 2

((f—f) (k —f')s(a)s(a' )s( f- 'I) h h's(lk-hl)s(lk-h'l)s(lh-h'I) h'(k-h')s(lk-hl)s(a')

x s(lf -f-K'I)+f' (f-K)s(a)s(lf -f'l)s(lf - f-h I) -(k'/s(k))s(lf-f )s(a)s( f-f'I)

&&s(h')[-2+s(k)+s(lf —f'
I )+s(lf -f-f'I)]], etc. (22)

(k —h', h' IH Ik —h, f) = (h /mN)K'h

&&[s(lf-f'I) -s(lh+h'I)] (26)

In these results we display only terms which are
consequential in the perturbative calculation that
follows. In particular, Eq. (25) does not indicate
that (klHlf —h —h, h, f') vanishes identically, it
simply means that the perturbative correction to
the phonon spectrum which arises from this ma-

Equations (16), (18), (20), and (22) have ap-
peared previously in Ret. 4. Equations (17) and
(21) are evaluated in an analogous manner. Equa-
tion (19) requires the knowledge of the five-particle
distribution function, and is evaluated with the aid
of the convolution approximation. Details are
given in the Appendix. Substituting Eqs. (16)-(22)
into Eqs. (13)-(15), we find in the limit of small
k(k «p'"):

(klHIf h h) = (- h /2m)[Ns(k)s'(h)] 'r'

xfk'[S(h) —l]S(h) + [(k.KP/h] ds(h)/dh}, (23)

(h HIK -f, f)=(-h'/2m)[NS(a)s(a' )s(lh -hl)] ~~

x(a"[s( f' —K ) —i]s(h) (24)

+h' K[s(r)-s(lh'-h )]],
(25)

e(k) = e,(k) f1+y'k'], (27)

Figure 2 shows schematically the correction terms
we seek. Each diagram makes a contribution
toward y'. Even though we begin by writing down
a Brillouin-signer perturbative expansion, it is
clear that for small k we may replace e(k) in the
energy denominators by eo(k) without affecting the
value of y'. In essence we employ a Rayleigh-
Schrodinger expansion. With the aid of Figs. 2
(a)-(g) and the usual diagrammatic prescription,
we obtain7 the following expressions, retaining
only terms of order k in a power series in k,

e,(k) —1 - dh;() =, J, () '()[()- ]'

+ -,'ss(s)[s(s) —(]s'(s)+ ls'[s'(s)]I=-~.', (ss)

trix element is of an order higher than what we in-
tend to retain.

III. PERTURBATIVE CORRECTIONS TO PHONON

SPECTRUM

The knowledge of the matrix elements of II' per-
mits us to evaluate perturbative corrections to the
phonon spectrum. We define a coefficient y' so
that the perturbed phonon energy (.(k) may be ex-
pressed as
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(b) (c) (d) (e) (&) (g)

FIG. 2. Schematic representation of perturbative
corrections to cp(k).

e,(k)
k's, (k)

e,(k)
k'so(k)

e,(k) e,(k)
k'~, (k) k'e, (k)

, , f f dhdh'

(29)

x(s( h h'I)[s(a) —I] [s(a ) —I]

, h-h' 2h h'
""""("'(aa) 'm'a

x s(lh —h' )[s(r ) —1]s(a)s'(a')

h' h' h' h'

ak'

xs( h - h'
I
)s'(a)s'(a')] -=y,',

X([eo(a')+ eo(a)+ eo(lh —h' )]

xa "s(a)s(lh —h'I)] '=-y,',

', , ff dfdh e,(a)

x([s(a') -1][S(a)—1]S(a')S(a)

+ oa' [S(a) —1]S(a)S'(a')

+ —.'a[s(a') —1]s(a' )s'(a) +

x [2(h'h') + a a"]S'(a)s'(a')].

x(r, s(a)[slh-h'I) —1]
+ h'h' [s(a) - s(

I
h - h'

I )]).(a s(a )[s(lh-h I) -1].h h [s(a )-s(lh-a I)])

x([eo(a ') + &o(a) + eo( lh —h'
I )]

k'e (k) 8(2 )' '

x(a' s(a)[s( h -h' I) —1]+h'h

x [s(a) —s(l h —h'
I
)]r' (s'(a') [s(a') —I]'

+ —.'a"[s'(a')]'+ —,'a' [s(a') —1]s(a' )s'(a')j

xa'a"s(a' )s(lh —h' )] '-=y,' .
Finally, y'= y,'+y~+ '' +y~+

(32)

(22)

y' = y '+ (y'+ ~ ~ ~ + y') + ~ ~ ~ (34)

What we obtain in this calculation is the correc-
tion to eo(k), not to Rk. The prescription for cal-
culating the more interesting coefficient y defined
in Eq. (1) requires a determination of how S(k)
deviates from rik/2mc at small k. Conforming to
the popular practice, we guess

S(k) = (ak/2mc)(I+y"k'), k «p'"
and find y= y" —y'

(35)

(36)

The calculation of y" by variational methods so
far has not proved successful. However, the dif-
ficulty is a matter of practicality and not of prin-

A careful analysis of the matrix elements attests
to the obvious conclusion that the increasingly
more complicated vertices rapidly diminish in
strength. There is no reason to expect the usual
scheme of counting vertices to provide proper or-
dering of the correction series, and thus the prop-
er grouping of the y' contributions. The scheme
which we adopt counts the number of rings formed
by free-phonon lines; thus, Fig. 2(a) corre-
sponds to the only first-order contribution, and

Figs. 2(b)-(g) constitute second-order contribu-
tions. Such a scheme proved successful in the
study of collective excitations in a high-density
charged Bose gas, and will be accepted here on
grounds to be given presently. Under this scheme,
the Jackson-Feenberg calculation' is complete to
first order, whereas Lee selectively evaluated
(e), one of six second-order diagrams. Alternate-
ly we could say that our diagrams are classified
by the number of internal free-phonon momenta
to be integrated over. A plausible and/or con-
vincing argument begins with associating a small-
ness parameter n with the volume of the region in
k space in which [S(a) —1] and S'(a) —=dS(a)/da dif-
fer appreciably from zero: Both are short-range
functions contributing significantly only when the
argument is small. One must take care not to
overcount. For example, the expression [S(a) —1]
x[S(a ) —l][S(Ih —h I) —1]should be regarded asof
order a and not cIt'. Exactly the same line of rea-
soning was used in connection with a previous cal-
culation' involving' matrix elements for liquid He .
In the microscopic theory of liquid helium, there
is no transparent way of defining a numerical ex-
pansion parameter. We must devise from exper-
ience a plausible scheme and leave the final justi-
fication to numerical computation. Under the
present scheme, then, the contributions to y'

should be grouped thus:
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ciple. "
Table I shows the numerical values calculated

for y' using a theoretical S(It) obtained by
Campbell and Feenberg. Our y', differs from
that of Ref. 4 on account of an integration error in
that reference. The difference in y,

' has resulted
from the different S(&&t) employed. Note that

ly& l & ly,
'

), and should not be omitted as done in
Ref. 4. Also,

P

&a
P

~e
P

Vf

Lee (Ref. 4)
This
calculation

—0.239 —0.0678

—0.462 —0.0591 —0.0640 —0.0096
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APPENDIX: EVALUATION OF (k, + kt,k, 1k, ,k, I( )

(kl+ k3& k31kll kSL k3) [S (I33)S( kl+k31)S(I31(I33)1 f pkt + k3 pkSpkt pk3 pj 0 12 ~ ~ .~
N

where p" " p- p" p" p. =
k +k2 k3 k k k3 NS/2 8ikl' rit+ tk2 &)t+»3 Pkm N t f1+ (N I)

i jklm= 1
~t

)( [1+ 2(8ikl'rl3+ 8ikk'rl2+ 8 ik3 ~ r13+ 8i(kl + k3) ~ rlk

(Al)

~0

+8 l "3+ 3 13+8 & l+ kS) P&3+8&(k3+ k3)' x&3+8&(R& - k3&:x&3+ ((Q- k3) rlk]

+(N —1)(N —2)[8'"i')348'"3' l3+8 k3 Plk+ 8&&kl+k3+k3) R&3 3 t(kl'P&3+ k PSS&

+ei(R1'r12+ k3 r23) +ei("1 ~12+ %3'r32) +ei(k1'r12+ k3 13 +ei(k1'r12+ k r31)

w ~ ~ OO

k2 ~12+ k3 r23) + ei(k2 ~12+ k3 r13) ~~
'

k2 112 %3 r31)

+8 21 3 31 +ei 1+ "2) 12+ i "3 r13+ei("1+ k2 &12 + ik3'r31 +ei k1+ k2)' r12+ ik 'r

+8'"1'"2"'»'"3'»+g'"'12''"2- k3 '"32+e &1'r12'i k2'k3 ' 32+e 1- 4 12

+ 28 l l3 3 33 S 13 y 8 l 13+ "3'333+ k3'PS)&+ (N 1)(N 2)(N 3)
X [8 1 12+ "3' 32 ~8 l 12+ kS P34) 4. 8 &IS P&3+ k3'&34) ~8&(k)+ k3) ~ P&3+ ik P34)

"1' 12+ "2' 32 3 ~34) +e«k1'112+ k2 132 k3 43)

+8 l lk 3 3 S 34 +8 l 12 "3 33+ "3' 43 +28& kl 313+ IS PSS+ kS'r&4&]

+ (N —1)(N —2)(N —3)(N —4)8' P k&kt3k' 33+ kS'&43&j
(A2)

Substituting Eq. {A2) into Eq. (Al), and making
use of Eqs. (AS)-(A7) of Ref. 4, we find all the
integrals in Eq. (A1), except

(N —1)(N —2)(N —3)(N —4)

Xf8'("l P&3+ 3'333+ kS'&43& &Irk d0 r12".~

(1/N) f 8&(kt P&3+ Q 333+ k3 43)

X P(12345)dl l 3343 (AS)

which involves the five-particle distribution func-

tion P(12345). We shall use the convolution aP-
proximation" for P(12345), as shown in Fig. 3,
where an open circle takes on a label selected non-
repetitively from 1, 2, 3, 4, and 5, a darkened cir-
cle denotes a particle i, i &5, with a volume inte-
gration over its coordinates, and each bond be-
tween particles i and j represents a factor
[(, (r;;) —1], g(r) being the radial distribution func-
tion defined by Eq. (4). The number above the
summation sign informs us of the number of terms
contained. Now, keeping terms of order N in
(AS) as we did in evaluating all the other integrals,



DISPERSION OF PHONONS IN LIQUID He

l0 g 30
P(, ((2345)= )0 ) + g + g

60

+Z +WC +Z~-- +Z
0 CP

FIG. 3. Convolution approximation for the five-particle distribution function.

(N —1)(N —2) (N 3)(N —-4)

x je&&&g'&ps' ~a'&as' g F5& @adr0 13 ~ ~ N

-S(k,)S(k,) -S(k,)S(k,)+S( f,+f, )

+S(k,)+S(k,)+S(k,)+S(k,) —2] .
(A4)

-N[S(k~)S(ka)S(ks)S( fy+fa )

-S(k,)S(k,)S(if,+f, i) -S(if,+f, )S(k,)

Consequently,

(k, +ks, ksiki, fa, fs)= [N 'S(kt)S(ka)S( g+fs )]

=(f+f,if„f) .
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