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Recent low-temperature measurements of the mobility of negative ions in dilute He -He
mixtures are explained. A new method based on the Boltzmann equation is used to derive the

general formula for the drag force of a heavy impurity in an arbitrary gas. It is shown that
the structure of the negative ion (electron bubble) depends on the He concentration C3 and

temperature. Also, for C3 above about 1% the distortion of the He distribution by the moving

ion becomes important. The application of our theory to pure, highly degenerate He shows

that the mobility remains finite at T=O and rises with temperature. Both results agree with

experiment.

I. INTRODUCTION

Recently, Meyer and Neeper"' have studied the
mobility of positive and negative ions in dilute He-
He mixtures with atomic He' concentration C3
ranging 1.5&10 to 4. 4. ~10 . In their tempera-
ture region(0. 05'K&T&O. 5 K) the mobility is
determined by He scattering except in the very
dilute case, where a small correction for phonon
scattering is necessary. Some of the experimental
results for p, pC3 where p, p is the low-field mobil-

ity, ' are shown in Fig. 1. One sees that the prod-
uct p, pC& does not depend very much on concentra-
tion. The remaining variation of p, pC3 with con-
centration, its rather complicated temperature
dependence, and the vast difference in the behav-
ior of the positive and negative ions impose severe
restrictions on a theoretical explanation. We pre-
sent a theory that explains some of the observed
features and yields quite good agreement with the
experimental results on negative ions.

For our purposes we assume that the He3-He
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FIG. 1. The product of atomic He concentration C3

and low-field ~obility p(), as a function of temperature.
The solid curves are calculated with the simple theory

0
using an ion radius of 28 A, while the dashed curves are
measurements from Hefs. 1 and 2 (corrected forphonons).
(a) C3 ——1.8 &&10; (b) C3= 2.9 &&10; (c) C3= 2.9~ 10

mixture can be described as a Fermi gas, the
superfluid He acting merely as an inert background
that dilutes the He quasiparticles. This picture,
proposed by Landau and Pomeranchuk, has proved
successful in many cases. Interactions between
the He quasiparticles are taken into account only
through a slightly temperature-dependent effective
mass m*. Effects that become important for large
ion density are neglected; such a drag effect has
been discussed recently by Bailyn and Lobo. '

In Sec. II we derive a general expression for the
drag force which acts on a heavy impurity moving
through a dilute gas of arbitrary particles or
quasiparticles. This is done by using the Boltz-
mann collision integral to calculate the average
rate of momentum transferred to the gas. To
lowest-order in the drift velocity, the method leads
to the same formula as that derived by Davis and
Dagonnier with a Fokker-Planck equation. Our

treatment is simpler and indicates that the formula
applies in a wider range. The connection to a dif-
ferent approach used by a number of authors
is shown. Only the recent treatment by Baym,
Barrera, and Pethick' leads to a general and cor-
rect result.

In Sec. III the mobility for impurities with radi-
us a small compared to the mean free path X of the
He -He mixture ("Knudsen limit" ) is evaluated
numerically. We take a simple hard-sphere scat-
tering potential for the impurity. The procedure
yields only very qualitative agreement with the
measurements on negative ions ("electron bubbles" )
and no agreement with positive ions.

We propose two effects which together can ac-
count for most of the features observed with neg-
ative ions. It is shown that, at low temperature,
He atoms get adsorbed at the surface of the neg-
ative-ion complex, thus altering its scattering
cross section. Similar ideas were put forward by
Rayfield' and Dahm" to explain the reduction of
the critical velocity for vortex-ring creation by
negative ions when He is added to superfluid He .
A simple model for the modified electron bubble
leads to an expression for the bubble radius and
the average number of adsorbed He' atoms as a
function of the chemical potential of the He' solu-
tion. A suitable choice of two parameters allows
us to reproduce the temperature dependence of the
low-field mobility quite well for temperatures
above about 0. 1'K. If one adjusts the radius of
the ion structure to the low-concentration data, the
mobility at the higher concentrations comes out to
be altogether too low.

This discrepancy can be removed in oart by in-
cluding deviations from the Knudsen limit. In the
Knudsen limit the distortion of the distribution of
gas particles by the moving ion is neglected. In
Sec. IV this distortion is computed to first order
in a/& and in the drift velocity V of the ion for a
Boltzmann gas of real particles. At a Hes concen-
tration Cs = 2. 9%%d, the correction to the mobility is
about 33%.

In Sec. V the results are applied to pure and
highly-degenerate He3. Our treatment shows that
the mobility remains finite at zero temperature in
agreement with experiments by Anderson et al. ,

'
which extend down to 0. 03'K. Since three au-
thors" ' have predicted a T dependence of the
mobility at low temperature, we examine the ap-
proximations involved for this ease more closely.
The Knudsen correction leads to a contribution pro-
portional to T' reducing the drag force. An esti-
mate of the magnitude of the correction based upon
the calculations in Sec. IV gives qualitative agree-
ment with experiment.

Finally, in Sec. VI the deficiencies of our treat-
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ment are discussed, and some brief remarks on
positive ions are made.

We have introduced

I"(p v-p'v') =5' '(v-v') I'(v; p-p') (8)
II. MOBILITY OF A HEAVY IMPURITY IN A

DILUTE GAS

The analysis in this section will be presented in
such a way that it applies to the mobility of a heavy
impurity in a dilute system of an arbitrary kind of
elementary particles or quasiparticles. For sim-
plicity the term "quasiparticle" will always be used
for the scatterers.

Assume that the distribution functions n and f for
the quasiparticles and the impurity, respectively,
can be determined by a system of two coupled
Boltzmann equations. The mobility p 0 in an iso-
tropic medium is defined by the relation V = poF,
where F is the external force acting on the impu-
rity, and V=(v) is the thermal average velocity
of the impurity. In the stationary state F is equal
to the average rate of momentum transferred by
the impurity to the gas, given by

If the quasiparticles have an energy spectrum of
the form c =P2/2m*, the condition

where M is the effective mass of the impurity,
ensures that the approximations (3) and (4) can be
used.

Equation (5) has several interesting features:
(i) It is valid in the zero-temperature limit of a
Fermi gas. The implications of this fact for
pure He3 are discussed in Sec. V, where also a
more careful examination of the approximations
(3) and (4) for this case is presented. (ii) Equa-
tion (5) is valid for arbitrary velocities V. (iii)
By interchanging the summations over p and p' in
one of the terms in Eq. (5) one obtains

F =8'+~ n(p' —p) I'(v; p —p') (8)

Here g is the spin degeneracy factor of the quasi-
particles and n is to be taken in the vicinity of the
impurity. If we assume that the impurity obeys
Boltzmann statistics, the collision integral has
the form

dsv dsv' g [f'n'(I+n) -fn(lan' )]
coiC y'

&& 1 (p v -p' v') . (2)

f=5 '(v —V) (4)

in Eqs. (1) and (2), and yields

F =gQ p(n' n) I'(V; p-p')—
N

The impurity i.s characterized by its velocity v,

while the quasiparticles are characterized by
their momenta p. It is assumed that the proba-
bility I'(p v-p'v') for a transition from the initial
state p, v to the final state p', v' is equal to
I"(p'v'-pv) (detailed balance). We have intro-
duced the notation f' =f(v') and n' =n(p'). Equation
(2) can be simplified considerably if one may ne-
glect the recoil of the impurity in computing the
momentum transfer p-p' at a single collision.
This amounts to setting

This equation can be interpreted in a very intuitive
way as the average momentum transfer at a single
collision summed over all scattering events.
Equa. tion (8) has been used previously by Arkhipov, 7

Fetter, Wang, Schwarz and Stark, ' and Baym
etal"

The transition rate T" may have an intrinsic V
dependence, pointed out already by Baym etah. "
In the rest frame of the impurity the kinematic
constraint for elastic collisions is given by e =C.
(In this section all quantities in the impurity rest
frame are marked by tildes. ) If Galilean relativity
holds for the quasiparticles (a necessary condition
for this is e =P /2m*), one can write C =e(P) and
is led to P =P. Thus the usual elastic kinematics
holds and I has no V dependence. If the gas is not
Galilean-invariant, as is the case for collective
excitations, P is not equal to P in general. In
this case, great care has to be taken in treating
the kinematics built into I'. At this point the au-
thors of Refs. 9 and 10 introduced errors. The
treatment of the authors of Refs. 7 and 8, although
leading to the correct result, is valid only for an
impurity in a superfluid moving with the super-
fluid part.

To cope with the above mentioned difficulty, Eq.
(5) is better suited than Eq. (8), since the term
(n' -n) is explicitly of order V, so that one can
neglect the intrinsic V dependence of I' at low ve-
locities. The kinematic constraint for elastic scat-
tering is given in the rest frame of the quasiparti-
cle gas by
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~'-p' V=~ -p V .

Thus, we obtain from Eq. (5) to first-order in V

is the "momentum-transfer" cross section. In
the Knudsen limit, Eq. (15) reduces to

F =g Z p (n [p', e + V ' (p' -p) ] - n (p, & )] I' (0; p -p').
(10)

Here n is explicitly allowed to be anisotropic. It
is assumed, however, that when V is zero, n is
given by the isotropic equilibrium distribution func-
tion no. Therefore, the anisotropy of n is only a
consequence of the distortion of no by the moving
impurity and is of order V. Also we assume that
to first order in V one can write

n(p', e) —n(p, &) = V' (p' -p) ~n(P)

The quantity 5n defined in Eq. (11) can be neglect-
ed in the Knudsen limit and will be computed for
a spherical impurity in Sec. IV. Now, replace
sums by integrals in Eq. (10), and express I' in
terms of the incoming quasiparticle current
v„,/vol. , the density of final states p/, and the
differential scattering cross section do/dQ:

de (2%)', do(,)3 2 5(P -f')d~ (P, e)

(12) 1~(2&@2P/ g)3/2 - BP / 2m (18)

Equation (17) has been derived by Davis and
Dagonnier by a different method based on the
Boltzrnann equation. Their treatment is valid only
for drift velocities V, which are of the order of the
thermal velocity (kT/M)'/ [instead of (14)], andfor
the case where the motion of the impurity can be
described by a Fokker-Planck equation. We be-
lieve that the approximations (3) and (4) in this
context are not always equivalent to a Fokker-
Planck description. Any choice of f with a thermal
spread small compared to v leads to the same re-
sult (see Sec. V). In Eq. (8) one cannot in general
replace I'(V;p-p') immediately by its value at
V=O

It is easy to see that in the Boltzmann region
and Knudsen limit [conditions (3) and (4) are now
not needed] the drag force E is proportional to the
density N of quasiparticles. One can prove this
for arbitrary kinds of scattering (elastic or inelas-
tic). Omitting in Eq. (2) the quantum-statistical
factors 1+n and 1+n' and inserting the Boltzmann
distribution

Expanding the curly bracket in Eq. (10) to first
order in V and inserting (11) and (12) lead to

d'pF=g, d08(V p)[V ~ (p -p)]
h.

(13)

(14)

holds, where V is the average velocity of those
quasiparticles taking part in the scattering. Per-
forming the angular integrations in Eq (13) final.ly
leads to

V ' 6~'e' dP
(15)

CtO'
where o' r„= dQ~

& (1 —cosa) (18)

The fact that F is parallel to V was used. Equation
tion (13) is valid as long as

(P—= 1/kT), one immediately sees that (&n/&t)„» is
proportional to N. As a consequence, E is pro-
portional to /V, and the quantity pgl does not de-
pend on N.

III. STRUCTURE OF THE ELECTRON BUBBLE
IN DILUTE He3-He4

The negative ion in helium consists of an electron
inside a bubble of about 20A radius. This struc-
ture is energetically favorable because of the large
zero-point energy of the electron. We have evalu-
ated Eq. (17) numerically, treating the bubble as a.

hard sphere with respect to He scattering. The
results obtained for a, scattering radius" g = 28A
are plotted in Fig. 1 (solid curves) for three con-
centrations. We have summed 22 partial waves.
The value of ak, where k is the average scattering
wave number, lies between about two and ten in
this calculation. Thus by taking the short-wave-
length limit for the cross section, one would intro-
duce a notable error.

The experimental results from Refs. 1 and 2
have been included in Fig. 1. Although this theory
reproduces some of the general features, agree-
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ment is certainly not too good. The data for C3
=1.8&&10 and Cs= 2. 9X10 ', above about 0. 1'K,
lie to a good approximation in the Boltzmann re-.
gion and Knudsen limit (see also Sec. IV). Since
p pC3 is not really independent of concentration in
the experiments, one cannot hope to resolve the
discrepancies solely by choosing a better scattering
cross section. (See the conclusions in Sec. II. )
Inelastic contributions, in particular, cannot account
for the unusual temperature dependence of pDC~.

In the light of this result, we are forced to con-
clude that the structure of the negative-ion com-
plex changes with He concentration and/or tem-
perature. The zero-point energy of a He atom
in a He -He mixture exceeds that of a He atom
by about 4. 3 'K. Dahm" therefore proposed that
He atoms tend to condense on the surface of an
electron bubble, where they are able to reduce
their zero-point energy. We wish to offer a sim-
ple description of this adsorption similar to
Andreev's theory of the surface tension of dilute
He -He mixtures.

At zero pressure, the contribution of the elec-
tron bubble to the thermodynamic potential in the
crudest approximation is given by

which is well known in surface physics and chemis-
21

To obtain (sy/sp)„a model for the surface is
needed. We treat the He atoms at the surface as
a two-dimensional Fermi gas with energy spectrum

& = —eq+p /2mB (22)

where rn, is an appropriate effective mass to be
chosen below. The energy is measured with re-
spect to the ground state of He' in the bulk, so that
e, represents a surface binding energy. In the
highly degenerate limit, the chemical potential
and the thermodynamic potential for the surface
gas are easily calculated. One obtains

p, = —c,+ m8'NJ(4''m, ), (23)

E, —pN, = —vk~N~/(8' m, ) (24)

Equations (23) and (24) are valid for (kT) «(p, +e,) .
We now make the assumption that E, —p,N, is identi-
cal with 0, up to a constant which is determined by
requiring y=y4 for N, =O. Equations (20), (21), and

(24) then give

Q, =K 00/2m, 4+vyR

Here m, is the electron mass, kp the momentum
eigenvalue of the electron, y the surface tension
of the mixture, and R the bubble radius. Assum-
ing that the electron wave function penetrates only
insignificantly into the surrounding fluid, we have
k0= m/R for the ground state. Minimizing Q, with
respect to R then leads to

1/2

4 RP- —
d

—
@P

Integrating Eq. (25) leads to

vy, sin '[2(y/y4)' ' —lj —[(yy, )' ' y]' '+8-

(.n' )

R = eh /8ym„' Q, = 8' y (20)

= -4~R' (21)

Here p is the chemical potential of the He atoms,
which is the same in the bulk and at the surface.
Equation (21) is similar to the Gibbs equation,

At low temperature, the surface tensions of pure
He and He are given approximately by y3= 0. 15
erg/cm and y4= 0. 35 erg/cm2. As a consequence,
the radius of the electron bubble in He3 is slightly
larger and its free energy is considerably lower
than in He . Therefore, it is energetically favor-
able for He atoms in a Hes-He mixture to condense
on the bubble surface. Treating 0, as a surface
contribution to the thermodynamic potential, one
obtains for the excess number of He atoms. at the
bubble surface,

where 8 is a constant. Equations (25) and (26)
give y and N, as functions of the chemical potential
p, which can be obtained from the temperature and
concentration C3. To determine the parameters
B and m, we proceeded in the following manner:
At C3= 1.Bx 10 the two values for p, pC, measured
above T = 0. 27 'K (see Fig. 2) can be described
with our theory if a is taken to be 21.6A. Thus,
the radius for the ion complex remains essentially
constant above this temperature. Therefore, we
assume that in our model the surface states become
emptied at T = 0. 27 'K, which corresponds at this
concentration to p, = —1.5 'K. Another condition is
obtained by assuming that y = ys holds at the point
where pure He3 starts to separate out at T=0
(Cs = 6/0, p = 0. 37 'K). Imposing these conditions
on Eq. (26) we find B = —0. 105 erg ~ and m, = 14. 8
x 10 g, which is practically equal to the effective
mass of pure He .

We still need the scattering radius a of the ion
structure. The simplest assumption is
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a =R+ro+v, /4' N, (2V)

where xo is the scattering radius of a He atom
(= 2. 3A) and v, is the volume of a He atom at the
surface. We expect v, to be somewhat larger than
the atomic volume of a He in the bulk (= 60A').
In order to obtain a reasonable fit with the experi-

0
ments we took v, = 83A . Figure 3 shows the scat-
tering radius a as a function of p. The numerical
results for poC3, obtained in the same way as be-
fore, are plotted in Fig. 2 (solid curves) together
with the corresponding measurements. The sud-
den change in slope in the curve of Fig. 3 arises
as a consequence of treating the surface system
as completely degenerate, and is correct only in
the zero-temperature limit (which for negative p,

also corresponds to C, -O). At finite temperature
and concentration there will be some rounding.
We have roughly included this effect in Fig. 2 by
rounding off the peaks of the curves. Since with
increasing temperatur the chemical potential de-
creases more rapidly at low concentrations than
at high ones, the peaks move from lower to higher
temperature as the concentration increases. This
seems to be consistent with experiment. The
somewhat too low theoretical mobilities at the
higher concentrations will be discussed in Sec. IV.

We might propose the following explanation for
the rather striking discrepancies below 0. 1 K.
It is well known that a dilute mixture can take a
rather long time to attain its equilibrium surface
tension at a freshly formed surface. ' Measure-

~ —
I

I-
LLI

O
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20
I I

24 28

SCATTERING RADIUS a (A)

I

32

FIG. 3. Ion scattering radius a as a function of
chemical potential p.

ments on other binary systems indicate that the
surface tension initially has the value of the pure
solvent, and that the relaxation time may lie be-
tween a fraction of a millisecond and several days.
It is possible that, for the mixture considered here,
the relaxation time below about 0. 1'K becomes of
the order of the travel time of the ion. Owing to
the increase in surface tension, p, o could then be-
come as large as twice the value predicted by our
equilibrium theory. The mobility should, however,
remain finite in the zero-temperature limit.

Although our model leads to some plausible con-
clusions, we warn the reader not to take the de-
tails at this time too seriously. Equations (19)-
(23) alone lead to almost the same results if one
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assumes that &, is a constant equal to —1.5 'K.
Then one has to take m, =20~10 '

g and v, =70A'.
It is also to be anticipated that I, and v, depend to
some extent on N, . We hope to be able to gener-
alize the model to finite pressure and also to use
it for the calculation of the surface tension of di-
lute mixtures at a free surface.

d, (n) fd() (n' -n) (d, d)

Ip(e n )=2h fdpgfdll
x [n, (p')n, (p', ) -n, (p)n(, (p &)j

(29)

IV. CORRECTION TO THE KNUDSEN LIMIT

When the impurity moves through the gas, strictly
speaking, it does not see the equilibrium distri-
bution of particles. The particles scattered off
the impurity will undergo collisions and thus change
the distribution in the vicinity of the impurity. For
instance, those particles scattered into the for-
ward direction with respect to the moving impurity
have a somewhat higher average momentum than
the rest of the gas. By collision they will transfer
some forward momentum to other particles and so
"clear the path" for the impurity to some extent.
The corresponding process takes place in the
backward direction, but since the backscattered
particles have a smaller average momentum, it is
less efficient. The net effect is of order V and
reduces the drag force.

The effect becomes negligible as the mean free
path X of the gas particles becomes very large
compared to the dimension a of the impurity. As
A. becomes smaller, the effect leads to a situation
where more and more gas particles in a layer of
thickness X move along with the impurity. Finally
when A. «a holds, the hydrodynamic limit is
reached. Calculations in both limits are relatively
simple, but get extremely complicated in the in-
termediate region. Such computations have been
performed predominantly for hypersonic speeds,
where they are of interest to astrophysicists and
space scientists. Some literature on low-velocity
calculations may be found in a review article by
Grad. "

We are interested in calculating a first correc-
tion to the distribution of gas particles around a
slowly moving spherical impurity of radius a when
a/)(. is finite but small compared to l. To do this,
we introduce an approximation method for solving
the Boltzmann equation similar to the one proposed
by Jaffd' and apply it to a spin- —,

' Boltzmann gas.
The Boltzmann equation can be written

en p—+ ' +I' ' —= —=I(n)+I(n n)et m* ar 0 ap es 1 3 P

where the collision integrals for He' impurity and
He -He' scattering, respectively, are given by

Ip/I, -a Neo/v- a/)(

where N is the density of gas particles, o.0 and 0
are total cross sections, and )( = (Noo) ' is the
mean free path. Assume that n can be expanded
in a convergent series n =n0+n&+n2+ ~ ~ ~, where
n0 is the equilibrium distribution and n; is of order
(a/)(. )' ' for i&1. Using the symbolic derivative
8/es defined in Eq. (28), we obtain

eno
~S

~n~ = I,(np)~S (32)

Bs
I,(n„)+I2(n) no)+I2(no n)) '

The first two equations correspond to the Knudsen
limit.

It is now convenient to work in the rest frame of
the impurity with the origin at the center of the
impurity. The force field F0 is zero in our case,
and in the stationary state n does not depend on
time. Therefore the left-hand sides of Eqs. (32)
can be written as m* ' V'(pn;). Transforming
Eqs. (32) into integral form leads to

m* Ig(np) (,), . -,

m* I,(n, ) (p)(- -) m"
2

p
2 P 4 p

3 I

[I2(n,(r'), no) + Ip(no, n, (r')]p ~ Pr —r')
Ir -r'l'

The two-dimensional 6 function restricts all the
particles that have been scattered off the impurity
to radial paths away from the origin. At this point
we neglect the finite size of the impurity, which is
consistent to first order in a/A. .

Here doo/dQ is the differential cross section for a
binary collision with initial momenta p, p, and
final momenta p', p', . In estimating the relative or-
der of magnitude of I, and I2 we note that the net
effect of the impurity is to replace the total cross
section of all the gas particles that fit into its vol-
ume by its own cross section. Since in the equilib-
rium state Iz is zero, we have
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f,(no) = (p V)
~

'
~
or„ (s5)

To obtain n, from Eq. (33), one has to evaluate
I&(np) in much the same way as the similar collision
integral in Sec. II was computed. One easily finds
to first order in V

With the help of Eq. (37) the spatial integral in
Eq. (34) can be evaluated. Note that Iz is zero
inside the impurity, so that the integration is re-
stricted to the exterior of a sphere with radius a
around the origin (here the finite size of the im-
purity comes into play). Also I,(»,) is zero. We
obtain for n& on the surface of the impurity

Inserting for no the Boltzmann distribution (18),
and using Eqs. (33) and (35) then lead to

sss$) = — —,js(js)+—
j( )j)s. (I))

en+ p ~ p g. 1

p g 4m

~, = (p V/~')Pn, o,„5"&(j,r) . (s6)

Equation (34) can be further simplified. It turns
out that after averaging suitably over angles one
can introduce two quantities j~ and j& depending only
on p, so that one can write approximately

Pl $ I
s js(js) + -S's( js))—pa 4m

(s9)

Now calculate 5n as defined in Eq. (11), with
n =no+n&+n&. Clearly zo and ~, do not contribute.
Equations (38) and (11) give

I,(n„n(&) +1,(no, n, )

(37)

To evaluate j, and jz from Eq. (37) one has to
calculate I2. Inserting Eq. (36) into Eq. (30) and
assuming isotropic interparticle scattering, one
finds to first order in 1/',

2»@2P ~ 7" V d P& P +P&
f2(n&, no) + fp(&&o &&&) = jV Po'ooT 2v~2 3 xp

dgj
~

p p&.
t pj5

(2&(p~j «) + p j5 (2&(pj p) p 5(2&(p» ~) p5(&&(p ~) (40)

The last term in brackets contributes to j& while the rest contributes to j,. In evaluating the integral in
Eq. (40) we have from the beginning averaged over all angles. We obtain after a somewhat tedious but
straightforward calculation:

2»h Pji(P) = -2N, oo~r,

no 3 2' 2m*
&&

(2 @)3, am —1.83P

(41)
2»@ P

~ n 2m*i2(P)=-~2&, ooor,
2

a'@s 2P + lp'I* &f F =E (1 —0. 39C a/A) (43)

radius is about 2. SA. At T=O. S K, the average
wave number of the He3 quasiparticles at low con-
centration is 0. SA '. Then the total hard-sphere
cross section is about oo= 5x10 "cm . Express-
ing the density N in terms of the atomic He con-
centration C3, we finally arrive at

277m* "'
E=-,'a VX

P
(1 —0. 36a v0 N)

=Z,(1-0.36a/& ). (42)

A realistic estimate for the He -He scattering

Now insert Eq. (39) together with Eqs. (41) into
the mobility formula (15). Taking or„ in the short-
wavelength limit where it is equal to ma we are led
to

Choosing a = 22A and Cs= 2. 9/o, the correction to
the mobility turns out to be about 33%. Owing to
the influence of higher-order corrections and the
error introduced through the various approxima-
tions, we estimate the uncertainty of the correc-
tion term to be about 40% in this case. At C3= 2. 9
x 10 the correction does not remove the discrep-
ancy between theory and experiment, and at
C 3 1.8 & 10 it is negligible.

Neeper and Meyer have also obtained some
mobility data for C, = 4. 4%. The results indicate
that for T&0. 1'K the values of p, oC3 are higher
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than for C3= 2. 9%. Our theory provides a simple
explanation for this fact.

V. LOW-TEMPERATURE MOBILITY IN PURE He3

Here we will first examine more closely the ap-
proximations (3), (4), and (14), which lead to the
mobility formula (17) for the controversial case of
a Fermi gas with energy spectrum e =p /2m~ at
zero temperature (see Refs. 6, 15-17). For an
interacting system the treatment should be inter-
preted in the spirit of Landau's Fermi liquid the-
ory. We assume that Eq. (7) holds.

Inserting Eq. (2) into Eq. (1) and interchanging
dummy indices leads to

dt J
= g d'vd'v' (p' —p)fn(1-n') I'(p v-p'v').

(44)

Here v' appears explicitly only in I and implicitly
through the kinematics in p'. It is easy to see that
p' =pt+ 0(m*p0/M), where p' is the outgoing fermion
momentum calculated with approximation (3). If
we assume that I' does not depend too strongly on
v', it is thus clear that setting v' = v in Eq. (44)
leads to a relative error of at most m*/M, which
we neglect.

Now set p= p —m v, so that the kinematic con-
straint is given simply by P' =p. Introducing the
scattering cross section in the same way as in (12),
one obtains from Eqs. (6) and (44),

( ~ ~ )=J d vf(v) ~

Since M» m* holds, the thermal width off is cer-
tainly small compared to the Fermi velocity
vz=pz/m*. Therefore, (v) can be replaced by
(v) in Eq. (4V). One sees that the linear-force
law holds as long as (v) = V is small compared
to v~, which verifies Eq. (14) for this case. The
linear term in (4V) can be obtained directly from
Eq. (1V). The fact that the mobility in a Fermi
system at zero temperature is finite might appear
surprising. The situation is, however, analogous
to that encountered in the residual resistance of
metals: A Fermi system can perfectly well absorb
energy even at T=0.

Having shown that the theory developed in Sec. II
is valid for a Fermi system at arbitrary tempera-
ture, we note that the low-temperature mobility
measured by Anderson et af. ' for negative ions in
pure He can be described by Eq. (1V) taking a
hard-sphere scattering potential with radius
a = 18.8A at low pressure. The initial increase of
the measured mobility with temperature can be
explained qualitatively quite well by a correction to
the Knudsen limit. Just as in the Boltzmann case,
the first correction is proportional to a/A. . Unfor-
tunately we were not able to compute the magnitude
of the correction term for a degenerate Fermi sys-
tem. Therefore, we can only give a rough estimate
by using the results for a Boltzmann gas. ~9 The
mean free path X is now given by v~~„where v„ is
the appropriate mean free time. In He' we have

vz =5.36&10'cm/sec and ~„T'=1.5&&10 "sec
('K) . 0 Inserting the resulting mean free path in-
to Eq. (42) leads to

n'-n= —(p'-P) ~ v5(e -ep)

+-,'[(p' v)' —(p v)'+(p' -p) vm*v'] —5(e -e~)

. 2
—e [(p' ~ v) —(p ~ v) ],5(e -e~)

Q6
(46)

Inserting (46) into (45) and performing the angular
integrations leads to

F=Zbr, P~/«'N') ((v)-+ 5 (m"/P~)(v')). (47)

Here we have used

The notation n =n(p+m~v) was used. For simplicity
assume that do/dQ does not depend on p and v. At

T = 0, n is given by 8(ez -c), and one can write to
third-order in v,

F =F0[1 —0.45(a /A)(T/'K) ] (46)

Since the radius of the electron bubble depends on

pressure, one can also test the dependence of the
correction term on a. Both the temperature and

pressure dependence are in qualitative agreement
with experiment.

Recently Gould and Ma ~ attempted to explain
the initial rise of the negative-ion mobility with
temperature by including the Friedel density oscil-
lations around an impurity in an interacting Fermi
system. They found a contribution to the drag
force of about the right order of magnitude propor-
tional to EDaT logT. It seems very unlikely to us
that a quantum correction should be more impor-
tant for a large impurity than for a small one. We
believe that the result arises as a consequence of
the expansion made in Eq. (15) of Ref. 31 valid for
small a(k —k~) and of dropping the leading term
proportional to 1/a later on.
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VI. DISCUSSION

We feel that the experimental results of Neeper
and Meyer'&' and of Anderson et al. ' leave us with

the following unresolved problems.
(i) The temperature dependence of the positive-

ion mobility in dilute He'-He' mixtures (see Fig.
1) and in pure' He' remains unexplained. We be-
lieve that at least in dilute He'-He mixtures, but

possibly also in pure He, the ion complex under-
goes a change in size or structure with tempera-
ture. The positive-ion complex is usually con-
sidered as consisting of a "snowball" of high-den-
sity helium with a solid core around the highly po-
larizing ion. It is interesting to note that in He-
He the cross section decreases with temperature,
while in He' it seems to increase at first. This is
in fact what one might expect from the different
solidification curves of He' and He, although to a
lesser degree. To some extent the concentration
dependence of p, o C, in He -He can be understood
by a correction to the Knudsen limit.

(ii) According to theory the electron bubble is
larger in He' than in He . To fit the experiments,
however, we had to take scattering radii of 18.8
and 21.6 A for the "bare" bubble in He and dilute
He -He4, respectively.

(iii) For both kinds of ions the measured mobil-
ity in He -He mixtures at the intermediate concen-
tration C, = 2.9x10 is 10-15%higher than ex-

pected from the low and high concentration.
On the other hand, we were able to explain most

of the striking features of the negative-ion mobility
in He' and He'-He at low temperature by (a.) deriv
ing the general mobility formula in a new way
which indicates a broader range of applicability,
(b) including structure changes of the electron
bubble in He'-He' mixtures, and (c) calculating a
correction to the Knudsen limit.

It now seems desirable to extend the measure. —

ments in He -He to temperatures and concentra-
tions beyond the range covered by Neeper and

Meyer. In addition it would be interesting to find
out whether relaxation effects are responsible for
the sharp rise of the negative-ion mobility at low

temperature, as proposed in Sec. III. In order to
test this, one would allow the ions to become
"aged" before measuring their mobility.
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The description of the steady state by means of a minimum principle is given. Previous at-
tempts to use the entropy production were successful only if the deviations from equilibrium
were small. We show how entropy production can be defined so that the principle will hold
for arbitrary deviations. The choice is further corroborated by a physical picture: That
part of the entropy production which is due to the heat flow to the bath should be divided, not

by the temperature of the bath, but by a different temperature. This temperature is deter-
mined as a function of the occupation probabilities. Unfortunately, this temperature cannot
be defined in an invariant way. The definition is microscopic and holds only for systems that
can be described by a linearized master equation. A proof is given that the generalized tem-
perature used in the new entropy-production definition is higher than the equilibrium tempera-
ture, but less than or equal to the steady-state temperature. This proof is limited to a two-
level system, for which a steady-state temperature can be defined, interacting with a heat
reservoir and external radiation, as discussed in the text.

INTRODUCTION

A number of attempts have been made to charac-
terize steady-state processes by a minimumprin-
ciple similar to the principles used in equilibrium
statistical mechanics. The majority of the steady-
state methods have this in common: They utilize
some dissipative quantity as the quantity that has
to be minimized. Others are based on the idea of
optimization of certain probabilities similar to the
fundamental ideas used in equilibrium theory. To
the last class belongs the method that has been

proposed by Onsager and Machlup' and utilized by
Kikuchi. We will not consider this type of theory,
which, though undoubtedly more fundamental, is
extremely difficult to apply to a given system.

Methods utilizing the optimization of a dissipa-
tive quantity have been proposed as far back as
1911 by Ehrenfest. ' One type of theory starts with
the Boltzmann transport equation. A second
type, based on the Onsager reciprocal relations,
is of macroscopic nature. Finally there are mi-
croscopic theories of minimum entropy production
proposed by Klein and Meijer" ' based on the


