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In conclusion, we have shown that it is possible
to determine the form of the pair potential once
the temperature dependence of the hard-core po-
tential is known if one is making use of the BH

relationship. We further point out that there is
some computational advantage in using the LV
form of the temperature dependence of the hard-
sphere diameter, since this allows an analytical
inverse Laplace transform together with an
invertible x(V)-to- V relation: Furthermore, it
is usually flexible enough to provide a good fitting.
For more general cases, higher-degree poly-

nomial ratios can be used, which are also Laplace
transformable by elementary procedures. As a
last point we mention the possibility of using this
formulation to get information about the repulsive
part of the effective interaction in liquid metals.
In fact, temperature-dependent hard-sphere di-
ameters have been frequently used in connection
with liquid metals in the recent past, ' and it
seems plausible to test the consistency of these
diameters with effective-pair interaction deduced

by the pseudopotential theory of metals. "

lB. J. Alder and W. G. Hoover, in Physics of Simple
Iiquids, edited by H. N. V. Temperley et al. (Wiley,
New York, 1968).

J. A. Barker and D. Henderson, J. Chem. Phys. 47,
4714 (1967).

D. Levesque and L. Verlet, Phys. Rev. 182, 307
(1969).

4The convergence of the BH expansion has not been
established; however D. Levesque [J. Phys. Japan
Suppl. 26, 270 (1969)] has recently pointed out that a
comparison between the BH procedure and the exact
Monte-Carlo computation for Lennard-Jones (6-12) po-
tentials has shown that the BH approximation is very
good, both at low temperature and high density and at
higher temperature and lower density. The same findings
are obtained in Ref. 3.

J. Hirschfelder, D. Stevenson, and M. Eyring, J.
Chem. Phys. 5, 896 (1937).

6H. Reiss, Advan. Chem. Phys. 9, 1 (1965).

7J. H. Dymond and B. J. Alder, J. Chem. Phys. 45,
2061 (1966).

P. Ascarelli, Phys. Rev. 173, 271 (1968).
~N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83

(1966).
P. Ascarelli and A. Paskin, Phys. Rev. 165, 223

(1968).
'A similar method has been applied to the second vir-

ial coefficient by J. B. Keller and B. Zumino, J. Chem.
Phys. 30, 1351 (1959); and by H. L. Frisch and E.
Helfand, ibid. ~32 269 (1960).

' H. Bateman, Tales of Integral Transforms, Vol. 1.
(McGraw-Hill, New York, 1956).

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,
Molecula~ Theory of Gases and Liquids (Wiley, New
York, 1954).

l4W. Harrison, Pseudopotentials in the Theory of Met-
als (Benjamin, New York, 1966).

PHYSICAL REVIEW A VOLUME 1, NUMBER 5 MAY 1970

Slowing Down of a Fast Test Particle in a Plasma~

A. A. Husseiny and H. K. Forsen
Department of Nuclea~ Engineering, The University of Wi'sconsin, Madison, Wisconsin 53706

(Received 7 January 1970)

The elastic scattering of fast charged particles in a background plasma is considered. In-

vestigation is limited to scattering by Maxwellian particles whose most probable speed is much

less than the velocity of the fast test particle. A shielded-potential elastic-scattering cross
section is used to formulate the scattering kernel. By taking the moments of the kernel, it is
possible to obtain expressions for the rate of energy transfer, the slowing-down time, the

rate of the mean-square energy transfer, and the dispersion of the initial energy distribution
of the fast particles released to the background.

I. INTRODUCTION

The scattering of energetic charged test particles
by electrons and positive ions is of interest in the
study of thermonuclear plasmas. In particular the
problem is of interest when considering the inter-
action of energetic charged particles injected or

released by fusion reactions with the background
plasma.

Scattering of charged particles is often investi-
gated through the derivation of Fokker-Planck co-
efficients as given by Spitzer' by analogy to the
treatment by Chandrasekhar in stellar dynamics. "
However, Allis and Buchsbaum4 have criticized
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such treatment as liable to erroneous results due
to two deficiencies in the course of the derivation.
First, the two-body Rutherford formula is used
with the Fokker-Planck equation which only treats
the many small deflections and thus the correctness
of the Fokker-Planck approach is lost. Second, in
the treatment by Chandrasekhar, Spitzer, and
others, ' the logarithmic term, which appears as
a function of the test-particle energy, is replaced
with a constant term. Such a treatment can be dan-
gerous and is shown here to yield incorrect results.
Spitzer, on the other hand, points out that the dif-
fusion coefficients derived by Chandrasekhar are
inaccurate in the special case when the velocity of
the test particles greatly exceeds that of the field
particles. In this velocity range, it is found that
the terms designated by Chandrasekhar as "non-
dominant" do in fact exceed those retained as
"dominant. " Moreover, the relaxation times of
Spitzer are obtained for the energy range in which
the speed of the test particles is less than or ap-
proximately equal to the thermal speeds of Max-
wellian field particles. Butler and Buckingham
and Shkarofsky, Johnston, and Bachynski derive
a closed-form expression for the behavior of the
mean energy of test particles as a function of time
for essentially the whole range of interest. How-

ever, the use of a Rutherford scattering cross sec-
tion with a classical cutoff angle again leads to an
incorrect slowing-down time.

In the present paper, the nonrelativistic scatter-
ing of energetic charged test particles by charged
background particles is studied in the range of v„
& U„where v„ is the velocity of the test particle
and U, is the velocity of the background field par-
ticles. The method of analysis does not require
the approximations used in the previous calculations
and appropriate quantum-mechanical effects are in-
cluded. This is accomplished by the use of a
Boltzmann-equation type of calculation which is
more consistent with the two-body cross section
for scattering and consequently more accurate re-
sults may be expected. Although the present treat-
ment can yield closed expressions for diffusion co-
efficients and relaxation times, principal attention
is given to obtaining the mean energy transfer rate,
the energy spread around the mean and the slowing-
down time. To demonstrate the accuracy of the
results in the velocity range of interest, the rate
of the mean-square energy loss is also calculated.

Il. SCATTERING KERNEL

Consider a test particle (x) of mass m„and
charge q„ traveling with velocity v„and encounter-
ing a field particle of mass M, and charge q, trav-
eling with velocity V, &v„. The elastic-scattering

cross section is estimated by a Born approximation
calculation for a Debye length shielded potential
and is given in the c.m. system by

hq, n, m„
vv X lr 2aPTZ ) (2)

The probability distribution function P(E„E„)
is the probability that a test ion of energy E, will
emerge from an encounter with an energy between
E„and E„+dE„. On the other hand, W(y) dQ(y) is the
probability that a test particle will be deflected
through a solid angle between Q(y) and Q(y) +d Q(x).
Since both probabilities are equal and W(y) dQ(y) is
explicitly given in the c.m. system as —o(y) dQ(y)/
o» where o.~ is the total elastic-scattering cross
section, then

P(E„-E„')dE„'= —[o()()/o,]dQ(x) . (3)

The scattering kernel is denoted as or(E„E„)
and is given by o rP(E, -E„) Using Eq. s. (1) and
(3), the scattering kernel is given for the case
where E„&E,as

or(E„-E„)= 0,

Vz 8 2

2M X [E„-E +(A /2M X, )]
(4)

Emj, -E.-E.

or(E„-E„)=0, E„'&E,.
where E „=(m„—M, ) E,/(m„+M, ) or the minimum
energy a test particle can emerge with after a sin-
gle encounter. We know that a test particle whose
mass is equal to that of the field particle can lose
all its energy in one encounter, but a heavy-mass
test particle loses only negligible energy in a sin-
gle encounter with an electron.

It is observed that the contribution of small-an-
gle scattering is included in the cross section of
Eq. (1) and consequently in the scattering kernel.
It should be recalled here that we have used the
quantum value of the scattering angle [Eq. (2)]

(
sin (-,'y)

—,go+sin (—,y)

Here E„is the energy of the test particle, p. is the
reduced mass, X is the c.m. deflection angle,
dQ(y) is the differential solid angle, and Xo is the
minimum cutoff angle below which the Rutherford
single potential scattering cross section is no
longer applicable. Xo corresponds to the Debye
screening length (X,) and is given by
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Let us now consider the moments of the elastic-
scattering kernel of Eq. (4). The vth moment is
given by

ll. = J, (E„E„')'o-,(E„-E„')dE„'

For the first three moments this gives

ll, = o, (E.)(1 ——.
y, ',),

[in A(E„)+ 0. 198],or(E„)52
S S

2or(E„)K p E„
and 02=

Msm, z,
2

X 1+ 02-xozlnAE„-0 693X20
+Xo

(8)

where A= 1/Xo. Throughout the course of deriving
these results there is no need to neglect any terms
or to make any simplifying assumption. At the
same time it is entirely within the discretion of the
investigator in the use of these moments to drop or
retain terms of low order. For energetic test par-
ticles, i. e. , the ease under study, yo is of the or-
der of 10 ' and therefore all terms of the order of

Xo may be dropped out without error. The loga-
rithmic term that appears in Eqs. (7) and (8) cor-
responds to the well-known Coulomb logarithm. It
can be seen that the energy dependence of this term
has been retained and the integration has been
evaluated without difficulty.

IV. RATE OF ENERGY TRANSFER

rather than that used by others. ' This is be-
cause we choose the largest minimum scattering
angle, which for Coulomb collisions corresponds
to(q, q„/4me3hv„) & 1, and therefore the results are
properly valid in this limit. This is also the limit
of validity of the Born approximation.

III. MOMENTS OF THE SCATTERING KERNEL

Spitzer, ' Butler and Buckingham, and Shkarofsky,
et al. in the limit of v, & (2kT,/m, )

I where the
subscripts e and i refer to electrons and ions, re-
spectively, and the field electrons are considered
Maxwellian at a temperature T,. Some investiga-
tors" use the classical value for the Coulomb log-
arithm of Eq. (10). Moreover, they replace the
test-particle speed by the electron speed. Gener-
ally, the results are insensitive to the choice of A;
however, as we shall see later it does introduce
important differences in the slowing-down time and

energy dispersion.
The choice of the classical cutoff angle rather

than the quantum-mechanical cutoff angle is in
error in the case of energetic test particles be-
cause the rule is to choose the larger of the two
angles. For energetic low-Z test particles the
quantum cutoff angle is the larger. The choice of
a classical value for A(E„) is only appropriate for
the special case considered by Spitzer' and
Chandrasekhar. This case is limited to the ener-
gy range at which the test-particle velocity is of
the same order of that of the field particles. The
replacement of v„by the thermal speedof the ions
is unnecessary and leads to considerable errors as
indicated in Sec V.

V. SLOWING-DOWN TIME

Our definition of the slowing-down time is the
time necessary for a fast test particle to transfer
(Eo- E„)/Eo of its energy to the background parti-
cles. Here Eo is the energy at which the test par-
ticle is released in the volume containing theback-
ground particles. Rearranging Eq. (10) and inte-
grating over time from an initial time zero to 7.,
and the corresponding energy integral between Eo
.and E„, the slowing-down time is given as

47tq e M m, h res
s q2~3(kq )3/2

The mean energy loss by a test particle per en-
counter is

(E.—E.'& = ll, (E,)/ll, (E.), (9)

while the number of encounters per unit time per
unit volume is n,o.z, ( E)( 2E/ m)'~ . 2Therefore, the
rate of the mean energy transferred from the test
particle to the field particles can be written

1' s 0 l s

r, =8 e pvEop /n, q„q, (2m„)'~ lnA (12)

where li(x) is the logarithmic integral. The
Spitzer expression for the slowing-down time is
given by

X ~ S 3L S X' ] (10)

This equation is applicable. for ions or electrons
so long as v„&t/', and E„&E,. For ions as test par-
ticles and electrons as field particles the form of
Eq. (10) is in agreement with a result obtained by

where v„ is replaced by 2kT, /m, in the expression
for A which is chosen as the classical value. Al-
though the logarithm is not sensitive to the choice
of its argument, it is obvious that the above re-
placement leads to errors in the result of the
integration. An incorrect choice in lnA will not
affect the rate of energy transfer but it will result
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in underestimation of the slowing-down time by
lnA as can be seen by comparing Eqs. (11) and
(12). For test o. particles released at Ep=3. 5
MeV in a background plasma consisting of equal
fractions of deuterium and tritium with total ion
density of 10 ' m, the slowing-down time on plas-
ma ions or time to reach 20kT& is 2 sec as calcu-
lated from Eq. (11). The corresponding time
from Eq. (12) is 10 ' sec. If the background par-
ticles are electrons of the same density and if the
velocity of the n particles much exceeds the ther-
mal velocity of the electrons, Eq. (11) yields a
slowing-down time of about 0. 4 msec. It should
be pointed out, however, that this corresponds to
rather cool electrons and to solve this example
properly one must consider the energy-transfer
rates to both background species in the general
case with target speed V, ~ v„especially for
electrons.

VI. RATE OF MEAN-SQUARE ENERGY LOSS

The mean-square energy loss per encounter is
Iip/Ilp. By multiplying this value by the encounter
rate, the rate of mean-square energy loss is

from Eq. (8) such terms are negligible in the pres-
ent case and are dropped out in our calculations.

VII. ENERGY DISPERSION

The energy dispersion is defined as

D = (11,—Il', )' "/ll„

and D is approximately equal to 1/[Xp InA(E„)] which
is larger than unity. This indicates that a pulse
5(E Ep) —is broadened during the slowing-down
process. Moreover, the dispersion of an initial
distribution of test particles decreases as the en-
ergy decreases. Again Eq. (15) contradicts the
value of D which can be calculated using Spitzer's
results' because of the presence of the second mo-
ment.

For completeness we may investigate the dif-
fusion of energies around the average. In order to
do this we must obtain the difference [( (E„E„))-
(E„E„)] for e—ach encounter, but this is sim-

ply (112 —ii))/lip. Multiplying the result by the num-
ber of encounters in a short time gt, the mean-
square deviation around the mean energy during
this time is

(13)
gt4 x s ~ x (16)

This result is in agreement with an expression
given by Spitzer and Scott for elastic collisions
of a fast test electron with thermal electrons in
the limit of E,»kT, Their results are obtained
from Chandrasekhar's detailed computations by
considering the "nondominant" terms. The use of
Chandrasekhar's result considering only the "dom-
inant" terms gives

4pep M, 2E„

in the limit of v„& Vs where lnA is the Coulomb log-
arithm. The test-particle energy dependence of
Eq. (13) is the inverse of that in Eq. (14) and yet
Eq. (14) has been adapted by many authors in plas-
ma physics especially in evaluating the energy re-
laxation time and diffusion-in-velocity coefficient.
The disagreement between Eqs. (13) and (14) is
expected because Eq. (14) is not valid in the energy
range of interest as pointed out in the Introduction.
Although the results of Chandrasekhar were de-
rived for a general energy range, the fact that
users of these results retain only the terms pro-
portional to lnA leads to serious errors. As seen

Equation (16) may be written in terms of dE„/dt,
which is the rate of change of the mean energy.
Using the results of Eq. (10) we get for the mean-
squar e deviation

2p, E„dE„
rn„M, lnA(E„) dt (17)

The total mean-square deviation in energy after a
time f, say e (t), can be obtained by integrating Eq.
(17). Thus

(18)

where E„is the mean energy at some time t and

y=4p, epk'T, /q~4n,'I m'„

2 1/2
E„=E„+ [Ii(yE'p) -Ii(yE '„)]

Pl g

It is observed that eP(t) depends on the mass and
energy of the background particles. The energy of
the test particle will be given by E„to within a e(t),
1.e. ,
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These results are different from those obtained
by Butler and Buckingham. Although they care-
fully emphasized the case of fast test particles,
their result concerning the diffusion around the
mean is subject to error because of their attempts
to generalize the results for too wide a range of
energy. Such an attempt makes the result liable
to the same errors as if the result ot' Eg. (14) had
been adapted in an energy range where it is no
longer correct.

VIII. CONCLUSION

In this paper we seek to demonstrate that it is
possible to derive closed expressions for the scat-
tering parameters in the energy range v„& V,
without the previously used approximations. The
results obtained should therefore be more accu-

rate in the energy range specified than results
currently used in the literature.

The treatment of scattering in the energy range
where v„~ V, can be handled in the same manner.
However, attempts to derive general expressions
which cover the whole energy range from zero to
Eo are shown to lead to unacceptable errors. It is
thus recommended that the energy scale be divided
into two ranges: the slowing-down range in which
the test particle does not feel the thermal motion
of the field particles and the thermalization range
in which neither the test particle nor the field par-
ticles can be regarded as fixed centers. The re-
sults obtained here are applicable for the slowing-
down range whereas the results of Spitzer' and
Chandrasekhar are believed to apply only in the
thermalization range within the limitations of the
assumptions involved.
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