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A classical calculation is given for the kinetic energy of a vortex ring in an inviscid fluid
(He II) in the presence of an infinitely extended plane, a coaxial circular disk, and an infinitely
extended plane with a coaxial circular aperture. The energy is obtained as an explicit function
of the ringposition relative to the obstacle being considered. Formulas are given for the velocity
components of the vortex-ring motion, the force exerted on an obstacle by a stationary vortex
ring, and the impulse of the vortex ring in the presence of the obstacle. In the case of the
circular aperture, there is found to be a critical energy (or ring size) beyond which a vortex
ring cannot pass through the aperture. The path of the vortex ring near the different obstacles
is obtained by numerical computation, departing from the explicit energy expression. The
calculation method is easily extended to other axisymmetric configurations and consists of
Fourier and Hankel integral-transform techniques in combination with results from the theory
of dual integral equations.

I. INTRODUCTION

Since the appearance of a paper by Feynman' at-
tributing the breakdown of superfluid helium flow
to the action of vortex lines or rings, there has
been an increasing interest in the behavior of vor-
tex rings in He II.

Feynman considered the creation of vortex rings
with a quantized circulation:

where h is Planck's constant, and m is the mass
of a 4He atom. By Landau's criterion, ' the cre-
ation of these vortex rings might then be expected
at superfluid velocities v~ equal to or in excess of
the critical velocity v~, given as

terms of a vector potential A, after which the
partial differential equation for A was solved by
the use of Fourier-Hankel integral-transform
techniques.

The present paper is an extension of this method
to the case where the motion of a vortex ring in an
inviscid fluid is obstructed by one of the following
obsta. cles: (i) An infinitely extended plane in par-
allel with the plane of the ring, (ii) a circular disk,
coaxial with the ring, or (iii) an infinitely ex-
tended plane in parallel with the plane of the ring,
containing a coaxial circular aperture. In all
three cases an explicit expression is obtained for
the energy of the vortex ring. This expression is
of the form

E =ED E

v = minimum value of E/P,

where E and P are the energy and momentum of
the vortex ring.

In order to predict the value of vq in capillary-
flow experiments, various authors have presented
calculations of E and P for a vortex ring con-
tained inside a circular cylinder. ' ' Recently, in
a paper by the present author and co-authors, a
review was given of these calculations, together
with a different method of solution for the associ-
ated potential problem, confirming the result for
E given by Raja Gopal. In addition to this, it was
shown that P is identical to zero for an enclosed
vortex ring, with the result that Landau's criteri-
on cannot be applied to vortex-ring excitations in-
side a cylinder.

The calculation of E and P was affected by ex-
pressing the velocity field inside the cylinder in

Here, Eo is the kinetic energy associated with
the unobstructed ring, while E, denotes the inter-
action energy between the unobstructed vortex
velocity field and the perturbation field due to the
obstacle.

Under the influence of the obstacle, the path
taken by the vortex ring can now be described by
the condition

E = const,

which is a direct consequence of the dissipationless
character of the superfluid and the negligible in-
teraction with rotons at sufficiently low tempera-
ture (T & 0. 5 'K). It has been found that E, is a
positive quantity which increases during the ap-
proach of the ring towards the obstacle. As a re-
sult, Eo and the size of the vortex ring must in-
crease likewise if the total energy is to remain
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constant.
A calculation of E, is given in Sec. II, after

which the interaction energies for the different
obstacles are derived in Secs. III-V, together
with the path taken by the vortex ring. The same
method of solution is employed in all three cases.
Although case (i) could also be solved by the meth-
od of images, it serves as a useful introduction to
the method employed here. Cases (ii) and (iii) are
related through the complementary character of
their boundary conditions and are solved by means
of recent results from the theory of dual integral
equations. '~'

plated in the literature. Under these circum-
stances, the core vorticity can be taken to be uni-
formly distributed over the core surface, while
the field outside the core can be calculated from
an equivalent vorticity concentrated along the core
center:

~(r, z ) - ~5 (r —r, )5 (z ) .

As a result, the differential equation for
A(r, z) can be written

II. ENERGY OF AN UNOBSTRUCTED VORTEX RING

The velocity field of the superfluid mill be de-
noted by the vector V, while the normal component
of the fluid is assumed to be at rest. Due to the
incompressibility of the fluid as a whole, it follows
that the superfluid flow is divergence-free and can
be described in terms of a vector potential A hav-
ing zero divergence:

where a is a constant equal to lE/rn This. differen-
tial equation will be solved by the repeated use of
integral transforms. The variable x is trans-
formed by means of the first-order Hankel trans-
form defined by the functional relations

f(s)= f rJ,(rs)f(r)dr,

V= VXA, V ~ A=O. f(r) = f sJ,( sr)f (s) ds,

The vorticity of V will be denoted by the vector
K = V xV, with the result that A and K are related
as

where Z, (rs) denotes the ordinary Bessel function
of the first order. This transform has the ad-
vantage that, provided

VXVXA=K. (2)

It will be assumed that the vortex ring has the
form of a hollow toroid with a circular cross sec-
tion, carrying on its surface a distributed vor-
ticity which induces the encircling fluid flow
around the core. For a vortex ring with aperture
2x, and core diameter 2a, the surface of the core
will be given by the equation

the Bessel operator in Eg. (4) is transformed ac-
cording to

z'+ (r r, )' =a'—.

Here, circular cylinder coordinates have been
used with unit vectors e, e&, and e~. The ring
axis of symmetry is taken along ez, while the
center of the ring is the origin of the coordinate
frame. As the core vorticity is q directed and
independent of tIf), both A and K are of the form

Also, the variable z is transformed with the com-
plex Fourier transform defined by

g(p) = f™e g(z) dz,

A=A(r, z)e, P( =~(r, z)e g(z)=(2v) 'f e g(p)dp .

The corresponding radial and axial components of
V are

eA 1 s(ra)
8g g y'

In practice, a being of the order of a few ang-
stroms, the core cross section is extremely small
when compared with the ring apertures contem-

Application of both integral transforms to the two
sides of Eg. (4) and division by —(s'+p') yields
the doubly transformed vector potential

A (s,p) = n, (s'+p') 'J', (sr, ) .

Since the inverse Fourier transform of (s'~p') '

is givenby(l/2s) exp(-s lz 1), Re(s)&0, Fourier in-
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version of Eq. (7) results in

A(s, z) = (n;/2s) J,(r,s) e (8)

A(r, z) is now obtained by the application of the in-
verse Hankel transform to Eq. (8), after which the
components of V can be found with Eq. (3). This
results in the following set of equations:

(r, 0)
FIG. 1. Contour of the core

cross section.

A(r, z) = ,'n—,f Z, (ros) jg(rs) e ds, (9a)

V (r, g) = ,'Kr —sgn(z)f sJ (r s)

means of the Gauss theorem and the following vec-
tor identity:

xJ,(rs) e ds,
-s Iz J (9b)

v ~ (Ax V) = V ~ (vxA) - A ~ (vxV).

V (r, z)=2KrOf0 sJ (r s)J (rs)e ds. (9c)

The vector potential A(r, s) is finite for all val-
ues of r and z, except at the points (r, z) = (r„0),
where it exhibits a logarithmic singularity. For
large values of r, A goes to zero as r-', in ac-
cordance with the well-known behavior of the vec-
tor potential of a stationary electric-current dis-
tribution of finite extent. Thus, the conditions
(5) necessary for the transformation of the Bessel
operator are satisfied.

The kinetic energy of the vortex ring is given
by the volume integral

E =-,'p f f f iVi2dv,

where p~ denotes the mass density of the super-
fluid. The integral should be extended over the
whole region of the vortex velocity field. With the
assumption that pz =0 inside the core, this region
will be taken as the volume between the core sur-
face and the surface of the infinite sphere r'+ z'
=R', as R - . The integral can also be written
as an integral over the boundary surfaces by

Since V ~V = 0 and V x A = V inside the integration
volume, the integrand in Eq. (10) may be replaced
with the left-hand side of Eq. (11). Application
of the divergence theorem then yields the result

EO —,
'

p -f—f (A x V) ~ n dS.
p

(12)

Due to the singular behavior of A and V at the core
center, E, diverges logarithmically for a 0. For
small values of a/r„ the integral expressions for
A, Vr, and Vz can be expanded in. powers of a/r
with coefficients depending on ~:

Here S, denotes the core surface, the contribution
over the infinite sphere tending to zero with R - .
Also, n denotes the unit normal on S„pointing
outside the core. As the integrand in Eq. (12) is
independent of y, the integral can be further re-
duced to a line integral along the core circum-
ference. Figure 1 depicts this contour (C) and
shows the angle ~, used as the integration vari-
able. The energy can now be written as

E = —2' ap f A('V sino —V cosn)do, (13).m/2

0 0 s
/

g r

K a sin~ 3a Brp 3a
A = — 1 — +, (3sin'n+cos'o, ) ln ' —2+ sino, + ~ ~ ~

'

27K 2rp 16rp a 2rp

(14a)

V = 1 — 2ln o — + 2(11 sin'a+5cos'o, )+ ~ ~ ~
K cos~ 3a' 8rp a sin~ a
2' 8rp a 2rp 16rp'

(14b)

Krp a 3a . 8rp 2a . a a
V = 0, , 1 — sinn ln o — sino. ——,coso, +,(5sinmo. +11cos2o, )+ ~ ~ ~4'', rp 4rp a rp p 8rp

(14c)

After substitution of these expansions in Eq. (13), the resulting expansion for E, may be replaced by its
dominant term

E = —,'p v'r [In(8r /a) —2],S

the error being of the order (a/ro)'.



148 A. WALRAVEN

III. ENERGY OF VORTEX RING NEAR
INFINITELY EXTENDED PLANE A(s, p) = [ar,J,(r,s) e 0+f(s)](s'+p') ',

The obstacle will be taken as an infinitely thin
plane coincident with the plane z = 0, acting as a
barrier to the superfluid. A vortex ring of cir-
culation ~ and aperture 2~, is situated parallel
with and at a distance z, to the left of the plane
z =0 (see Fig. 2). It is desired to find the kinetic
energy of the velocity field V associated with this
configuration and the motion of the ring towards
the plane z =0.

As before, the velocity V will be derived from
a vector potential A arising from the vorticities
of V. Due to the presence of the obstacle, there
will be a distributed surface vorticity f(r)e& on the
plane z =0, which appears as a second source term
in the differential equation for A(r, z):

1 ~ 1
+ ————+ A(r z)/~2 g Qy ~2 az2

(16)

This equation is identical with the equation for the
vector potential of an electric-current loop of
strength x facing a superconducting wall. Here
f(r) would have been the surface density of the
eddy currents induced on the obstacle. In the
electromagnetic case, f(r) follows from the bound-
ary condition at z =0, which prescribes that the
normal component of the magnetic field strength
must vanish on the superconducting surface. Like-
wise, in the hydrodynamical problem considered
here, it is the component Uz which must vanish at
z =0. By integration of the expression for U given
in Eg. (3), it is seen that A must be of the form
c/r on z=0, where c is a constant. SinceA must
remain finite on z = 0 (the vector potential passing
continuously through a surface distribution of vor-
ticity), c must be zero, and the boundary condition
for A is found to be A(r, 0) =0.

Application of the Hankel-Fourier transforms to
each side of Eg. (16) now yields the result

where f (s) denotes the first-order Hankel trans-
form of f(r). After this, the use of the inverse
Fourier transform gives X (s, z) as

A(s, z)-- ,'vr—,s 'J, (r,s)e

+ ,'s 'f—(s)e (17)

Substituting z = 0 in this equation, the left-hand
side becomes zero by virtue of the boundary con-
dition for A, and f (s) is found to be

f (s) = —er, J,(r,s)e

A, (r, z) = ,' ~r,f J,(r,s) J—,(rs)
0

-s lz+z, I d (19a)

A, (r, z)= —,'~r, f—J,(r,s)Z, ( rs)

-(s (z I +s lz, l) (19b)

It is seen thatA, +A, =0 for z =0, in agreement
with the boundary condition. Also, A and U are
zero for z &0, confirming the fact that there can
be no flow beyond the barrier.

The integrals in Eqs. (19a) and (19b) can be
evaluated in terms of the complete elliptic inte-
grals K(k) and E(k)." In particular, the potential
A„which will be needed for the calculation of the
interaction energy E„ is found to be

By substituting this result in Eq. (17) and using
the inverse Hankel transform, A(r, z) is obtained.
It is found that A(r, z) can be regarded as the sum
of the potentials A, (r, z) and A, (r, z), which are
the respective potentials of an unobstructed vortex
ring at (r„—z, ) and of the induced boundary vor-
ticity f(r), namely,

with 0' = 4rr, [(iz I + Iz, I)'+(r+r, )'] ' . (20)

FIG. 2. Cross sectional

z vl ew of a vortex ring op-
posite a p1ane wa11.

Denoting the velocities arising from the ring and
boundary vorticities by V, = VxX, and V, = &xX„
the kinetic energy of the field V=VO+V, will be
given by

The integration volume now corresponds with the
region outside the core surface So and inside the
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infinite hemisphere z'+z'=R', z &0 with R- ~
(see Fig. 2). Using Eq. (11) and the divergence
theorem, this integral can again be written as a
surface integral over 8„ the contributions over
the plane z = 0 and the hemisphere being zero by
virtue of the boundary condition for A. and the be-
havior of A for R-~.

E — 2p JJ(A +A )x(VO+Vl) ~ ndS.s 0 1 0 1
p

(21)

E=vxop lim f&(AIxVO) ~ ndC
0 s

a 0

For smallvalues of a/r„V, and A, on S, are of the
order r, /a and 1 n(r /0a), respectively, while AI and
Vy remain finite throughout the core region. Thus,
only the products Ap ~Vp and A, ~ V„ implicit in the
integrand of Eq. (21), can yield significant contri-
butions to E. The first of these products yields
the energy Ep of the unobstructed vortex ring,
while the second product represents the interaction
energy E,. The surface integral can be reduced
to a contour integral along the circumference C of
the core cross section. In this way, the inter-
action energy for an infinitely thin vortex ring near
a plane wall is found to be

and solving for zp. It is found that xp increases
with decreasing values of z„ in accordance with
earlier considerations based on the theory of
images. " In the present treatment of the problem,
this behavior is understood to be caused by the in-
crease of E, when the ring approaches the obstacle,
necessitating a corresponding increase of Ep if the
total energy E is to remain constant. Conversely,
E, -O for zp-~, and with large values of zp the
radius of the ring tends to the limiting value x
With this limit, the path of the ring can be written
in the following form:

(x /x, )[ln(8x /a) —2]=In(8x,/a) —2 —k ' (2-k')

x K(k) +2k 'E(k). (25)

Figure 3 shows the path of the ring, as calculated
from Eq. (25), in terms of the normalized param-
eters ro/x, z,/x, and a/r The. curves were
computed and plotted with a Philips Electrologica
EL-X8 computer, the elliptic integral procedures
of Bulirsch" being used.

The energy E(x„z,), associated with a given
core position, can be seen as the work done against
a force acting on the core. Per unit length of the
core, this force will then be given by

p M (x„—z,).0 s (22) (28)

If a/x, is sufficiently small, this result together
with Eq. (15) can be used to approximate the en-
ergy E:

E =E —E = —,p II'so[In(8ro/a) —2]0 1 s

+v~ p ~A (ro, —zo).0 s

Physically, this force is caused by the Magnus
effect and arises from the fact that the core vor-
ticity is subjected to the velocity fields of the ob-
stacle and the core itself. Since the ring must
remain in mechanical equilibrium, the core tends
to move with a velocity V (not to be confused with
the critical velocity vc), resulting in a second
Magnus force F, which balances F, . By the Kutta-

This formula can be used for the kinetic energy of
a vortex ring near a plane wall, provided that a/x,
is small and the distance between the core and the
wall remains large compared with a. With these
restrictions, the energy E is found to be

7 I I I IIIIII I I I IIIIII

r /r
M

6-
g/r = 1Q-'I

C)

I I I IIIIII I I I IIIIII I I I IIIIII I I I I IIIII I I I IIIIII I I I IIIII

E(x z )= zp v'x [In(8x/a) —2 —k '(2 —k')
0

—
s 0 0

xK(k)+2k 'E(k)],

with (24)

It is seen that E is a function of the core position,
denoted by the coordinate pair x„—zp. At suf-
ficiently low temperatures, the motion of the core
through the fluid mill be without dissipation, and
the path taken by the vortex ring is simply given
by the implicit equation E(x„z,) = const.

For given values of E and a, the path can be cal-
culated by taking rp as the independent variable

0 I I I IIIII) I I » IIII) I I I I »II) I I I IIIII) I I I IIIII) I I I I IIII} I I I IIIII)

1P 1Q 1Q 1P ~ 10 1Q 1Q '
1

I I I I IIII

10 '

z /r

Flo. 3. Vortex-ring paths towards a plane wall. The
coordinates xo and zo of the core and the core radius a
are given in units of ~, which is the value of the ring
radius for zo
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Joukowski theorem, F, (per unit core length) is
given by

«««&I «&»«&I

CZ

« &«&I « &JJ«&j « &«»&I & « &»&II « « &«&1 « & ««&

F, =p («xV ).s c

With the equilibrium condition Fy+ F2=0, Vc can
be obtained from E&ls. (26) and (21). The com-
ponents of Vc are found to be

10

V =-(2m~ p «) '
CK - 0 S Zo'

1 aE
V =(2v~ p «)-'

CZ 0 S

(28)
a/r = 10-&

00

h 2
1

tl « »«1 & « &&«&( & l « &«&) « & &»«1 & « &»I&1 & & & &»&&) & & & &»«( « & I»«

10 10 10~ 10 ~ 10 10 10 '
1 10+'

Using the expression for E provided by E&l. (24),
Vc~ and Vcz can also be expressed in terms of
the complete elliptic integralsE(k) and K(k). This
yields the following formulas:

FIG. 5. Axial core velocity of a vortex ring at a dis-
tance zo froxn a plane wall. The velocity is given in
units of V~ (the axial core velocity for zo- ~), while

the core radius a and the distance zo are in units of t'

(the ring radius for zo- ).

(29a)

t

V = ln(8r /a) —1- ( E( ) (2gb)
CZ 4''0 0

~ 2(y 2+z &)-&

moving towards an infinitely extended flat plane.
At large distances from the obstacle, the ring
moves with a constant axial velocity given by

V = lim V = «(4' )-'[ln(8& /a) —J.]. (30)
Z ~ce

««»«) ««&»&I

V /VCI QQ

10'~ =o/r = 10-&

« »«d «&»«I ««&«I ««««I «««&I

10" =

10'3

1
042

1001

Together with Eq. (25), these formulas repre-
sent the solution for the problem of a vortex ring

Figures 4 and 5 show the behavior of the nor-
malized velocities Vc~/V and Vcz/V . It is seen
that, while the axial velocity drops slowly to zero,
the radial velocity increases explosively when the
ring approaches the obstacle.

The above analysis indicates that, once f (s) ha's

been obtained from the boundary condition, the
problem of finding E and Vc reduces to the Hankel
inversion of A, (s, z). This inversion can be
avoided in the calculation of certain other quanti-
ties, examples of which are the force exerted on
the obstacle by a stationary vortex ring or the
impulse associated with the boundary vorticity

f(& ). In these cases the calculations can be car-
ried out in the s domain, use being made of the
following properties of the Hankel transformation,
If f (s) is the first-order Hankel transform of f(r),
the following theorem holds:

10 '

10n-2
«»«( & I «A&&1 « &&&«&1 & & «»&&) & & «»«( & & &&&I«( « &&»«1 « «»«

10 10 s 10 10 ~ 1Q 1Q 2 1Q '
1 10 '

FIG. 4. Badial core velocity of a vortex ring at a
distance zo from a plane wall. The velocity is given in

units of V (the axial core velocity for zo- ~), while the
core radius a and the distance zo are in units of r (the

value of the ring radius for zo ).

lim 2 = lim 2 ' &f(r)d«S J, rs
s ss 0 s-0

= J &'f(r) dr.
0

Thus (provided the limit exists) the second mo-
ment of f(r) can be found from a simple limit
operation in the s domain.

Also, if f (s) and g (s) are the vth-order Hankel
transforms of f(r) and g(r), there is a relation of
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the Parseval type" which states that, provided
1

p ~

f rf(r)g(r)dr= f sf(s)g(s)ds.
0 0

(32)

P =WKP ~ '.
s 0

The boundary vorticity can be considered as the
vorticity of an ensemble of elementary vortex
rings of impulse

dP = ~ p r'f(r) dr.
0 s

The theorem given by Eq. (31) can be used to find
the impulse associated with f(r) T.he concept of
the impulse of a vortex ring was introduced by
Kelvin. This has the dimension of momentum and
is given by Lamb"

force, which is caused by the radial components of
V, and V, acting, respectively, on the boundary
and core vorticities. Integrating over the plane
z = 0, the net attractive force on the obstacle is
given by

F=2mp e f rf(r)V (r, 0)dr
S 8 Q

=2mp e f sf(s)V (s, 0)ds.
S Z Q

Here, Eq. (32) has been used to express F by an
integral in the s domain. The radial component

V0 (s, 0), appearing in the integrand, can be found

by differentiation of Ao (s, z). After substitution of

V0 (s, 0) and j(s), F is found to be

-2s lz, IF= —mp v'r 'e f sJ '(r s)e ' ds
s 0 z 0 1 0

Integration over the whole surface of the obstacle
yields the total impulse of this vortex sheet:

P = w p f r'f(r) dr
0 s 0

Using the expression for f (s) from Eq. (18) and
the theorem of Eq. (31) yields the following re-
sult:

P = —mp n& lim s J' (r s)e-1 -s lz, ) 2

0 0
0 I 0

= —7tp KX
s 0s-0

Thus, the impulse of f(r) is equal and opposite to
the impulse of the inducing vortex ring. In the
analogous electromagnetic problem, this corre-
sponds to the statement that the magnetic mo-
ment of the electric-current loop is compensated
by the magnetic moment of the induced eddy cur-
rents on the superconducting surface.

If the vortex ring is kept fixed, there will be a
mutually attractive force between the ring and the
obstacle. This force can be regarded as a Magnus

I

P KAZ

a 2K(k) —
(& &,) E(k)

with jP =r ~(r 2+8 2)

Comparing this result with the formula for Vzz,
as given by Eq. (29a), it is seen that F satisfies
the relation

F = - 2' p (V && ~)Os

Thus, F is seen to be equal but opposite to the net
axial Magnus force acting on the ring. This result
can also be understood from the classical law of
vortex motion, which requires the ring to move
with the velocity of the surrounding fluid. Should
the vortex ring be kept fixed, then its core will be
subjected to a relative velocity —V . By the
Kutta-Joukowski theorem, this results in a Magnus
force with a net axial component as given above.

IV. ENERGY OF VORTEX RING NEAR COAXIAL DISK

The obstacle to be considered in this section is an infinitely thin disk occupying the region x —xd of the
z plane. A vortex ring of circulation K and aperture 2ro is a,ssumed to be situated coaxially with and at
a distance zo to the left of the disk. It is desired to find the kinetic energy of the resulting fluid flow and

the motion of the ring in the vicinity of the disk.
As before, the velocity will be derived from a vector potential A=Ao+A„which satisfies Eq. (16) and

vanishes on the surface of the obstacle. As a result, A, (r, 0)+A, (r, 0) =0 on the disk surface, and writing

A, (r, 0) as an integral over f (s) yields the integral equation

if f (s)Jl (rs) ds = -A0(r, 0),
0

(r(r ) . (33a)

Conversely, f(r) must become zero over the remainder of the z plane, this resulting in a second integral
equation for f (s):
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f sf(s)J (rs)ds=p,
0

(r &rd). (33b)

(34)

Equations (33a) and (33b) constitute a pair of "dual" integral equations of a type investigated by Sneddon, '
who gives the following solution for sf (s) (with rd= 1):

Substituting Ao from Eq. (19a) in Eq. (34) results in a triple integral for f(s):

12
f(s) = —zr, — J», (st)dt 'e ' J', (r,y)dy — '2», df.

Wt 0
0 0

The integration with respect to f can be carried out to give"

g'J, (gyt) d
v J d sin(yt)

(1 ~)'" 2yt "' d(yt) . (yt)

Using this result and the well-known relation sin(x) = z vx'" J»(x), f(s) can be represented by the double
integral

f(s)= —2tcr, v 'f dt f e 0 J',(r, y)sin(st)sin(yt)dy,
0

(36)

where rd has been reinserted in the upper limit of the outer integral. Multiplication of Eq. (35) by the
factor (1/2s) exp(-s tz I), and application of the inverse Hankel transform, results in

A, (r, z)= n, w f—d'tf e sin(st)J, (rs)dsf e ' sin(yt)J, (r, y)dy.
-1 ~d ~ -slzj oo -y(z

0 0 0
(36)

As before, the total energy E can be expressed by an integral over the boundary surfaces of the velocity
field, i. e. , the infinite sphere about the origin, the disk surface, and the core surface S,. With the same
arguments as used in Sec. IQ, only S, is found to yield a significant contribution to E, which is again given
by Eq. (23). Thus, the problem of finding E reduces to one of determining the quantity A, (r„-z,), ap-
pearing in the formula for the interaction energy.

Referring to Eq. (36), it is seen that the integrals in s andy become identical for (r, z)=(r„—z, ). A

further reduction occurs if rp&rd and z =zp=0 (vortex ring surrounding the disk in the plane z=0). In
this case, the exponential factors vanish from the integrand in Eq. (36), and the integrals in s andy re-
duce to a special form of the Weber-Schafheitlin integral, "as

f J,(r,x)sin(tx) dx=(t/r, )(r,' —t')»', (t&r, )

J,(r,x) sin(tx) dx= 0 (t &r,).

With this result the integral in Eq. (36) becomes elementary, ~dA1(rp, p) is given by (with rp &rd)

A, (w, 0) = (r + rln'—,0 d

0 +0++d

Substituting in Eq. (23), the normalized energy E/(p z'rd) is found to be

E(ro, p) r, Sro, ro I 0 d
p K 'Vd 2fd 0 2t'd

(37)

Figure 6 shows the behavior of the normalized energy as a function of ~, =(rp/rd) —1, which is the dis-
tance between the rim of the disk and the core center, normalized to rd. For 6&0. 1, the normalized en-
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ergy behaves approximately as —,In(4brd/a), indicating a strong interaction between the disk and the vor-
tex ring. For larger values of A, the energy rapidly approaches the energy of an unobstructed ring of the
same size. Conversely, the energy approaches the limiting value ln(2) if the core is allowed to touch the
rim of the disk (6=a/rd, and a-0). Of course, this situation is no longer covered by the assumptions
made at the outset of the analysis, since the distribution of K over the core surface will certainly become
nonuniform if the core is allowed to approach the obstacle as close as this.

If zo 40 (vortex ring not in the plane z = 0), A, (r„—z, ) can be evaluated by taking P = (zo I
—it. The in-

tegrals in s and y, appearing in Eq. (36), are then found as the imaginary part of the known Laplace trans-
form

f e J,(rox)dx = r, [I p(p +-ro2) 1 2] . (38)

The remaining integral in t is of algebraic type and can be reduced to elementary functions and incom-
plete elliptic integrals. This reduction is a standard, if lengthy procedure, and will be omitted here.
Ultimately, the normalized energy is given by

E(r, z ) r 8r ~, , k, 1 —ksiny
2o' o o ln o 2 + 2[1 —(1 —k'sin'qr)'~'j + —cotan(z p)ln

p ~'x 2x a —
' 8 1+hsing

S

+ 2cotan(zy)[E(p, k) —(1 ——,'k')F(y, k)j, (39)

with k' = r (r0'+z0')-', tan(-,'y) =rd(r0'+z0') '",

where F(q, k) and E(y, k) are used to denote the incomplete elliptic integrals of the first and second kind. "
Using the relation E(r„zo) = const and the result of Eq. (39), it is possible to calculate the path of the

vortex ring. Figure 7 shows the computed paths for a/rd=10 ' and v'arious values of A. The associated
values of the ring energy E can be taken from Fig. 6. The paths are seen to be symmetric about the disk,
the vortex ring attaining its largest size in passing the plane z = 0.

V. ENERGY OF A VORTEX RING NEAR A PLANE WITH A CIRCULAR APERTURE

The obstacle will be taken as 'an infinitely thin plane occupying the z plane with the exclusion of the cir-
cular region x &x~. As before, a vortex ring of aperture S'0 and circulation ~ is placed coaxially with
and at a distance zo to the left of the obstacle. Also, the resulting velocity field V will be taken as the
curl of the vector potential A =Ao+A„which satisfies Eq. (16) and is zero on the obstacle surface. In the
present situation, the boundary condition A(r, 0) = 0 for r &ra ean no longer be justified with the argument
that A(0, 0) should remain finite (see See. III), since the origin is no longer on the obstacle surface. How-
ever, it can be shown that the same condition follows a Posteriori if the flux of V through the obstacle
aperture is required to be zero.

Under the stated conditions, the transformed boundary vorticity f (s) must satisfy the dual integral
equations
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J sf (s )JI (rs ) ds = 0,
0

(r&r )a
(40a)

oo-
2f f(s)J'1(rs)ds = A(r,-p), (r &r &~).
2 0 1 0 ' ' a

(40b)

The solution of this system, as given by Sneddon, ' is found to be

, 1/2
f(s) = 2f t( ) J, (st) (f "„—;,'„", g, ) dt

Substituting A, (7., 0) and performing the integration with respect to r, f (s) and, subsequently, A, (r, z) are
given by the formulas

f(s) =-npf ts J' (st)dt f y JI(yt)&1(r y)e ' dy,«a 32 0

A, (r, z) = —2npfr td't f s J' (st) Jl(rs)e ds f y J (yt) J (r y)e ' dy.1/2 s(z I
-~ 1/2 -y lz, I

«a 0 3/2 0
(43)

As in Sec. IV, it is readily seen that the kinetic energy is again given by Eq. (23) and can be obtained
explicitly once A, (r„—z,) is known. It is found instructive to consider first the case z =z, = 0 (vortex ring
in the obstacle aperture). Referring to Eq. (43), the integrals in s and y are found to reduce to another
Weber- Schafheitlin integral, namely,

J 'x~, («) ,d(x)dx = (rlt)[-'vt(t'-r')] '", (t &r)
0

f x"'Z, (rx)Z„,(x)dx = 0,
0

(t &r) .

Substituting this result in Eq. (43) and taking r =ro, the remaining integral in t can be performed to give

0 2 x+r ' 0 a
a ' a

Using Eq. (23), the normalized energy E/(psrnra) is now found to be

E(r)p 0) rp Srp rp 2 rp r rp
ln + — +—ln

p &f' 2f' a-2 +xs a a a a a
(44)

Figure 8 shows the behavior of the normalized energy as a function of t) =1 —(rp/ra) being the normal-
ized distance between the aperture edge and the core center. For 5 & 0. 01, the energy is seen to behave
in a way analogous to the case of a vortex ring surrounding a disk. Beyond this value, a maximum occurs
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in the vicinity of 5 =0. 1, after which the energy drops rapidlytozero for 6-1. Denotingthe maximumvalue
of E(rp, p) and the associated value of rp, by Em~ and rmax, some interesting conclusions can be drawn:
(i) Since E ~ is the maximum possible energy in the aperture, vortex rings with an energy in excess of
this critical value will be unable to pass through; (ii) there are two different values of r„situated on
either side of rmax, which can be associated with a given E &Emax, (iii) vortex rings which are situated
on opposite sides of /max, and have the same sense of circulation, will pass through the aperture in op-
posite directions; and (iv) a vortex ring, situated in the aperture at rp —-rmax, will be at rest.

Conclusions (i) and (ii) follow directly from the functional behavior of E(ro, 0), as given by Eq. (44) and
shown in Fig. 8. Conclusions (iii) and (iv) follow from Eq. (28), giving the components of the core veloc-
ity Vc. Since E(rp, zp) is an even function of zp, Vcr (being proportional to sE/&zp) is zero in the aper-
ture. During its passage through the aperture, V~ becomes equal to V&@, which in turn is proportional to
SE/&rp. As the derivative SE/&rp changes sign at rp=rm~, vortex rings on opposite sides of rm~ must
move in opposite directions. For x0=xm~, both derivatives are zero, and the ring will be at rest.

Since the position x0=rm~ is seen to divide the vortex rings in the aperture into two distinctly different
groups, it is of interest to investigate how this division is continued outside the aperture. Yo this end, it
is necessary to find the dividing locus defined by the implicit equation

E(r, z )=E0' 0 max ' (45)

The calculation of A, (r„z,), necessary for the determination of E(r„z,), can be affected in the following
way. Referring to Eq. (43), it is found that the integrals in s and y become identical for (r, z) = (r„z,).
Writing the Bessel function J»,( ) in trigonometrical form, both integrals are modified as shown below:

1/2 - Izolx 2 1/2 ~ sin(tx).x J,(r,x)J», (tx) e 0 dx = — J,(r,x) —cos(tx) e o dx
'- l&, lx

0 o
' ' (tx)

After this, the constituent integrals with the factors cos(xt) and sin(xt) can be evaluated by setting P = Iz, I

—it and by taking the real or imaginary part of the Laplace transforms given in Eq. (38) and below:

-Px -1
Z/2J e x J( ~r)d x=ro [(P +ro )' '-P].

0

As in the case of a vortex ring near a disk, the remaining integral in t can be reduced to elliptic integrals.
The ultimate result for E(r„z,) is found to be

+ —.'t~' i [I —(I - k' sinmy)'") +-.'kt~(-,'q) In
s a a-

with

+ —,
' tan(g) [E(q, k) —(1 ——'k')F(q, k)],

k' =r '(r '+z ') ' ' cotan(~) =r (r '+z ') "'
0 0 0 a 0 0

(47)

As before, F(g, k) and E((, k) are the incomplete elliptic integrals of the first and second kind. There is
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a strong resemblance between the above result and the corresponding expression given in Eq. (39). In
fact, if x~ =rd, the angles p and P in Eqs. (39) and (47) are found to be supplementary, resulting in the
functional relation

El (~, ~) = tan (
—

~~EId(~ (48)

where E1d and E1~ are used to denote the interaction energies for a disk or for an aperture.
The dividing locus, defined by Eq. (45), can be computed from Eqs. (44) and (47). The result of these

computations is given in Fig. 9, which shows the behavior of the locus in the vicinity of the aperture edge.
Outside the aperture, the locus is found to split into two branches, these dividing the rz plane into the
following three regions: (a) A hill-shaped region A, containing the vortex rings with E &Em~, which
pass through the aperture in the positive z direction; (b) a drop-shaped region B, containing the rings of
the same energy class as A, but which go through the aperture in the opposite direction; these rings re-
main close to the obstacle in their motion towards and away from the aperture; and (c) the remainder of
the xz plane C, containing the vortex rings with E &E . The three regions meet in the common point
(em~, 0), where grad E becomes zero.

Equation (47) allows the computation of the paths taken by the different types of vortex rings. Figure
10 gives examples of paths in the regions A and C. As expected, itis foundthatthe ring in C isunable togo
through the aperture and is forced to run up against the obstacle surface. Also, the rings in A are found
to grow in diameter while approaching the obstacle, obtaining their maximum size in the aperture. It is
seen from Fig. 10 that the relative increase of the ring diameter remains small, even for the limiting
path E =Emax

These results, describing vortex-ring behavior near an aperture in an infinite plane, may be used to
give a qualitative description of vortex-ring motion in the apparatus of Fig. 11. This consists of a closed
cylindrical container of superfluid, which is divided into two equal chambers by means of a central par-
tition with a connecting aperture. Near the aperture edge, the dividing locus can be expected to approximate
the shape given in Fig. 9, while its branches will parallel the wall and the central axis of the container at
larger distances from the partition. Since both branches represent the same energy (Emax), they must
close upon themselves near the ends of the container.

In this way, the locus is seen to divide the fluid into the regions CI, C2 (where E&Em~), and AB (where
E &Em~). Consider a vortex ring in the left chamber and situated in the central part of AB. This ring
will go through the aperture and traverse the right chamber to the end of the container. After this, it will
go back to the left chamber along the container wall, passing through the aperture in the region B of Fig. 9.
Eventually the ring returns to its starting position and will continue to shuttle back and forth between the
two chambers. Conversely, a ring in C1 or C2 will keep circulating in the same chamber.
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FIG. 9. The dividing locus in the vicinity of the
aperture edge. The locus divides the rz plane into the
regions A and B, containing the vortex rings which pass
through the aperture, and the region C containing the
rings which cannot pass through.

FIG. 10. Vortex-ring paths near a coaxial circular
aperture for various values of the energy E. The co-
ordinates ~0 and zo of the core and the core radius a are
given in units of the aperture radius x~, while E is nor-
malized to the maximum possible energy Emax inside
the aperture.
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VI. CONCLUSION

A calculation has been given for the kinetic en-
ergy of a vortex ring in a superfluid in the pres-

FIG. 11. Cross sectional view of a superfluid container
with bvo chambers connected by a circular aperture in the

central partition. The dividing locus (continuous line,
not to scale) divides the interior in the regions C~, C2,

and AB. The dashed line indicates the path taken by a
vortex ring in AB.

ence of various plane obstacles. The calculation
method can be extended to other axisymmetric
obstacles. For instance, the case of a vortex ring
near a coaxial annular slit results in a system of
triple-integral equation, which may be solved in a
similar way.

As regards the case of the circular disk or aper-
ture, here the associated potential problem could
also be solved through the use of oblate spheroidal
coordinates, where these obstacles coincide with
the coordinate surfaces. In this case, the solution
is obtained in terms of associated Legendre func-
tions, which appear to be less amenable to numer-
ical computation than the elliptic integrals em-
ployed here.
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