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A classical-impulse binary-collision model is used to predict the laboratory angle and ve-
locity distributions of protons resulting from the vibrational dissociation of H2 by He. The
treatment is partly heuristic and is not a quantitative success, since the computed cross sec-
tions turn out to be roughly an order of magnitude too large compared to those for electronic
excitation of the 2po.„state of H2. Nonetheless, the theory clearly identifies some major fea-
tures of the experimental results of Gibson, Los, and Schopman as being due to vibrational
dissociation.

I. INTRODUCTION

The object of this work is to show that vibration-
al dissociation accounts for some salient features
of the angle and velocity distributions of protons
resulting from collisions of fast H2' with neutral
target atoms. Since the classical-impulse binary
collision model, upon which the work is based, is
used at impact velocities below its realm of quan-
titative validity, the results are qualitative in na-
ture. The results are nonetheless convincing as
regards identification of the dissociation mech-
anism. In addition, the calculations show what as-
pects of the mechanics of vibrational dissociation
are likely to be important in the development of a
quantitative theory. Figure 1, reproduced from
the work of Gibson, Los, and Schopman, ' exem-
plifies the experimental data which motivated the
work. The curves represent proton angle and ve-
locity distributions obtained from laboratory frame
measurements but transformed to a frame based
on the H2' c.m. Each curve corresponds to a fixed
c.m. dissociation velocity and is labeled by the
internuclear separation required by the assumption
that the dissociation occurs via a vertical tran-
sition from the initial 1so electronic state to the
nominally repulsive 2pcr„state. Aside from the
vicinity of c.m. dissociation angle /=90', the
distributions agree qualitatively with theoretical
c.m. angular distributions for 2po„excitation. '
However, the central portions of the curves, par-
ticularly the peak in the curve for R = 2.4 ao, do
not resemble the angular distributions to be ex-
pected for any of the probable electronic excita-
tions of H2 . It will be shown that vibrational dis-
sociation explains the discrepancy qualitatively in
a natural way.

The calculations are based on a classical-im-
pulse binary collision model, closely related to
models previously used for the estimation of total

vibrational dissociation cross sections. ' In this
model, dissociation yielding a proton with speed
u relative to the H2' c.m. occurs when one or the
other of the H~' protons experiences an impulsive
momentum change of magnitude K, related to u

through internal energy conservation by

~sK /2m=mu +D„

where m is the proton mass and D„ is the disso-
ciation energy of the initial vibrational state v.
Since D„-0.1 a.u. for the lower values of p, vi-
brational dissociation of these states involves
large values of K(K &20a.u. ). Because of the mo-
mentum change K, the H~' c.m. is deflected through
an angle -K/(2m Vs) where Vs is the initial H,

'
speed. Deflections - 1 deg are not unlikely. Since
the laboratory measurements are made for angles
between 0' and about 2 ', the H2'c. m. deflection
can play an important role in determining at what
laboratory angle the dissociation proton is likely
to emerge.

3 kgb

QN r]
/ b

I

90 —$(degrees) 180

FIG. 1. Apparent c.m. angular dependence of the

dissociation of 3-keV H2 ions incident on He. The ordi-
nate QN is normalized so that ~a f0 sing QNdg =1. The

angle ~I) is measured from the backward beam direction.
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The other essential features of the calculation
are the screening of the bare nuclei by the elec-
trons in the system, and the correlation between
K and the c.m. dissociation velocity u. For small
values of E, the former drastically influences the
probability that the momentum change K will occur
in a given Collision. The latter, treated heuris-
tically in this paper, determines the dissociation
angular distribution in the H2' frame and conse-
quently has a considerable quantitative influence on
the proton angle and velocity distributions in the
laboratory frame.

The details and limitations of the model are dis-
cussed in Sec. II. Results relating to Fig. 1, and
other results illustrating the essential features of
the model, are given in Sec. III. The model will
be applied to other H2' dissociation experiments
in the third paper of this series.

II. THEORY

Although the final results are essentially clas-
sical, it is instructive to obtain them starting from
the Born approximation. The H~' projectile is as-
sumed to be initially nonrotating in the vth vibra-
tional level of its ground electronic state and to
dissociate during a collision with some target atom.
In a.u. , the cross section Q„ for vibrational dis-
sociation is then

Q„=4V, f™~k dk J dQ(k) f o " de% 'ler
l

0 k -k
p n

&&f 'd!rl&, (-K, k)l' . (2)

In Eq. (2), k=mu, where m is the proton mass and
u is the proton velocity relative to the H&' c.m.
after dissociation: K is the momentum transferred
to the target and Pr is its azimuthal angle in the
laboratory frame; kp= p, Vp and k„= p, V„, where IIL is
the H&'-target reduced mass, and Vp and V„are the
relative speeds before and after collision; k ~ is
the largest value of k allowed by energy conserva-
tion. The quantity Ic&l describes the transition
in the target and is expressed in terms of the tar-
get's coherent or incoherent x-ray scattering fac-
tor. '

Finally, & (K, k)= J(K, k) —I(K, k) I( K, Q, (3)—-
where I(K, k)= f dRX 8' - X„ (4)

J(K, k) = f dRX*X„f dr Qo 8 Qo

Here R is the H2' internuclear separation, r locates
the H2' electron with respect to the center of the in-
ternuclear line, and po is the 1sa~ electronic wave
function; X„and X are the initial and final Hz' vi-
bration-rotation wave functions. Equations (2)-(4)
result from a straightforward application of the
Born approximation. They may be deduced from

Eqs. (1), (2), (8), and (10) of Ref. 2.
The matrix element E,(K, k) will now be consid-

erably simplified through the use of additional ap-
proximations. First Po is replaced by its linear
combination of atomic orbitals (LCAO) approxima-
tion, and the multicenter terms which arise in the
evaluation of J'(K, k) are neglected. This leads to

Eg(K, k) = —[1 —2 (1+«K ) ][I(k, R) +I(- K, k)]
(6)

To motivate this approximation we note that for low

v (small B) large values of If are required for dis-
sociation. Consequently J'(K, k) «I(K, k) and the
fact that J'(K, k ) is not accurate is unimportant. For
large v, where E need not be large, large values of
8 dominate J(K, f) and the approximation is rea-
sonable. '

The next approximation is to neglect the cross
terms I(K, k)I(-K, k), etc. , which arise in
IE,(K, k) I'. This reduces the theory to a binary
collision theory of the form studied by Gerasimenko
and Oksyuk, '~ who developed their formulas by add-
ing up the probabilities for dissociation via impul-
sive momentum transfer to just one or just the
other of the nuclei of a diatomic molecule. At this
stage our results are identical to theirs except for
the treatment of electron screening. The binary
collision assumption is characteristic of all previous
calculations of fast H3' vibrational dissociation.
The limitations of this approximation are discussed
later in this section.

The final approximation introduces the classical
binary collision energy conservation requirement
and a heuristic treatment of the correlation between
the directions of K and k. We write

A

II(+K k)l'=(2/m&)&(+&'k)6(&'/4m -D. -&'/m)

(6)
where 6( ) is the Dirac 5 function, D„ is the dis-
sociation energy fgr the pth vibrational state, and,
at this point, E(+K k) is restricted only by

fdQ(k)E(+K'k)= 1.

Equations (6) and (7) are chosen to guarantee that,
aside from the approximate Born treatment of the
electron screening, Q„ is just that given by the
classical binary collision theory. The function
E(K k) determines the relative H; c.m. angular
distribution of dissociation protons. While it has
no influence on the total cross section Q„, it nat-
urally has an important influence on the laboratory
angular distribution of dissociation protons. In
initial comparisons between the theory and the ex-
periments of Gibson, Los, and Schopman, it was

~I«

found that the assumption of isotropy F(R'k)
= (4o) ' gave vibrational dissociation peaks which
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q, = Vo' f u'du f da(u) f"dy»' ~, ~'

x[1 ——'(1+-'K ) ] [F(x)+F(—x)]/u(D„+mu )'.

(10)
We now discuss the formulas for the laboratory-
frame angular distributions. I et V~ be the dis-
sociation proton laboratory velocity. Then

V& ——Vo —Kj(2m)+ u

Now by Eq. (6), K is a function of u. Moreover, by
definition,

K= p(V, —V„)

and by energy conservation

V2 = Vo —(2/p)(D„+mu +Ez)

where E& is the target internal excitation energy.
These equations allow one to express the components
of K perpendicular to and parallel to Vo as functions
of u. For example, the parallel component of
K/(2m) is given by

[Er+ (1+2m/p, )(D„+mu~)]/2m Vo (i2)

With this expression and the corresponding one for
the perpendicular component of Kj(2m), the vector
equation (11) describes a transformation from H2'

c.m. variables u, g»to laboratory variables V~,

Q» which can be solved for u(V~, p») and for which
the Jacobian can be calculated by standard but
tedious manipulations. The laboratory differential
cross section dQ, /(dV~dQ(V~)) can then be deduced
from Eq. (10).

Defining the Jacobian J by dV~ = Jdu we obtain

were much too broad for large dissociation ve-
locities compared withthose shown for example in
Fig. 1. This is consistent with Eq. (4) which
shows (when lt is replaced by (2v) ~' e'~' ) that for
large k there should be„considerable correlation
tending to make k and K parallel. Accordingly, a
heuristic choice of E(x) was made in the form

E(x) = (1+21 )/4m[1+ I'(1 —x)]',
A

with x=K'k

and r=(D„+u jm)/O. OO56

The denominator of I' was fixed (roughly) by com-
paring theory and experiment for H& -He collisions.
For large I', F(x) strongly favors x= 1; I'=0 corre-
sponds to an isotropic c.m. angular distribution.
According to the model, strong correlation occurs
for low p while little correlation occurs for high p,
except if 0 is large. The influence of E(x) will be
illustrated in Sec. III.

From Eqs. (2), (5), and (6), with u=k/m and
K=2m(u +D„/m) ~,

de./(dV, de(V, ))=(V /Vo)'f de»d' '
l
~r I'

x[1 ——,'(1+~K ) ] [F(x)

+F(-x)]/u(D„+ mu')'

TABLE I. Values of v~ and v2 in a.u. for selected cases.

Target

vq{v =0}
v2{v =0}
vg{v = 17)

v, {v=17)

He

0.12
0.08
0.02
0.10

0.27
0.38
0.04
0.29

0.36
0.68
0.06
0.59

Xe

0.61
2.03
0.10
1.27

The explicit formulas for t, u, and x are too long
to present here. The limits on Q» in Eq. (13) are
determined by the range of P»for which Eq. (11)
has non-negative solutions for u . The quadrature
in Eq. (13) was carried out numerically to a rela-
tive precision of one part in 10 .

This section will now be concluded with a brief
discussion of the merits and shortcomings of the
model. The strong points of the calculation are:

(a) The considerable deflection of the H2' c.m.
for vibrational dissociation from states of low p is
taken into account in Eq. (11).

(b) Electron screening is allowed for in a rea-
sonable way.

(c) The anisotropy of the c.m. angular distribu-
tion is accounted for heuristically in a way which is
qualitatively correct. The weakest points in the
calculation can be appraised by the arguments of
Gerasimenko and Oksyuk. " They give conditions
for the validity of the use of the sudden approxima-
tion and the binary collision approximation upon which
their formulation and the classical binary collision
theory are based. Following their reasoning, but
inserting a factor of 2 on the right-hand side of
their equation for bP(=K), we find for Hz' that the
sudden approximation is valid if Vo» (Zz,e /5)"
x (D,/m) —= v, and the binary collision approxi-
mation is valid if Vo » (Zre /Ro)(D„m) = 52.
Here Z& is the effective target charge and Ro is
the effective internuclear separation. Table I
shows representative values of v& and v2 for some
extreme cases, Z~ being determined from && for
an appropriate value of K. For H,' impact energies
of 3, 10, and 20. 4 keV, t/'0 is respectively 0. 25,
0. 45, and 0. 64 a. u. Evidently the criteria are
barely satisfied for He and badly violated for Xe
in the energy range covered by the experiments.
Generally, the binary collision criterion is the
least well satisfied. It is the author's belief that
the binary collision model overestimates the dis-
sociation cross section.
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We conclude that while the theory should exhibit
the proper qualitative behavior for the dissociation
proton angle and velocity distributions, quantitative
agreement with experiment cannot be expected.
Fortunately, this situation is not entirely devastat-
ing since, as will be seen in Sec. III, the angle and

velocity distributions from vibrational dissociation
turn out to be qualitatively very different from
those due to dissociation via transitions to one of
the excited electronic states of H&.
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III. RESULTS AND DISCUSSION
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FIG. 2. Proton laboratory angular distribution for
vibrational dissociation of 3-keV H2 initially in the ground

vibrational level during collisions with He. In order of

decreasing magnitude the curves correspond to 6 =—(V&

—V0)/V0=0. 0, 0.005, and 0.01. Here V& is the proton

velocity and V0 is the H2 beam velocity. The distribu-
tions for 0=—0.005 and 0=—0.01 are very similar to
the ones for 6=0.005 and 6=0.01. These curves were

obtained with an isotropic c.m. angular distribution.

The general character of the results can be under-
stood by noting that the reciprocal of u(V~, Q») fig-
ures in the integrand in Eq. (13).Thus the integrand
is singular whenever Eq. (11)admits a solution
u(V~, Q») = 0 for some &f&» The. analysis shows that
this occurs for the initial vibrational state p if and

only if

V~ cos) —Vo = —[Er+ (1+2m/p, )D„]/(2m Vo), (14)

V sin) = [D„/m —E /(4nlE )], (15)

where Eo= m Vo and $ is the small angle between

V~ and Vo. When Eqs. (14) and (15) are satisfied,
the P» integral in Eq. (13) diverges logarithmically.
Thus, ignoring the other factors in Eq. (13) tem-
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FIG. 3. See Fig. 2. These curves were obtained

using the anisotropy factor defined in Kqs. (8) and (9).

porarily, the differential cross section has an in-
finite peak at the single V~, $ combination which

satisfies Eqs. (14) and (15). The cross section de-
creases as one moves away from this point in the

V~, $ plane in any direction.
This behavior is illustrated in Fig. 2 which shows

the differential cross section for p= 0 plotted ver-
sus $ for 3-keV H2 -He collisions with E r = 0 and an

isotropic c.m. angular distribution. [F(x)= (4m) .]
The three curves correspond to (V~ —Vo)/Vo = 5
= 0.0, 0.005, and 0.01. The cross section has a
sharp peak for 5 = 0, since this choice of 5 allows
Eqs. (14) and (15) to be nearly satisfied at one

value of $. For v= 0, the required values of K are
always large. Hence the elastic scattering factor
I&& l is nearly equal to the square of the target
charge and [ ]2 in Eq. (13) is close to unity.

The dramatic influence of the anisotropy factor
E(x) on this cross section is illustrated in Fig. 3. ~

When $ is smaller than the value 0.0297 given

by Eqs. (14) and (15), the H~' dissociation must send
the proton toward the beam direction to compensate
for the transverse 8&' c.m. deflection. This tends
to make x = K u = 1 so that by Eq. (8) E(x)+E(-x)
is large. As $ is increased, x decreases through

zero to values —1, which apply when $ is greater
than 0.029'? andthe Hz' dissociation must; send the
proton away from the beam direction to reach the
detector. With the described increase in g, E(x)
+&(-x) first decreases to small values and in-
creases again to large ones. This leads to the re-
sults shown in Fig. 3.~4

Similar results are obtained for the case in which

one sums over all inelastic transitions in the target,
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using closure. In this case, E~ is set equal to the
target ionization potential and the target's incoherent
scattering factor is used for t&&l'. The main dif-
ference is that the cross section analogous to that
of Fig. 2 has its sharp maximum for 5- —0. 0048.
Screening is unimportant and the influence of F(x)
is quite analogous to that shown in Fig. 3.

Some typical results for the high vibrational states
are shown in Figs. 4-6. Figure 4 shows the angular
distribution for 6= 0 summed over all 20 initial
vibrational states using Franck-Condon factors for
the vibrational population. ' The sharp peaks at and
to the right of $ = 1.9&& 10 ' are due to the initial
states with p= 19, 18, 1V, and 16. The peak near
)=10 5 is due to competition in the cross section
for v = 19 between the tendency of u ' to increase
the cross section and le&(Z) l~ to decrease the
cross section as u-0. For values of 6 on either
side of zero, the cross sections are smaller and
the peaks are less pronounced. The anisotropy
factor F(x) has only a small (-15%) quantitative
influence on the cross sections for large v. By
contrast, screening plays a large role, as is in-
dicated in Fig. 5 which shows the same cross sec-
tion computed with the screening factors replaced
by the square of the target charge. Without allow-
ance for screening, the initial state p = 19 domi-
nates everything else. As a final example, Fig. 5
shows the same cross section sum given in Fig.
4, except that this time all inelastic transitions

12—

I— 10—

8—

6-

C)
4

2-

0
0

1000)(RA D)

in the He target were summed, with E~= 0. 9034.
The value of 5 is —0.004.1 andthe sharp peaks
correspond to p= 16 and 15. The broad peak rep-
resents contributions from p &17; for these states
the argument of the square root in Eq. (15) is neg-
ative. In this case the influences of screening and

F(x) are not large.

FIG. 5. Same as Fig. 4 except that the electron
screening factors were dropped and bare nuclear charges
used in the interaction. Note the change in vertical
scale.

CD

D
4.
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FIG. 4. Proton laboratory angular distribution at
6 =0 for 3-keV H2-He collisions. This cross section
dQ/(d V&dQ) is the Franck-Condon average of those for
all the vibrational states of H2 in its ground electronic
state. The target remains in its ground state. Note the

change in angular scale.

0
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FIG. 6. Same as Fig. 4 except that all inelastic tran-
sitions in the He target were summed using closure with

Ez =—0.9034. Here 6=-0.0041.
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FIG. 7. Apparent H2 c.m. dissociation angular dis-
tribution for 3-keV H2-He collisions. The normalization
is the same used in Fig. 1. However, 0~ is measured
from the forward beam direction. The target remains
in its ground state. A Franck-Condon average of initial
vibrational states is used. Only the cross section for
2pg„excitation is shown. The solid, dashed, and dot-
dashed curves correspond to R=2.4, 3.2, and 5.0 as in

Fig. 1.

Figures 7-10 relate to the experimental data
shown in Fig. 1 and were obtained as described
below. The target, He, and the impact energy, 3

FIG. 9. Same as Fig. 8 except that an isotropic c.m.
angular distribution assumed for vibrational dissociation.

keV, were chosen with Table I in mind and in order
to make 2po„excitation the only important elec-
tronic excitation of H2'. Following the procedure
in Ref. 1, three H&' c.m. proton velocities u, were
chosen corresponding to the values of 8 shown in
Fig. 1 for the 2po„state. For each value of u, and
a series of apparent c.m. dissociation angles
0 & e~ & n, laboratory angles $ and laboratory proton
velocities V~ were computed from the relations

2. 2 2. 2

1.8 1.8—

1.6

1.4 1.4

ON
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4 —/ 4
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I I I I I I

20 40 60 80 100 120 140 160 180

Hg (DEG)

I I I I I I I I

0 20 40 60 80 100 120 140 160 180

Hg (DEG)

FIG. 8. Same as Fig. 7 except that 0.1 times the
computed vibrational dissociation cross section was
added to the 2po.„cross section.

FIG. 10. Same as Fig. 8 except that inelastic tran-
sitions in the target were summed using closure and

E,= 0.9034.
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V» cosg = Vo+u~ cos8„V» sing = u» sin8», (16)

which describe the c.m. to laboratory transfor-
mation if K is neglected in Eq. (11). For each g,
V& combination the laboratory 2po„excitation and

vibrational dissociation cross sections were cal-
culated using the results of Ref. 2 and this paper.
For the 2po „-state laboratory-frame calculation,
the transverse component only of the momentum
transferred to the Hz' c.m. was neglected in Eq.
(11). This led to transformation equations similar
to Eqs. (16), except that Vo wa.s replaced by

Vo —(Er + D„+mu )/(2m Vo)

The two laboratory cross sections were added to-
gether and multiplied by the Jacobian u»/V» related
to Eq. (16). This defined apparent c.m. cross
sections o(u~, 8,) for fixed u~ and variable 8».These
were then normalized so that

sin8~o(u„8»)d8~= 1
0

and plotted in the figures as QN versus 8,. '8~ '7 In
Figs. 7-10, 8~ is zero for dissociation in the di-
rection of the H2' beam; it is the complement of P
in Fig. 1 so a reflection of Fig. 1 about P = 90 '
is required in the comparison. Fig. 7 shows the
2po„contribution alone. Figure 8 adds 0.1 times
the calculated vibrational dissociation cross sec-
tion. Figure 9 is similar to Fig. 8 except that an
isotropic c.m. vibrational dissociation angular
distribution wa, s used [I' = 0 in Eq. (8)]. Finally,
Fig. 10 adds 0.1 times the vibrational dissociation
cross section computed with the regular I' assuming
a closure sum over all inelastic transitions in the
He target and using E~= 0.9034. A Franck-Condon
distribution was used for the initial vibrational
population.

Let us first compare the various theoretical re-
sults with each other. From Figs. 7-10, one sees
that vibrational dissociation is important around
8~ = 90, unimportant near 8~ = 0' or 180', and
most important relative to 2po „excitation for
small u~. Simultaneous excitation of the target
(Fig. 10) causes the peaks to shift to larger values
of 8 ~ The importance of the anisotropy factor
F(R k) is exhibited in the comparison of Figs. 6
and 9. Clearly, sharp peaks for the larger values
of u~ necessitate considerable correlation between
K and k. Finally, we mention that screening has
very little influence on any of the distributions.
This is because in this instance states of low v

(v ™4) dominate the Franck-Condon averaged dis-
tributions.

We will now compare theory and experiment,
remembering to reflect Fig. 1 about 90'. Qualita-
tive agreement appears best between Figs. 1 and
8 and it is evident that vibrational dissociation is
important in Fig. 1. However, from the factor of
0.1 used to weight the computed vibrational disso-
ciation cross section, it is clear that an improved
theory would be highly desirable. It is also prob-
able that our choice of E(x) is too anisotropic for
the larger values of p and the smaller values of u~.

The evidence presented in Figs. 1, 7, and 8 es-
tablishes the importance of vibrational dissociation
in connection with the interpretation of the experi-
ments described in Ref. 1. The general importance
of vibrational dissociation at kV energies was rec-
ognized earlier and discussed in qualitative terms
by the authors of Refs. 6-8. What is new in the
present work is the quantitative application of the
classical-impulse binary-collision model to the
problem.

It is tempting to use the positions of the peaks in
Fig. 1 and Eqs. (14)-(16)to deduce whether and by
how much the target is excited on the average during
vibrational excitation. This evidently requires
accurate experimental measurements which corre-
spond to the initial conditions used in the theory.
It also requires more faith in Eqs. (14)-(16)than
may be warranted by the approximate nature of
the theory. The author's view is that direct ex-
perimental studies of the final target state com-
bined with initial H&' vibrational state selection
should be carried out.

In conclusion, it may be noted that the 2Po„ex-
citation curves in Figs. 1 and 8 are not in very
good quantitative agreement. In particular, the
ordering of the curves for 8~= 0' is not the same
as that for P = 180 . One should keep in mind that
the Born approximation is questionable when V0

0.25 a.u.
Calculations for other targets, impact energies,

initial H2' vibrational populations, etc. , can be
carried out with the author's programs. This type
of information will be supplied by the author, if
possible, upon request.
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inelastic transitions in the target. In this case an ap-
proximate effective target excitation energy E~ is intro-
duced into the internal energy conservation equations.
This method of using closure is discussed by J. M. Peek,
Phys. Bev. 140, All (1965); and by T. A. Green and
J. M. Peek, ibid. 169, 37 (1968). From these papers
it can be seen that the use of closure should considerably
overestimate the inelastic cross-section sum at the low

energies for which experimental data are available. The
coherent scattering factor for He is the same used in
Bef. 2. The incoherent scattering factor for He was
taken from the work of Cromer and Mann, LASL
Report No. LA-3689, 1968 (unpublished) .

The approximation is equivalent to supposing that the

H2 electron screens each proton by spending half its
time around it. This screening is important only for the
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K&3.
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Equation (6) can be obtained as the classical limit of
the expression for J dQ (k) 11(K,k) I used in Ref. 11.
In this treatment, the H2 protons are relatively at rest
before the collision. An alternative development, which

allows for relative proton motion before the collision,
is given in Bef. 4. The vibrational dissociation calcula-
tions described in Refs. 3—5 and 10 do not allow for
electron screening.

The cross sections are zero where Eq. (11) has no

solution for u. They are also zero in Fig. 2 but this is
obscured by the choice of scale.

The quantitative aspects of Figs. 2 and 3 cannot be
taken too seriously. First of all, the form used for E(N)

is a guess. Second, a quantum treatment would blur the

sharp relation between u and K, implied by Eq. (6) with

the result that the peak in Fig. 2 would be broadened.
The symbol Q will be used to denote the Franck-

Condon average of the cross sections Q„. The Franck-
Condon factors were obtained from the work of Rothen-

berg and Davidson [J. Mol. Spect. 22, 1 (1967)]; and

from the work of Villarejo [J. Chem. Phys. 49, 2523

(1968)]. The dissociation energies were obtained from
the work of H. Wind, [ibid. 43, 2956 (1965)].

In Ref. 1 an additional factor (1 —u~cos8~/Vp) is
multiplied into the laboratory cross section in the def-
inition of cr(uz, 8~). The reader can readily include this
small factor in our graphs using Up =0.245 and u~

=0.01115, 0.007750, and 0.003 517.
Because Eqs. (16) are not in general accurate ap-

proximations to Eqs. (11), the apparent c.m. cross
sections are not equal to the true c.m. cross sections.
In particular, the apparent 2po.„c.m. cross section does
not possess the symmetry with respect to 90' which is
characteristic of the true c.m. cross section (Ref. 2).

The position of the peaks can be obtained roughly

from Eqs. (14)-(16). Set V& sin) equal to u~ sin8~ and

solve for D„/m using Eq. (15). Use this value in Eq.
(14) to obtain U~ cos8~ = V& cos$ —Up as a function of uz,

8g, Ez, and Ep.


