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Upper and Lower Bounds to Long-Range Forces between Two Hydrogen Atoms*
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Bell s technique for the calculation of long-range dispersion-force coefficients is trans-
formed to yield rigorous upper and lower bounds. to these coefficients. The bounds involve
in a systematic way the negative oscillator strength sums S(—k) of the two interacting atoms.
By a slight modification, we are also able to bound the leading relativistic correction to the
long-range potential. Application of the method to the interaction between two hydrogen atoms
yields extremely tight bounds to all the relevant coefficients.

I. INTRODUCTION

It is well known that at large interatomic separa-
tions the interaction potential between two non-
overlapping spherically symmetric atoms may be
expanded in inverse powers of the interatomic sep-
aration. " In recent years, many authors have
attempted to establish error bounds to the coeffi-
cients in this expansion in terms of other theoret-
ically or experimentally determined quantities.
We might mention in particular the work of Wein-
hold, whereby known van der Waals coefficients
are used to predict unknown ones, or the elegant
techniques of Langhoff and Karplus ~

' and
Gordon, ' whereby bounds to the van der Waals
coefficients are obtained from knowledge of the
oscillator-strength sums of the individual atoms.

In this paper, we show how the technique devel-
oped by Bell ~

' to obtain approximate values of
the van der Waals coefficients may be easily
transformed to yield rigorous bounds. These
bounds involve the oscillator-strength sums of the
individual atoms. By a slight modification, we
are also able to bound the leading relativistic cor-
rection to the long-range interaction potential.
We then use these results to compute high-accu-
racy upper and lower bounds to the dominant ex-
pansion coefficients in the case of the long-range
interaction between two hydrogen atoms.

II. METHOD

The usual expression for the long-range unre-
tarded interaction between two nonoverlapping
spherically symmetric atoms a and Q in their
ground state is

v.,(ft) = —Q Q c'„'f~-",
n =1 m =1

where M = 2(n+m+ 1), R is the interatomic sepa-
ration, and Cg is the coefficient for the (2n-pole)-
(2m-pole) dispersion interaction between atoms

a and 5. Explicitly we have, in atomic units, '~

C'"=Z Z Z f'(')f '(b) (2)
, (u,"(a)(o",(b)[(o~(a) +(u",(b)]

'

where K„=—,'(2n+2m) t/(2n)!(2m)!

In the above expression, the 2n-pole oscillator
strengths» '

f,"(a) = 2(oj(a) ~(0, ~~"P„(cosa)(j,) (' (4)

o.,"(iu)o.", (iu) du

involving the integral over imaginary frequency of
the 2v- and 2m-pole dynamic polarizabilities of
atoms a and b, namely, '~ '

~
'

(6)

Most recent attempts at obtaining bounds to the
C'„~ have started from Eq. (5) rather than from
Eq. (2), being based on the idea that by first set-
ting bounds to the polarizability at imaginary fre-
quency it would then be possible to bound the C~
via Eq. (5). '

We shall present an alternate approach. Fol-
lowing Bell, '

&
' we define a quantity E„ to be the

smaller of the lowest allowed excitation frequen-
cies of atoms a and b; in other words,

E„=min[(o((a), (u, (b)]

Then, if we further define the variables

refer to excitation from the ground state of system
a to a(2n-pole)-allowed excited state j with exci-
tation frequency co& =F.

&
-Eo. The double summa-

tion in (2) includes an integration over the contin-
uum of each atom.

Alternatively, the coefficient C&' may be ex-
pressed as
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x, =z „„/(o",(a)

and y, =Z „ /~,"(b),
we may rewrite Eq. (2) as

C'„'=Z„Z„.'Z Zf";(a)f, (b)q(x;, y,),j k

where the function y(x, y) is given by

q (x, y) = x'y'/(x+ y)

(8)

(9)

(10) which, together with Eqs. (11) and (15), yields

p(x, y) = —,'xy(x+y)

——', xy(x -y) Z [1 ——,'(x+y)]"
r =0

(18)

we may make the identification z = 1 ——', (x+y) to
obtain

(„y)-'=-,' Q [1--',(x+y)]"
r =0

From their definition, the two variables x; and yk
are limited to the range 0 & x;, yk & 1.

At this point, Bell"&
' chose to approximate the

function y(x, y) by a finite sum of selected powers
of x and y, namely,

y(x, y) = ERA«, x«y',
e

with the coefficients A.~, chosen in order that the
approximate function be accurate in the range
0 & x, y & 1. Using this approximation, Bell can
write"~ '

Since each term in the summation is positive and
since the whole sum enters in with a minus sign,
it is obvious that truncating the sum at any finite
number of terms N will yield an upper bound to the
function y(x, y). In other words,

y(x, y) - y„(x, y) = —,xy (x+y)

--,'xy(x —y)' Q [1--,'(x+y)]"
r =0

Expanding, we obtain

C@ =&nm&nm

x Z Z Z Z A„f,"(a)f, (b)x&y'„
a

or

(13a,)

y„(x, y) = —,'(x'y+y'x)

--.' E Z Z Z(-I)*"
r =0 f =0 y =0 k=0

c~'=K„„QZ A««z„'«" "s'„(-P)s„'( q) . (13b-) z 2 x s k yz k 1 20

In going from Eq. (13a) to Eq. (13b), Bell"~ '6 has
used the definitions of x& and y„[Eqs. (8) and (9)]
as well as that of the 2n- and 2'-pole oscillator-
strength sums, namely,

Recalling the definitions of x and y [Eqs. (8) and
(S)] and of the oscillator-strength sums ['Eq. (14)],
we may introduce the above result into Eq. (10) to
establish the upper bound

S'„(~)= Z f,"(a)[(o",(a)]",
j=1

and likewise for atom b.
Now, since the oscillator strengths f,"(a) and

f «(b) are by definition positive, we recognize that
it would be possible to obtain upper and lower
bounds to the C'„~ simply by choosing the coefficents
A„ in Eq. (12) in such a way that the resulting
power series is always an upper or lower bound to
the function y(x, y) in the range 0(x, y(1. To do
so, we shall proceed as outlined below.

c —,'z„„[s'„(-a)s„'(-1)+s'„(-1)s„'(-2)]

--,'z„„z„„ZZ Z Z (-1)""(-,'z )'
r=O 2=0 ~ =0 k=0

1oko N 3 (22)

2 S„'( f. +j+k —-3)s'(-j -k —1)

(21)

requiring all the sum rules S„(k) for

III. UPPER AND LOWER BOUNDS TO C~"

We first use simple algebra to write

xy(x+y) '= —,'[(x+y) —(x -y) /(x+y)] . (15)

Recalling the well-known expansion of (1 —z) ' for
x&1,

«S;(- 2)s;(- 1),
which may be written as

(23)

The first term in Eq. (21), obtained by ignoring
the quadruple sum, is itself an upper bound. In
the case of the dipole-dipole interaction between
identical atoms, this term is

(1 —.)-'= Z.",
r =0

(18) «o'(a) &(Oi(~ x;)'iso& . (24)
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In going from (23) to (24) we have made use of the
well-known results that S(- 2) is equal to the stat-
ic dipole polarizability n and that S(-1) is equal
to two-thirds the ground-state average (Oi (g;r;)
x ( 0). ~7 It is interesting to note that (24), which
we recall to be an upper bound, is none other than
Salem's modification of the classic Kirkwood-
lVfuller formula.

In deriving a lower bound to C'„, we first use
Eq. (17) to write

where n is the fine-structure constant. The inter-
action coefficient D4 is given by

f;(a)f,(b)' ~-»-~ ~Ha)+~. (b) * (3o)

f, and f~ being the usual dipole oscillator strengths.
We now use the ideas developed above to derive
upper and lower bounds to D4~.

As in Sec. III we define the quantities

p(x, y)= —,'x'y' Z [1 ——,'(x+y)]"
r =0

Since each term in the summation is positive, trun-
cation at any finite number of terms will yield the
lower bound

y(x, y)o- y~(x, y) =-,'x'y' Z [1--,'(x+y)]" . (26)
r=o

E = min[(o, (a), &u, (b)]

x; =E/(u, .(a)

and y, =E/&u, (b)

to write

D'4'= 2& ' Z-Zf, (a)f„(b)g(x&, y, )
k

where the function y(x, y) is defined by

(31)

(32)

(33)

(34)

As before, we can substitute this result into Eq.
(10), expand, and use the definitions of x and y to
write, after some straightforward algebra

y(x, y) = xy/(x+y)

From the results of Sec. III, we conclude that
X(x, y) can be bounded by

(36)

c'„' —,'z„„z„„gZ Z (--,'z„„)*~
0 g=0 y=0

Z

x S'„(-i+j- 2)S'(-j -2), ( 27)

N

X(x, y) ~ 4(x+y) -8(x-y)' & [1-2(x+y)]" (36)
r=0

and by y(x, y) & —,'xy Z [1--,'(x+y)]"
requiring in this case all the oscillator-strength
sums for —2~ k ~ —N —2. In the dipole-dipole
case, the first term in the above expression

r=o

As before, we can expand Eq. (36) and introduce
the result into Eq. (34) to obtain the upper bound

-'«(a)a(b) (28)
&l'- l[S'(0)s'(-I) +S'(- 1)S'(o)1

IV. UPPER AND LOWER BOUNDS TO RELATIVISTIC
INTERACTIONS

Recently, Meath and Hirschfelder ' have shown
that for large interatomic separations the relativis-
tic corrections to the usual Hamiltonian yield cor-
rections to the interatomic potential which may be
expanded in inverse powers of the interatomic
separation R. For spherical systems, the leading
dipole-dipole term is ~3& I

V„g(R) =o! D4'~(R)R (29)

is the well-known London expression, modified
by setting the so-called "average excitation ener-
gy" for both systems equal to the lowest dipole-
allowed transition energy. Both Tang and Kra-
mer" have recognized (28) to be a, lower bound.

Both Langhoff and Karplus" ' and Gordon" '
have recently developed powerful techniques for
obtaining upper and lower bounds to the C& from a
knowledge of only the even oscillator-strength sums
S(—2k). The bounds derived above require addi-
tional information in the form of the odd sums
S(- 2k —1).

xS'(-i +j —1)S'(-j —1), (39)

involving the dipole oscillator-strength sums for
—1&k& -N —1.

V. NUMERICAL RESULTS FOR THE INTERACTION
BETWEEN TWO HYDROGEN ATOMS

The use of the above bounds to long-range inter-
action coefficients depends on the availability of
some or all of the oscillator-strength sums for
atoms a and 5. For the hydrogen atom, Bell, 6'

extending some earlier work of Dalgarno and col-

x x i 2 S'(—i +j+k —2)S (-j —k) (38)
i j

involving the dipole oscillator strength sums S(k)
for 0& k & -N —2. Analogously, expansion of
Eq. (37) and introduction of the result into Eq. (34)
will yield the lower bound
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laborators, & showed that the negative 2g-pole
oscillator-strength sums S„(-k) could be related to
the first column of a matrix A"„,:

C& Upper bound Lower bound Previous result

TABLE II. Coefficients of long-range interaction
between two hydrogen atoms.

S„(-~)=2'" '"n(2n) lA"„e, (40)

where the individual matrix elements A"„,are gen-
erated by the recursion relation

A"„,=[A", .. .+(2s+2n+2)A"„

+(s+ 1)(s+2n+2)A"„, ,„jj4(s+n), (41)

C6 6.499 026 71
Cs 124.399 086

C,p 1135,214 04

Clp 2150.61442

D4 0.462 806 8

6.499 026 60

124.399 069
1135.213 91
2150.614 04

0.462 805 2

6.499 026 7o

124.399 1
1135.214
2150.614

0.462 806 5 '

TABLE I. Convergence of upper and lower bounds to

long-range dipole-dipole interaction between two hydro-

gen atoms.

0

1
2

3
4
5

10
15
20

25

30

b
upyer

6.574 219
6.524 780
6.508 816
6.503 087
6.500 845
6.499 899
6.499 077
6.499 033
6.499 028
6.499 027
6.499 027

C
Clower

5.695 313
6.288 574
6.430 710
6.473 003
6.487 834
6.493 732
6.498 716
6.498 984
6.499 017
6.499 024
6.499 026

Exact value is C=6.499 027; see Table II.
Equation (21) of text.
Equation (27) of text.

subject to the restrictions Ao 0 = 1 and A"„,= 0 for
z, s&0and for s &z.

From Eqs. (40) and (41) it is a simple matter to
generate all the sums required in Eqs. (21), (27),
(38), and (39). In Table I, we show the behavior
as a function of the truncation limit N of the upper
and lower bounds to the dipole-dipole dispersion
coefficient for the interaction between two hydrogen
atoms. We see that convergence is both uniform
and swift. We note that the upper bound of Eq. (21)
converges somewhat faster than the lower bound
of Eq. (27). Indeed, if we use only the sum rules
S(k) for —1~0& —4, the upper bound of 6. 525 is
in error by 0. 4% whereas the lower bound of 6. 430
is in error by 1.1/q.

In Table II appear values of the important multi-
pole-dispersion coefficients as well as the dipole-
dipole relativistic coefficient in the case of the
interaction between two ground-state hydrogen
atoms. The results shown were obtained with a
truncation limit of N = 33. We see that the bounds
are extremely tight and are in good agreement
with previously calculated values of the interaction
constants.

The subscript denotes the associated inverse power
of the interatomic separation in V(R) = gs CsR

This column contains only the most accurate of the
values available in the literature.

'W. Kokos, Int. J. Quantum Chem. 1, 169 (1967);
variation-perturbation results.

Reference 4 of text, error bounds from perturbation
theory using operator techniques.

'M. 0 Carrol and J. Sucher, Phys. Rev. Letters 21,
1143 (1968); exact calculation.

Quadrupole-quadrupole interaction.
Dipole-octupole interaction.

"Relativistic interaction, Vrel(R) = D4e R
'Reference 24 of text; variation-perturbation results.

TABLE III. Upper and lower bounds to the long-range
dipole-dipole interaction coefficient between two helium

atoms. @"

Cuyyer

1.461
1.479

1.459

1.473

1.484

Clower

1.446
1.467

1.444

1.460

1.474

Oscillator-strength sums

S(-1)-S(-6) '
S(-1)'
~(-2) '
S(—3) —S(- 6) '
8(—1) '
S(-2) -S(-6) '
S(-1)'
S(-2) '
S(-3)-S(-6) '
S(-1)'
S(-2) '
S(-3),S(- 5)

'
S(—4), S(-6) '

Results from Eqs. (21) and (27) of text with truncation
limit N chosen so as to incorporate all dipole sums S(k)
with —1~ k ~ —6.

Exact value is C8=1,4605+0.0025; Ref. 5 of text.
'Reference 24 of text.
C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

'C. Schwarz, Phys. Rev. 123, 1700 (1961).
Reference 29 of text.
Reference 10 of text.
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VI. DISCUSSION

In view of the accurate results obtained above,
one would be tempted to move on to larger sys-
tems. Values for some or all of the dipole oscil-
lator s-trength sums S(k) for —1» 0» —6 are avail-
able in the literature, in particular for the rare
gases. ' ' ~ These sums are usually obtained
from a semiempirical fit of the available experi-
mental absorption and dispersion spectra of the
atom in question. Unfortunately, as Langhoff and

Karplus and Gordon have pointed out, the error
in these semiempirical oscillator -strength sums is
unknown, with the result that the numerical bounds
to the dipole-dipole dispersion coefficients depend
closely on which set of sums is used. Hence, the
bounds are no longer rigorous.

To illustrate this problem, we have computed
bounds to the dipole-dipole coefficient for the in-
teraction between two helium atoms using Eqs. (21)
and (27) and various published values of the oscil-
lator-strength sums S(k) for —1» k» —6. The re-
sults are shown in Table III. We see that the

"bounds" vary by several percent, depending on
which values of the sums are used. Indeed, in
several cases, the lower bound lies above the true
value. It would be possible to circumvent this dif-
ficulty by explicitly incorporating the uncertainty
in the oscillator-strength sums into Eqs. (21) and

(27). This would probably lead to bounds on the
C& too loose to be of great interest.
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