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This paper presents a semiclassical theory of a single-mode gas laser valid for essentially
arbitrary values of field intensity. The theory is formulated in terms of an ensemble-averaged
form of the density-matrix equations of motion involving a single set of coordinates. The

polarization and the population-inversion density are expanded in spatial Fourier components.
One obtains a set of coupled difference equations in the Fourier coefficients yn, which may be

solved subject to appropriate boundary conditions on yn for large n. The solutions may be ex-
pressed in terms of continued fractions in the general case, and in closed form in important

special cases. Quantities of interest are evaluated by computer. The steady-state laser in-
tensity and frequency are obtained from the coupled electromagnetic field equations as func-
tions of the cavity parameters and the linear gain of the amplifying medium. At moderate
values of field intensity, the velocity distribution of the space-averaged population inversion
density exhibits a fine structure for low-velocity atoms superimposed on the usual broader
depletion. This structure is a manifestation of the coherent ringing of the amplifying medium.

The results are compared with those obtained in the rate-equation approximation, and with

the recent work of Stenholm and Lamb. Discrepancies with the latter paper are explained.

1. INTRODUCTION

Our understanding of the dynamics of a gas la-
ser begins with the theory of Lamb'~ ' which, in an
elegant formalism, brought together the quantum-
mechanical, statistical-mechanical, and electro-
magnetic aspects of the problem. The original
treatment was limited to weak-field saturation
(third-order polarization). More recently, Sten-
holm and Lamb' have extended the formalism to
the case of a single-mode laser of arbitrary field

intensity. This case is of particular interest be-
cause of a recently introduced technique' for in-
ducing high-power single moding in gas lasers.

The present paper approaches the single-mode
laser problem from a point of view'~ ' which con-
siderably simplifies the calculation by dealing di-
rectly with the equations of motion describing an
entire atomic velocity ensemble in terms of a single
set of coordinates. This approach is mathemat-
ically equivalent to that of Ref. 3. Nevertheless,
our results differ in some important respects.
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Because of the coherent nature of the atom-field
interaction, it is important to include coherent
population effects (pulsations in the inversion den-
sity) in formulating gas-laser problems. ' In the
past, theories including such effects have generally
been formulated in one of two ways. Several au-
thors'~ '~ ' have adopted the procedure of first com-
puting the response of a single atom at coordi-
nates (z, tI moving with velocity v produced at co-
ordinates (zo, toj, and then explicitly summing
over all possible initial conditions. In another ap-
proach, '~ '~ "the state of an ensemble-averaged
system moving with velocity v at coordinates (z, t I
is obtained by solving a set of equations which re-
lates this state to another state at coordinates fz, t).
Both of these approaches require solving a set of
integral or integrodifferential equations. In our
approach, the differential equations of motion can
be solved directly.

The ensemble-averaged equations of motion are
derived in Sec. 2. In Sec. 3 these equations are
immediately solved to obtain a system of coupled
difference equations equivalent to those of Sten-
holm and Lamb. In Sec. 4, the coupled equations
are combined with the electromagnetic field equa-
tions to obtain expressions for the steady-state la-
ser intensity and frequency. Inspection of the cou-
pled difference equations in Sec. 5 reveals two types
of solutions, one which diverges under various con-
ditions. It is shown that the other type, which has
good convergence properties, is the physically ac-
ceptable one. Solutions to the coupled difference
equations are obtained in Sec. 6. In general, solu-
tions may be expressed in terms of continued frac-
tions. ' However, in important special cases ana-
lytical expressions are obtained. The results are
presented in Sec. 7. We find that spatial vari-
ations of high harmonic content in the polarization
and in the population inversion density vanish, in
contrast with the findings of Ref. 3. These dis-
crepancies are explained. Examination of the ve-
locity distribution of the inversion density using
both analytical expressions and continued fractions
reveals that with increasing field strength an addi-
tional feature not predicted in perturbation treat-
ments'~ "nor, in rate-equation treatments, ' mani-
fests itself when the laser is tuned to the center of
the atomic-gain profile. This feature consists of
fine structure in the population inversion density
for low-velocity atoms, superposed upon the usual
broader depletion. However, it is found that the
central tuning dip (Lamb-dip) does not qualitatively
differ in structure from predictions based on the
rate equations. These results agree with those of
Stenholm and Lamb. ' The fine structure of the in-
version density is interpreted in the frequency do-
main in terms of parametric processes, and in the
time domain as a manifestation of coherent ringing
of the amplifying medium.

2. ENSEMBLE-AVERAGED EQUATIONS OF MOTION

In this section we obtain an ensemble-averaged
form of the density matrix equations of motion in-
volving a single set of coordinates, which is appli-
cable to gas-laser problems, i.e. , problems in-
volving resonant interaction of intense standing-
wave fields with broad atomic velocity distribu-
tions. Our belief that one can deal directly with
atomic velocity ensembles in this way has been
motivated by the following considerations'. Imag-
ine a Doppler-broadened atomic system with mul-
tiple levels interacting with intense monochromatic
standing-wave fields. In the simple picture of
atomic motion generally adopted, an atom pro-
duced at a particular position and time travels un-
deflected with constant axial velocity until its de-
cay. Thus, one may deal separately with ensembles
of atoms moving with different velocities. Let us
focus our attention on one such group moving with
axial velocity v. Note that by studying the response
of this ensemble in a coordinate system also mov-
ing with velocity v, the problem reduces to one in
which the atoms appear fixed; a situation for which
it is well known'~ "that ensemble-averaged equa-
tions of motion may be derived. Thus, one can,
in principle, caiculate the rest-frame response of
the atomic ensemble as a whole, then transform
back into the laser rest frame. In the latter frame,
the jth standing wave at frequency v. may be de-
composed into a pair of travelling wave components
at frequency vj of equal amplitude and opposite prop-
agation directions. In the atomic rest frame, how-
ever, the field components appear Doppler shifted
to frequencies

the downshifted component propagating in the di-
rection of atomic motion, the upshifted component
propagating in the opposite direction. Thus, in the
ensemble rest frame, the j-field standing-wave
problem reduces to an ensemble of fixed atoms
interacting with 2j travelling-wave fields. As a
specific example, in the problem treated in this
paper the single standing-wave field at frequency
v appears in the ensemble rest frame as two ap-
plied fields at frequencies v+kv. Because of the
nonlinear nature of the interaction, these fields
generate components of induced polarization not
only at the fundamental frequencies v+kv, but also
at sideband frequencies v+3kv, v+ 5&v, . . . , as well
as population fluctuations at frequencies 2kv,
4&v, ~ ~ ~ ~ These sidebands react back and consid-
erably influence the polarization at the fundamental
frequencies. " Equivalently, . one can view the prob-
lem in the laser rest frame, in which case the
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sidebands manifest themselves as variations in
sPace —polarization components at odd multiples
of kz and population components at even multiples
of kz —rather than variations in time. ' %e have
found it more compact to treat the entire problem
in the laser rest frame. ' It is often easier, how-

ever, to envision the nonlinear interaction in the
atomic rest frame, and we shall have occasion to
refer to that picture later on.

A formal derivation is now given. Consider a
Doppler-broadened multiple-level atomic system
interacting with an electric field S(z, t) consisting
of a number of intense monochromatic classical
standing-wave components. Let us focus our atten-
tion on the evolution of a single atom moving with
constant axial velocity component v produced" in
level k at coordinates {zo,to), so that at a subse-
quent time t the atom will be found at position

z=z +v(t —t ).0 0

The total Hamiltonian for the atom is

a(z, t)=a, +V(z, t),

where II, is the Hamiltonian of an isolated atom
with stationary states (& of energy hW. The atom
is coupled to the applied field by the interaction
Hamiltonian

commutator brackets and {) are anticommutator
brackets, and B is the Hamiltonian matrix having
elements

H. .=AS'.5.. + V. .ij j gj gj

where V. .= —P S(.z, t)ij ij (6)

with electric dipole matrix element

In Eq. (6) relaxation has been introduced by means
of the matrix I" with elements

r. .=y.e
gj j gj

(1O)

where yj is the decay rate of level j. Note that in
Eq. (6) an off-diagonal matrix element relaxes, in
the absence of applied fields, at a rate

y, . =-,'(y. +y.)ij'i j

as would be the case, for example, in radiative de-
cay. " The expectation value of the induced dipole
moment is

v(z, t) = p, S(z, t), - (4)
Tr[pp(v, t; z, t, k)] .

0 0

p. . (v, t; z, t,k),0 0
(5)

which obeys the familiar equation of motion

—p(v, t z t, k)
dg

'' o'o'

=-(t/k)[e(z +v(t-t ). t), p(v, t;z, t, k)]
0

—-{I',p(v, t; z, t, k)] (6)

where the left-hand side is the total ("hydrodynam-
ic") derivative of p, i.e. , its total rate of change
as one moves along with the atom. Here [ ] are

in which p, is the electric dipole operator. The
atom's interaction with the applied field may be de-
Scribed by means of a density matrix with elements

The net polarization, P(v, z, t)dv, due to atoms
moving with velocity components in the interval be-
tween v and v+dv, is obtained by integrating this
expression over initial coordinates and summing
over levels of initialexcitation. In the steady state
atoms in level k are produced at coordinates {zo,to,
and with axial velocity components in the interval
between v and v+dv at a rate

n (v, z, t )y„dvo'o k

Per unit volume, where nk(v, zo, to)dv, the back-
ground population density of leve1 k in the interval
between v and v+dv, may be assumed" to be inde-
pendent of the applied field. Thus, making the ap-
proximation of evaluating nk at {z, t t instead of at
{zo,to}, P(v, z, t)dv is given by

P(v, z, t)dv=g n y dv f dt f dz Tr[pp(v, t;z, t, )k] [6-zz —v(t-t )] (14)

Introducing the ensemble-averaged density matrix

00

p(v, z, t)=Pn y f dt f dz p(v, t;z, t, k)6[z —z —v(t —t )]=+ n y f ~dt p[v, t;z —v(t —t ),t, k],
(15)
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Eq. (14) may be written in the form

P(v, z, t)dv = Tr[pp(v, z, t)]dv (16)
P(z, t)= f Tr[pp(, v, z, t)]dv

The total polarization due to atoms of all veloc-
ities is then given by

To derive an equation of motion for p(v, z, f ) from
that of p (v, f;zo, to, k), consider the total derivative'

d (a a—p(v, z, t) =
Q
—+—p(v, z, t)

dt ' '
I,Bz Bt

t B B=En y f dt v —+ —p[v, t;z —v(f-t ), t, k] +En y p(v, f;z, f, k) .
k k ~ 0 Bz Bt 0'0' k k

(16)

The last term of the right-hand side is a bound-

ary condition, namely, the value of p at Iz, f'ffor
an atom produced at those same coordinates. Ac-
cording to our assumed initial conditions, "the
elements of p(v, f;z, f, k) obey the relationship

p. .(v, f; z, t, k) =5..5.
k

tation of the parametric dependences of p. Equa-
tion (22) may be obtained from Eq. (40) of Ref.
9 by equating t and t. It is perhaps worth reiter-
ating that calculations are enormously simplified
by dealing directly with Eq. (22) as interpreted
above.

3. COUPLED EQUATIONS FOR A SINGLE-MODE LASER

Defining a matrix p' describing the background
population, with elements

p. .'=n. (v, z, t)6..
2j 2'' 2j

we obtain

—p(v, z, t) =-,'{I',p'(v, z, t)) +Zn y

x f dt —p[v, t;z —v(t —t ),t, k] . (21)
0dt 0 0

To transform Eq. (6) into an equation in p(v, z, f),
first multiply both sides by 5[z —zo —v(f —to)] and

sum up over z0, t0, and k. Performing the z0 in-
tegration, the L. H. side becomes

Qn y f dt —p[v, f;z —v(f-f ), f,k],t d
k k odt 0 0

We now apply the above results to the case of a
single standing-wave field of arbitrary intensity in-
teracting with a l3oppler-broadened two-level atom-
ic system, as would occur within a high-Q laser
resonator of length L. In this case, the evolution
of p(v, z, f) is described by Eq. (22), with indices
2, j, k referring to the upper and lower atomic ener-
gy levels, denoted by a and 5, respectively (Fig. 1).
The matrix elements of the interaction Hamiltonian
[Eq. (8)] may now be written V~t, = Vk~ = k Vo, with

p,

V (z, f) = — ho sin kz cosvf
0

= —(p 8 /4i@)[e (e —e ) —c.c.],(23)
0 0

which is identical- to the last term on the R. H. side
of Eq. (21). In considering the R. H. side of Eq.
(6), note that H becomes independent of zo and to
because of the 5 function. We therefore obtain
the ensemble-averaged equation of motion

Wa

C, iz, t)=go "inkz cosset
(W~-Wbj/0 = u

—+v —p(v, z, &) =-—' [&(z, &), p(v, z, &)]
Bf Bz Wb

——,'[r, p(v, z, t) —p'(v, z, &)], (22)

the desired result. A closely related derivation
was given in Ref. 9, but with a different interpre-

I'IG. 1. Energy-leve1 diagram for two-level atomic
system, coupled to standing-wave field. Relaxation is
introduced via decay rates y~ and pb.
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since &0= p,zb may be chosen to be real. The
boundary condition imposed by the resonator is sat-
isfied with

p (v, z, t)

k = m v/L, m = a positive integer . (24)

From Eq. (16) the polarization of an ensemble of
atoms with axial velocity components in the inter-
val between v and v+dv is

P(v, z, t)dv = p, [p ~(v, z, t)+c.c. ]dv. (2oa)

&(v, z, t)dv

=[p (v, z, t) —p (v, z, t))dv (26b)

Writing out Eq. (22) for the elements of p(v, z, t),
we have

r
8 9

~] +v
8

+zG0 P b+P bP

=iv (z, t)(p, p»), — (26a)

c
8 8—+v —p +y(p —n)Bt Bz aa a aa a

=tv (z, t)(p -p ), (26b)

The population inversion density in the interval dv,
as influenced by the applied field, is given by

likewise, p (v, z, t) = Q [a (v)e +c.c. ] +n
inks

a

(28b)
OO

pb&(v, z, t)= Q [b (v)e +c.c. ] +n&
n=O

'n
(28c)

since pz~ and pbb are real. In writing these ex-
pressions the predominant spatial variations have
been expressed as harmonics in kz. The possibil-
ity of additional slow z and t variations in nz and
nb can be allowed for by considering II~, a
bz to be slowly varying functions of these param-
eters. "

An important property of the solutions (28) fol-
lows from the iterative relationship between diag-
onal and off-diagonal elements of p: The (essen-
tially) spatially constant portions of p~~ and pf, f,
couple nonlinearly through V0 to produce compo-
ents of p~y which vary at exp(+ikz); these react
back on p«and pbb, producing components at exp
(+2ikz), and so forth. It follows that in Eqs. (28)
we may exclude all spatial harmonics in p~b even
in n, and in pz~ and pbb odd in n. With this in
mind, we proceed by substituting our trial solu-
tion, Eq. (28), into the coupled equations (26) and

equating coefficients of like harmonics in z and t.
The off-diagonal equations (26a) and (26b) lead to

(29a)

=-iv (z, t)(p ~- p~,), (26c)
Z, 11, =-y &(d, , -d, ,)*, (29b)

and pba pab (26d) with n' =1, 3, 5, ... (30)

where &=TV —W &0.
a b

(2"I)
(The notation is defined below. ) The diagonal
equations (26b) and (26c) lead to

These coupled equations may be solved by insert-
ing V& in complex form and inspecting the behav-
ior of various possible time-varying components
of p. The bracketed operators appearing on the
left-hand sides of Eqs. (26) are of special signif-
icance in this regard because their eigenvalues
eventually appear in the denominators of the ex-
pressions for the elements of p. The only impor-
tant frequency components of p are those which
lead to resonant denominators. Thus, the dominant
frequency component of p~f, varies as exp( —ivt).
I ikewise, the only important contributions to p«
and pbb are time-independent. Therefore, a near-
ly complete solution of Eqs. (26) is of the form

d =23[(ll+-11-)~c.c. ] +X, (31a)

—(11- 11-n" +1 n"- 1
(31b)

with n"= 2, 4, 6, . . . (32)

d =a —bn/I rll I n
(33a)

In Eqs. (29) and (31), we have used the following
notation:
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d, = [(a,—5,)+ c.c.]+N0

where N (v, z, t) =n (v, z, i) —n&(v, z, i)
o ' ' a

(ssb)

(34)

Then Eqs. (29a) and (40) reduce to

2, = y &+i(&u —van'kv)n' ab (35)

1 1 1
+

M pp y + in" kp y& + in"kv (35)

and we have introduced the dimensionless param-
eter S as a measure of the degree of saturation:

s=p, 8, /4hy, ,

with y =y y&/y &

Equations (29) immediately imply that

(37)

(ss)

so that N,dv is the (slowly varying) excitation den-
sity at coordinates {z,i I in the interval between v

and 5+dan

yo = 2S(gq+g~+) + 1 (4sb)

An equivalent set of equations was first derived
by Stenholm and Lamb" using more lengthy pro-
cedure.

4. CONNECTION WITH ELECTROMAGNETIC
FIELD EQUATIONS

P(v, z, t)=- p, N Ree Z 1+ivt i((o —v)

Once the yn are determined, the physical param-
eters of the atomic system may be completely
specified. For an ensemble characterized by
parameters {v,z, i"I the polarization and popula-
tion inversion density are readily available from
Eqs. (25), (28), (33)—(35), (39), and (41)-(43):

accordingly, Eq. (31b) becomes

(39) inks i co —v -inks
xy 8 — 1+ . y~e

n y —ankle
ab

(44)

M „d „=y S[(Z „ /R„)ll'
—(Z „ /K „)rr+„], (40a)

N(v, z, t) =N [y + Z (y e +c.c.)].(45)
even n &0

and Eq. (sla) becomes

1
with

E
n

1

n' n

do = 2S[(Z, /K, )II, +c.c.]+No, (40b)

(41)

We shall sometimes refer to the yn's as the
Fourier coefficients of N and P." The net polar-
ization P(z, i) is obtained by summing Eq. (44)
over all velocities [Eq. (17)]. The velocity de-
pendence enters into P(v, z, i) through the brack-
eted quantities in Eq. (44), the y„'s, and through
N„ the excitation density, which may be written
in the form

Equations (29a) and (40) constitute an infinite set
of coupled difference equations. Since IIn and d„
vanish for even and odd values of n, respectively,
we may combine their equations into a more com-
pact and symmetrical form. To this end we de-
fine

N y, = (2, /K, )II, , n ' = 1, 3, 5, . . .
o n' n' n' n''

N (v, z, t)=N (z, t)W(v),0 0
(45)

J W(v) dv = 1 . (47)

In what follows we shall assume N, to be indepen-
dent of z and t. %e can write

where W(v) is the normalized atomic velocity dis-

tributionn,

& p=& p~n n

N 3 pp pp po n

pp™
n n

n'=1, 3, 5,

n"=0, 2, 4, . . .

n"=0, 2, 4.

(42a)

(42b)

$(z, t)=Re(S sinkze ),ZVt

P(z, t) =Re 2 (y sinnkz
n odd

iPt
+ i X cosnkz) 6 e

n 0

(4Sa)
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(. ,) &
where y S = —ill N W(v) + 1+

n o o o —

~
y +inkv~ab

P(t)=-
I 2

P(z t)si~zdz=Re(XS e ) (53)
2 a +I/2 . ivt

where, from Eq. (48b),

xy + 1+ i((u —v)
n y

&
—inkv~ n

ab
(48) Z y f, sinnkz sinkzdz

— 2 + a+pl
Ln odd

n a-2l

The growth of the electromagnetic field within
the laser cavity is related to the polarization in-
duced in the sample through Maxwell's equations. '~'

The resulting relationships may be written in the
form

a+I/2
zip zozzizzziziizdz),

n a-I 2

Integrating over z, we find

(54)

dU v—=6-—Udt (50a)

v=n/n, . (50b)

L g P

1 (S'(z, t)) d
o

16m
0

(51)

where the symbol ( ) indicates time average over
one period; G, the rate of increase of Udue to
stimulated emission, is given by

Here U, the average energy density of the electro-
magnetic field, is given by

Imx(v, S ) =(4vQ) ',
0

(58a)

l
X=—y, +additional terms of the form1

X~

odd n
(55)

Because of the cavity boundary condition [Eq. (24)],
the additional terms on the right-hand side vanish
identically for l = L, the case where the sample
fills the entire cavity, and in certain other cases.
They will always be negligible so long as the y~
do not diverge for large n (since for an optical
resonator, X/L«1). In any case, Eq. (53) may
be used to transform Eqs. (50) into a form con-
venient for calculation. In the steady state, we
find that

(P(z, t) S(z, t)) dz,a +I/2
(52)

v —Q= —2mvRey(v, S ) .
0

(58b)

where the active medium is a sample of length I
centered within the resonator at z =a; 0 =ck is
the eigenfrequency of the empty resonator and,
as before, v is the laser frequency; Q is the qual-
ity factor of the resonator, taking into account
losses due to transmission, diffraction, etc; and

no, the index of refraction of the active medium
(a real quantity), is a function of laser frequency
and field intensity. Equations (50) have been writ-
ten in a form which brings out their physical con-
tent. The first equation is the statement of energy
balance within the resonator: The time rate of
change of energy at any instant equals the net po-
wer increase due to induced emission and cavity
loss. The second equation follows from frequency
pulling considerations: The reflecting surfaces of
the resonant cavity fix the laser wavelength, so as
the refractive index varies, the oscillation fre-
quency must change in order to satisfy the disper-
sion relation. Thus, the wavelength X=c/0=v/v,
and Eq. (50b) follows from the definition n, =c/v.

It is convenient to define P(t), the projection of
induced polarization on the cavity mode:

l +. oolp, N
X- X --2z

g0

x W(v) Rey, +i(e —v) Re ' .
k dv,

+zkv
(5V)

so that

1 ku/Wm W(v)y, dv
Rex =—y«e —v Re

y y&+tv
0 a

(58a)

ku/v m

and Imp = ——y«Ref W(v)y, dv, (58b)00

p, ~N
o o

W 1th )(00 (58c)

In obtaining the latter expression we have made
the approximation n, = v'e =- I+2mRey, with s the
capacitivity induced in the active medium by the
laser field. To relate X to the Fourier coefficients,
recall that as long as the y~ do not diverge for
large n,
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the peak value of the imaginary part of the sus-
ceptibility of a Dopplex-broadened gas with Doppler
width ku (u is the most probable speed). Equations
(56) and (58) implicitly determine the steady-state
laser frequency and intensity in terms of the pa-
rameters of the laser medium and the resonator
as soon as y, is determined.

A second type of solution is obtained on the
assumption that

ly I
& jy I

«r n»2r &/klvln-1 n+1 ' 0

so that y I/y - inkv/2y &,
n+1 0

(65)

(ee)

5. GENERAL PROPERTIES OF FOURIER
COEFFICIENTS {y„) or y ~ (n —I)!(ikv/2y s)

n 0
(67)

ab8 - —,'inkv, n», andn=' ' klvl ' kv
(59)

so that Eq. (43a) may be written in the form

c
inkv

2y S n n+1 n-1
0

(eo)

This difference equation has two types of solutions,
characterized by the behavior of yn for n large.
The first is obtained by assuming

2y s
rn-1 n+1 ' k[v)

It follows that

n-1 inkv

y 2y
n 0

(62)

It remains to solve Eqs. (43) and determine the
explicit form of the Fourier coefficients. However,
Eqs. (43) by themselves do not entirely specify the
yn's. In this connection, note that the nth equa-
tion (n &0) relates yn+ I to yn and yn 1. Thus,
the first n equations of Eq. (43a), coupled with
Eq. (43b), form a system of n+1 equations with
n+2 unknowns so that only solutions for ratios in-
volving pairs of yn's, such as y„/yn I, are pos-
sible. Accordingly, an additional piece of infor-
mation is needed to explicitly obtain yn. That
piece of information is the asymptotic behavior of

&n/&n+ I, as n-~.
To amplify this point, note that in the limit of

large n (provided that kv/y & Wo),

which implies that for n sufficiently large,

y -~: N-type solution .
n

(66)

Because of their close connection with Yeumann
functions (see Appendix B), we shall refer to solu-
tions of the latter type as "N-type" solutions.

A general solution to Eqs. (43) may be construct-
ed from a linear combination of B-type and N-type
solutions. However, in the problem at hand we
reject the N-type solutions on several counts. In
the first place, it is readily seen from the expres-
sions for polarization and population inversion den-
sity, Eqs. (44) and (45), that condition (65), on
which the latter-type solution is predicated, has the
disturbing feature that successive high-order spa-
tial harmonics in polarization and population in-
version increase in magnitude, which goes against
physical intuition. Secondly, Eq. (67) indicates
that a decxease in field strength (which is propor-
tional to 3) produces a corresponding increase in
the magnitude of high-order spatial harmonics, con-
tradicting results of weak-field perturbation theory.
And finally, the N-type solutions lead, in principle,
to the divergence of y [Eq. (55)j, which enters into
the expressions for laser power and frequency pul-
ling [Eqs. (56)], since for n large the nl depen-
dence of yn would dominate and the terms of the
form (X/nL)X+ appearing in Eq. (60) would even-
tually diverge. Similar considerations also apply
to the space-averaged population inversion density.

In contrast, the B-type solutions are well be-
haved in each of these respects. We therefore con-
clude that the solutions of interest are entirely
of the 8 type, and that a necessary boundary con-
dition supplementing Eqs. (43) is

or y ~ (1/n!) (2iy &/kv),
n 0 (63) lim(y /y )=0, as n-~.n+1 n

(e9)

so that for sufficiently large values of n

y -0: 8-type solution.
n

(64)

In light of the above discussion, it is useful to re-
write the coupled difference equations in terms
of the ratios

Because of their close connection with Bessel
functions (see Appendix B), we shall refer to
solutions of this kind as "8-type" solutions. Then Eqs. (43a) may be written in the form

(7o)
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Z =(R /y S+Z ) ', n=1, 2, 3, . . . , (Vla)

subject to the boundary condition [Eq. (69)],

6. DETERMINATION OF Z~ AND THE FOURIER
COEFFICIENTS

Z -0 asn-~.
n

(Vlb)
Solution for the General Case

Equations (71) completely specify the Zn's. Once
,Zp .'has been determined, y 0 may be obtained from
Eq. (43b):

y, = (1+4S ReZ, (72)

y .= —Z y, n=0, 1,2, . . . .n+1 n n' (73)

The other yn's may then be sequentially generated
from the definition

Later in this section we shall obtain analytical
expressions for the Zn's in two important special
cases, (a) kv=0, and (b) u&= v and y~=yk. We
are not able to obtain an analytical solution to Eqs.
(71) in the general case. However, we can write
a general expression for Z„as a continued frac-
tion' which can be evaluated numerically to any
desired accuracy. ' To this end, note that the suc-
cessive application of Eq. (71a) for n=1, 2, 3, . . .
leads to the continued fraction

Ri/r. S +

R,/r, S+

R,/y S+

R,/y S+Zn' 0 n'

, (74)

from which successive Zn's may be generated in
sequence from Eq. (71a). The above expression
does not necessarily converge to any one limit
since, as we saw in Sec. 5, the difference equation
from which it was derived has two possible types
of limiting behavior. Accordingly, extreme care
is required in numerically evaluating Eq. (74).

Specifically, we must compute Z„Eq. (74), in a
manner consistent with the boundary condition

is less than a small predetermined value. We can
then use Z,™to obtain an approximate value for
yo from Eq. (V2), from which we can obtain val-
ues for y, and for all subsequent y„'s from Eqs.
(Vla) and (73). 2~

It is important to note that by setting Z~ =0 we
also set y~+ 1=0. It readily follows from Eq.
(43a) that y~+2 is nonzero. Hence, automatical-
ly

Z -0, asn-~.
n

(Vlb) (76)

We are therefore encouraged to truncate the con-
tinued fraction after the first n' terms, which is
equivalent to making the approximation that Zn I

=0. Denoting this approximate expression for Z,
by Z, (" ) we compute Z, (n ), Z (n + 1), Z,(n + 2)
. . . , continuing this process until we arrive at a
value m such that the difference ( Z,(~) —Z,(~ - 1)

~

so that the computation of successively higher
Fourier components unavoidably leads to N-type
solutions, with y„diverging for large n. " Such
solutions are nonphysical, as discussed in Sec. 5.
We conclude that the approximation Z,(~):-Z, may
be used with accuracy to compute only those y 's
for which n is somewhat less than m. In practice,
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the calculation of high-order yn's is also limited
by the number of significant places retained in the
computation of Z, (m). For example, we have found
that to obtain accurate values of yn for n-30, it is
necessary to calculate Z,™to 14 or 15 places of
accuracy (using double-pp ecision arithmetic). ~~ On
the other hand, for large values of n,

Inserting either of these expressions into Eq. (78),
one finds a quadratic equation in t' with solutions

x '=1+ ,'(B/—y S)'Il+ [1+(2y S/B)']'12] . (80)

It is evident from this expression that

(
2ym- v ab on»

ku i' klvl ' klel )'
P(y2(1

while y' & 1
+

(81a)

(81b)

y may be calculated directly from Eq. (63). This
procedure provides a consistent way to calculate
all desired Fourier coefficients. In fact, we have
used Eq. (63) to check our ys's computed from
Zo(m) for large n such that m»n and find excellent
agreement.

Exact Solution for No Atomic Motion

R
n

y '+ ((o —v)'
ab

2yah
n odd

a 5
Rn" 2y 2 o'

ab

n" even,

For the special case in which atomic motion may
be ignored, i.e. , for a fully homogeneously
broadened line (yak/k»rms atomic velocity), ex-
act expressions for the Fourier coefficients may
readily be obtained. '4 We shall outline the method,
which illustrates the nature of the two types of so-
lutions referred to in Sec. 5 and the behavior of
the corresponding high-order Fourier coefficients.

To begin, note that in the limit kv/yzb -0, the
B„'s [Eqs. (42)] reduce to

for all values of B and S. Inserting Eq, (79b) into

Eq. (43a) for n =1, and combining the resulting
expression with Eq. (43b), we find

&0=[1+2(y S/B) (I-~ )]

=+[1+(2y S/B) ]0 (82a)

and y, =4 {1~[1+(2y,SIB) ]. )2 -1/2
(82b)

As discussed in Sec. 5, we require that y„-0
for large n. Hence, from Eqs. (81) and (79), only
the x solution is physically acceptable. To verify
this choice, note that in Eq. (82a) only the y, solu-
tion is consistent with Eqs. (40b) and (42b), which
require y, =+1 in the absence of fields (S-0).
Also, in this 1.imit y, -0, awhile y, diverges. Ac-
cordingly, the y~+ and y~+ solutions (and therefore
r.) are unphysical. It can be seen from Appendix C

that they y solutions are closely related to the B-
type solutions of Sec. 5, whereas they„solutions.n +

are closely related to the N-type solutions. 5

so that Rn I and Rn «become independent of n ' and

n ", respectively. Defining

Exact Solutions for u = v and pa = yb for Arbitrary Field
Strength

yoB'=B,B „= —

[y &'+(&u —v)'],n' n«4y aS

one finds from Eq. (43a) that

(77)
In this important special case~6 we have been

able to find exact analytical expressions for the
Fourier coefficients. " Defining ya=yy —=y, Eqs.
(42) for the B„is reduce to

B'y =(y S)'(y
2

—2y +y ), n)1, (78)
B = —2(y+inkv), n=0, 1,2, . . .

n
(83)

a second-order difference equation with constant
coefficients. Equation (78) may be solved by
assuming a solution of the form

Accordingly, our difference equation (43a) reduces
to

y —y = (1/2 S)[1+i (ky/y )n]y

n -1y, =r y1, n=12 3 (84)

n«
y „=r yp.n

(79b)
It is Shown in Appendix B that the above equation
may be readily transformed into the well-known
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recursion formula for cylindrical ("Bessel") func-
tions. Its general solution is

y = i [$(kv/y, s)J' .
/k

(4ys/kv)

+m(kv/y, s)Z .
( / )(4ys/k~)],

arithmetic. These quantities have also been com-
puted from the continued fraction expression [Eq.
(74)" using the procedure described at the begin-
ning of this section. The advantage of dealing with
Bessel functions is that they may be expanded in
a series which converges absolutely and uniformly
for all finite values of order and argument":

n=0, 1,2, . . . (85)
)v+2m

z(z =
v m! I"(v+m+1)

m=0
(91)

- 1/n!n-i~ (Ssa)

and J' . -(n —1)!-n+ic (86b)

so that, in accordance with the discussion of Sec.
5, we immediately conclude that K=O in Eq. (85).
The value of may be obtained by inserting the
surviving term of Eq. (85) into Eq. (72):

where B and K are independent of n. The standard
notation J (z) is used here to designate the Bessel
function of (complex) order v and argument z. We
shall suppress the argument of the J''s when con-
venient .

It is well known" that for large values of n

The results provide a convenient check on our
method of evaluating the continued fraction.

Our calculations employ a simple iterative tech-
nique for calculating the Bessel series. We stop
the iteration when the absolute value of the m+ Jth
term is less than 10 ' of the preceding term. Con-
sequently, the results are valid to at least five
significant places for kv/y & 0.1. For small values
of kn/y, the series becomes unwieldy. However,
the kv/y = 0 term may be calculated directly from
Eqs. (79), (80), and (82). The excellent fit of
these points with the rest of the curve demonstrates
the reliability of our computer calculations.

Rate Equation Approach

SJ .
/k

= 1+4SIm 1 —iy/kv )

Thus, the desired solution is

y (k ly, s)= (~ . /, /~ . /, )

--1
X + 4arm ' '~~ ')J- iy/kv

(s7)

for all n.
y, =4SRey, +1, (92a)

The single-mode laser problem has also been
treated' by the rate equation approximation, in
which population fluctuations are neglected. These
results may easily be derived from our coupled
difference equations by neglecting all Fourier
coefficients other than y, and y, . Then Eqs. (43)
reduce to

(ss)
We can test this expression in the limiting

case of kv/y-0. It is shown in Appendix C that

1 1
y1= —rp& @+ +

g g yp~
1 1

which immediately yields

(92b)

(4ys/k~) 1 1
1+4y y bS', +, . (93)05 Jg+

J )g

7. RESULTS AND DISCUSSION

= (- 1/4s)(1 —[1+(4s)']'~') . (s9)

Thus, Eq. (88) for n =0 has the limiting form

y, = [1+(4s)'] '~', kv/y —0, (90)

in agreement with the physically acceptable solu-
tion y, of Eq. (82a) in the limit ys=yb and &o = v. "

We have computed the Fourier coefficients from
Eq. (88), evaluating the complex Bessel functions
on the MIT 360 computer using double precision

The Fourier coefficients have been numerically
evaluated by computer, as explained above. For
the case e = v, y~ =yy, Av 0 we have computed the
yn's from the complex Bessel function solutions,
Eq. (88). For the general case the y~'s have
been approximated from the continued fraction
expressions [Eqs. (72)-(74)] using the procedure
explained in Sec. 6. For the case kv =0, we
have evaluated the y~'s directly from Eqs. (79),
(80), and (82). The results are displayed in the
following figures. For convenience, we define
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y y p, g
a Q

g 2 ~ 0 0 1

Y y Y
(94)

as a measure of intensity within the laser reso-
nator.

Figure 2 plots the Fourier coefficients for the
case ya=yy, ~ =v, obtained from the Bessel func-
tion expressions. These curves are essentially
identical (agreement better than 0.01%) to curves
computed using tPe continued fraction approxima-
tion, verifying the validity of such an approxima-
tion when appropriate precautions are taken (see
Sec. 6). In each case, we find that the y„'s rapid-
ly approach zero as n increases.

Stenholm and Lamb' have computed similar
Fourier coefficients from a continued fraction ex-
pression" equivalent to our Z„Eq. (74). To
compare their results with ours, we have plotted
similar curves with the parameters of Ref. 3

(ya/Vu5 =0.6, I=&. 2, (o= v) using our continued
fraction approximation. The comparisons are
made in Fig. 3. For small n the two curves are:
in agreement in each case. However, for large n
our curves approach zero - I/n! in accord with the
discussions of Secs. 5 and 6, whereas those of
Ref. 3 rapidly diverge. Evidently, the divergences
result from attempts to evaluate y„ from a contin-
ued fraction terminated after nz terms where m&n
(see discussion of Sec. 6).

The properties of the amplifying medium are com-
pletely specified by the velocity averaged suscepti-
bility X(v —+, I) of Eq. (58). The imaginary part of
y, which is proportional to the single-pass gain in-
duced by the standing wave field, is given by '

1.0

l&nl

0.5-
Tab

kv = yb/2

00

1.0

5
~ J

10
n

a) I = 556

grands into trapezoids of width &v/yu5 =0.15 and
summing their areas from zero to a maximum val-
ue of kv/y b

such that the area of the last trapezoid
is less than 0.1% of the total integrated area. The
curves of imp versus (v —e)/yu5, Fig. 4, gener-
ally follow the corresponding Doppler-broadened
gain profiles, except that for I ~ —vl & yu5(I+&/2) '
a resonant decrease occurs. This effect, well
known from third-order theory, '~' results from the
fact that the coupling between the standing-wave
field and the atomic system increases sharply as
the frequency of the field is tuned to the center of
the atomic resonance. The curves of Rey versus
(v-&u)/y &, Fig. 5, exhibit abroad background re-
sponse which is an odd function of the detuning
parameter (v —&u)/y &, characteristic of dispersion
curves, with additional structure manifesting itself
for small values of detuning, As with the ImX
curves, the latter structure results from the non-
linear coupling between the standing-wave field and
the Doppler-broadened resonance, as described

Imp = —l!„Re W(v)y, dv .ku/&w

$
(95)

The real part of X, which is closely related to the
index of refraction as influenced by the standing-
wave field, is given by"

l&nl

Y0
0.5—

Fob

"V ~lab

&u/em ~ W(v)y, dvRe!i=y„&u—v Re"y s o y +ikv
0 ab

(96)

The integrations are performed by dividing the inte-

Typical curves of Imp(v —&u) and Rey(v —&u) are
plotted in Pigs. 4and5, respectively, for various
values of I. These have been generated by substi-
tuting the computed values of y, into Eqs. (95) and

(96) and then performing the indicated integrations.
We have taken W(v) to be a Maxwellian velocity dis-
tribution of width ku = 25 yap ..

W(v) = exp[- (v/u)2]/ufm, ku = 25V
&

.

0
0

~ ~ ——kv= "f /2/ob

~~
5 10

n

b) I = 6.72

15

I'IG. 2. Magnitudes of Fourier coefficients of induced
polarization and population inversion density y„. The
coefficients, normalized such that yp= 1 are plotted for
the case &=~ and yz=yg for kv/yzy=0. 5, 1, and 3 for
two intensities (a} I=3.36 and (b} I= 6.72. The points,
obtained from the Bessel-function expressions )Eq. (88) J,
are in complete agreement with values obtained using the
continued fraction expression I:Eq. (74}]. Note that with
increasing n the y~'s rapidly decrease to 0.
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[FROM EQS. (77), (80),(82)]

tk ~e —~
10 20

PRESENT WORK

REFERENCE 5

FIG. 3. Magnitudes of the
(normalized) Fourier coef-
ficients for the case v=co,

a/'pay=0. 6, and I=3.2 for
2 values of v: (a) kv/yeb
=0 and (h) kv/ysb=1. The

points (black dots), gen-
erated from the continued
fraction expression by the
method of Sec. 6, are com-
pared with the algebraic
exPression for kv/yeb = 0

(dashed curve) and the re-
sults of Stenholm and Lamb
(Ref. 3) (open circles).
Note that for large n the

points of Ref. 3 diverge,
whereas our computed val-
ues approach 0.

0--
0

0—0—Oe —0—$
5 10 15

b)
"" =t
~ab

Imp(v —e, I) = (4m Q) ',
n —(u= (v —(o) +2vvRey(v —(o, I) .

(98a)

(98b)

We can replot the data of Fig. 4 in the form of
Imp versus I for various values of (v —v)/ysb.
Equation (98a) indicates that for fixed loss the
laser intensity is determined as a function of v
—~ along lines of constant Imp. Thus, we may

above. These results are compared to similar ex-
pressions obtained from the rate equation approxima-
tion, ' Eqs. (92a) and (98) (dashed curves in Figs. 4
and 5). As can be seen, the rate equation approxi-
mation is not reliable at large values of field
strength for small values of detuning.

The laser output power and frequency are implic-
itly determined by the fixed parameters, cavity
loss (o- Q '), cavity detuning frequency ( 0 —v) and
the linear gain of the amplifying medium (o- goo)
through Eq. (56):

readily plot curves of I versus v —~ by drawing
lines of constant loss and reading off I as a func-
tion of v —co at the points of intersection. The
results are shown in Fig. 6, which indicates a
central tuning dip (Lamb-dip) for intense fields
which does not qualitatively differ from the third-
order result, ' except that the dip deepens and
broadens with increasing ratio of gain to loss.
The above procedure was first used by Stenholm
and Lamb' who studied curves of I as a function of
v- e in detail. We have recalculated their curves
to verify them and generally find close agreement. '~

The dispersion relation [Eq. (98b)] introduces
"pushing" and "pulling" effects on the actual laser
frequency, so that an experimental measurement
of intensity versus cavity detuning (0 —&u) would
lead to results somewhat different from the curves
of Fig. 6. A complete analysis would require
solving the coupled equations (98). However, the
results of Fig. 5 suggest that for large fields Rey
does not greatly vary as a function of I. Accord-
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Im X/Xoo
II

—30 -20
I

—io 10 20

( v-(u)/y
b

I I
I

30

FIG. 4. Curves for Imp versus v —~ for various values of I. Imp is given in units of happ [Eq (58c)]. Figures 4-6
are plotted for the case y~ =yg and ku/yzy = 25. Note that Imp is proportional to the single-pass gain of the amplifying
medium subjected to a standing-wave field. The corresponding results predicted by the rate-equation approximation
[Eqs. (92) and (93)] are shown as dashed lines.

Re X/Xoo

-40

-(d }/fab
I

50

FIG. 5. Curves for Rex versus v —e for various values of I. Rex is given in units of happ [Eq. (58c)]. Note that
Rey is a measure of the dispersion of the amplifying medium as influenced by the intense standing-wave field.
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ab
1 =$.'58

20

-20 -15 -5 0
(1 -~)/y„

hl(v)
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FIG. 6. Curves of I versus (p-~)/y~y obtained from

points of intersection with line of constant Imx = (471Q)
Curves are drawn for 3 values of Q: 'Qg=0. 27/happ, Q2
= 0.22/happ and Q3 = 0.17/happ.

0
0

~ V CU =10'f
ab

10

& v-tu=20y
Ob

I

20

1 l
N(v ) =—t, ' N(v, z, f) dza-2l

= N, (l/L) W(v)y, (v),
, (99)

ingly, for intense fields the dispersion relation is
more or less independent of field strength so
that, as a first approximation, the coupled equa-
tions (98) may be treated independently.

In addition to the laser output curves, we have
plotted the spatially averaged population inversion
density, "

kv

ob

b) L = 13.34

FIG. 7. Space-averaged population inversion density
&(v) as a function of &v for various values of detuning.
The curves are normalized to Se excitation density N0
Curves are plotted for (&-u)/y~b=0, 10, and 20 for two
values of relative intensity: (a) I=3.36 and (b) I= 13.44.
In the figure, y~=yb and &I/y~y=25.

N(v)

Np

1.0

as a function of kv/y~b for various values of the de-
tuning parameter, (ar —v)/y b. These curves,
computed from the continued fraction approxima-
tion of Sec. 6, are shown in Fig. 7. For ) ~ —v)

&y~b(1+2I)' z, two narrow resonant decreases
occur symmetrically located about the center of
the broad velocity distribution. These depletions
result from the fact that to an ensemble of atoms
moving with axial velocity v the standing-wave
field appears as two oppositely directed travelling-
wave fields Doppler shifted to frequencies vakv.
Accordingly, for large values of detuning two nar-
row atomic velocity bands centered at v =+ (ar- v)/
A will resonantly couple to the standing-wave field
producing the observed depletions, the stronger
the interaction the broader and deeper the deple-
tions. As I m —v) 0, the two regions of depletion
begin to overlap, and at v = v a single depletion is
observed at the center of the velocity distribution.
For moderate values of field strength (I & 1), we
find that additional structure develops about the
center of the depletion (Fig. 8). This structure is

I i I I I I i I

—10
i

kv/yob

kv/yob
s

-50 0 50
I I I I & I I I I & I

5 10

FIG. 8. Space-averaged population inversion density
N (v) normalized to the excitation density N0. The curves
are plotted for ~= p, y~=yy, and ku/y~y=40 for relative
intensities I=3.36, 6.72, and 13.44. For comparison,
the corresponding curves obtained from the rate equation
approximation are also plotted (dotted lines) .
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remarkable in that the strongest decreases occur
not for fixed atoms but for slowly moving ones
(I v I- yak/k), hence atoms which, by virtue of the
Doppler effect, are somewhat detuned from reso-
nance. This structure is not observed in calcula-
tions based on third-order' and fifth-order" per-
turbation calculations, nor in rate equation treat-
ments. ' To verify these findings, we have recom-
puted the co = v curve from the exact Bessel-func-
tion expression [Eq. (88a)]. We find excellent
agreement, thus confirming the existence of the
new structure as noted by Stenholm and Lamb. '

To understand the nature of this new effect,
we find it useful to examine the normalized popu-
lation inversion density [Eq. (45)],

N(v, z, t)/N =y +2Re g y e, (100)
o n

even n &0

as a function of kz for various values of kv/y k.
These quantities have been plotted in Fig. 9 for
the case ~ = v, y~ =yg for two values of I & 1.
They have been computed from our Bessel-func-
tion expressions for the y~'s [Eq. (88a)], termi-
nating the series at the mth term such that Iy~ I/
)y, ) & 10-'. For very-low-velocity atomic ensem-
bles (I v I «yak/k), the spatial variations im-
pressed upon the inversion density are similar in
form to the v = 0 expression, N(0, z, f) of Ref. 25.
For high velocity ensembles, the spatial varia-
tions are of negligible size. In the interesting in-
termediate region, I v I- yzb/k, the spatial varia-
tions, though sizable, no longer follow the v =0 re-
sult. At certain values of kz the inversion density
drops below the minimum of the v = 0 curve, and
for sufficiently intense fields it can actually be-
come negative, which may reduce the correspond-
ing space-average below the space average of the
v = 0 curve.

This dramatic effect is inherently linked with the
standing wave nature of the laser field. To anal-
yze the situation, recall that in the rest frame of
an atomic ensemble moving with given velocity
[rest frame coordinates (z', t$ ], the applied
standing wave field appears as a pair of opposite-
ly directed travelling wave components of fre-
quencies v~ = v+ k v. Since these components are
intense, they can couple nonlinearly to one anoth-
er provided that their frequency separation is of
the order of or less than the atomic relaxation
rate: ) v+- v )

= 2A ) v) & y~+yy. If the latter con-
dition is satisfied, the field components couple
parametrically in the laser medium to produce
population sidebands which vary at even harmonics
of Ave' and polarization sidebands which vary at
odd harmonics of Avt', as viewed in the atomic
rest frame. As is shown in Appendix A, the nor-
malized population inversion density in the atomic
rest frame is given by

N(t, z', t')/N
0

=y +2Re Z y (v)e e, (101)
inkvt' inks '

n
even n &0

where the familiar quantity yn, previously ob-
tained in the laboratory reference frame, may
now be interpreted as the coefficient of the side-
band component parametrically generated at fre-
quency nkv. %e can conveniently illustrate Eq.
(101)by means of a vector diagram, Fig. 10(a),
which shows a cylinder of revolution bounded by
the ly„l/y0 curve of Fig. 2 fork le I/y~k = —,'. In
each cross section of the cylinder, which repre-
sents the complex plane for the nth population
sideband component, the vector y exp[ink(z '+vt')]
is drawn. Note that the nth vector rotates counter-
clockwise at circular frequency nkv. The net in-

1.0

O
Z.'

„ 0,5
N

Z

=kz

a) I = 6.72

1.0

Oz
.0.5

=kz

b) I = 13.44

FIG. 9. Spatial variations of the inversion density,
N(v, z, t), for ensembles moving with different velocities.
The curves are drawn for & =~ and y~=yy for two values
of I (a) 6.72 and (b) 13.44, In constructing Figs. 9 and
10, the velocity distribution has been assumed uniform
over the range of kv's chosen. Note that for low values
of kv/yet, the inversion density actually reverses in sign
and becomes negative at certain values of kz. For weaker
fields the inversion density may not change sign but can
still fall below the minimum inversion for the v = 0 case.
(See Fig. 8 of Bef. 3. )
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CONSTANT

Im Yn

eyn

Im yn

Fig. 10(c) is negative, indicating a negative value
of inversion density at that time. Thus, viewed
in the ensemble rest frame, the inversion density
appears to vary periodically in time, becoming
negative at some points in the cycle [Fig. 10(d)].

This oscillatory behavior may be viewed as a
coherent ringing of the population inversion den-
sity. An atomic ensemble at velocity v and posi-
tion z' passing through the standing-wave field
experiences an intense amplitude modulated field
of the form

RESULTANT ~
sin(kvt'+kz ') cos v[t'+ (v/c')z '] . (102)

n=0

6 2
Re yn

8
Re yn

RESULTANT +

1

0
Z
+

1

2
Z

b) t'= 0

d) kv/y
b

1/2

I 77t"' 20"

2

:kvt'
7T

version density is given by the sum of all of the
vectors projected onto the real axis. Due to the
fact that the vectors rotate at even harmonics of
kv, the resulting sum will vary periodically in
time. At most values of t', the resulting projec-
tion is positive. Figures 10(b) and 10(c), viewed
normal to the cylinder axis, show the vector dia-
grams at t '= 0 and t ' = 7v/20k I v I, respectively,
for z '=0. Note that the resulting projection in

FIG. 10. Analysis of the spatial variations in inversion
density in the ensemble rest frame. The moving atoms
see the intense standing-wave field as a pair of travelling-
wave components at frequencies &~= & + kv. The intense
fields mix parametrically in the medium, producing
population sidebands at multiples of 2@v. The figure has
been constructed for the case y~=yy and I=6.72 at mov-
ing frame coordinate z'=0 at different values of t': (a)
The nth population sideband may be viewed as a vector
y„, & even, rotating in the complex plane at frequency
2&vt'. The net inversion density at time t' is the pro-
jection onto the real axis of the sum of all of the vectors.
The conical envelope is a cylinder of revolution bounded
by the ly„I/y0 curve of Fig. 2(b) for kv/y~y=0. 5. (b)

Front view of Fig. 9(a) at t'=0. (c) Same at f=7~/20@v.
The resultant vector lies in the second quadrant, indica-
ting that the inversion density has reversed in sign. (d)
Time variation of the inversion density, as viewed at
z' = 0 in the moving frame.

The way in which the ensemble responds depends
strongly on the ratio of the modulation frequency
kv to the rate of relaxation -y~y. An ensemble
which experiences very slow modulation (kI v I

«y k) can closely follow changes in the envelope
of the applied field; consequently, it responds at
every instant as if subjected to a field of constant
intensity. In contrast, an ensemble experiencing
rapid modulation (k I v I

» ysb) cannot follow at all,
so that the inversion density ceases to respond.
However, when the modulation rate is comparable
to the relaxation rate (kIv I-y~k) the inversion
density responds sizably but cannot instantaneous-
ly readjust to the changing amplitude of the enve-
lope of the applied field. The inversion density
continually overshoots its corresponding steady-
state value, producing a phase shift and ringing
[Fig. 10(d)]. The detailed behavior of the re-
sponse varies with field intensity.

The reversal in sign of the inversion density
may also be understood qualitatively in analogy
with short yulse effects. In this view, the applied
field, a sinusoidal envelope of "pulses" of alter-
nating sign on carrier frequency v, acts on the
atomic ensemble as would an infinite train of
pulses separated in time by v/kI vI. For an en-
semble which experiences roughly one pulse per
relaxation period ( I v I- y~blk), the possibility
arises that for appropriate field strengths the
pulse can flip the population of the levels during a
portion of the cycle in much the same manner as
would a m pulse [Fig. 10(d)]. Note, however,
that an ensemble of high velocity (I e I »y~k/k) ex-
periences several pulses, alternating in sign, with-
in a relaxation period so that on the average the
effect of the pulses tends to cancel.

To summarize, we have seen that in the rest
frame of an atomic velocity ensemble, the inver-
sion density will undergo periodic time variations
which may become negative at some portion of the
cycle. Using the transformation z =z'+vt', it is
easy to see that the temporal variations in the rest
frame appear as spatial variations in the laboratory
frame, thus explaining the features of Fig. 9.
[Note that the kIvI/y

&
=-,' curve of Fig. 9(a) is
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identical to Fig. 10(d). ]
Having explored the velocity and spatial depen-

dence of the net inversion density N(v, s, t), we
are able to understand the origin of the new struc-
ture in the velocity distribution of the spatially
averaged inversion density N(v). In considering
this average, note that for

~ v)-y~b/k the very
small and/or negative values of N(v, s, f) at some
points in space can have the effect of reducing
the averaged values there below those for v =0,
accounting for the fine structure of N(v), Fig. 8.
[Each point on an N(v) curve (Fig. 8) is essentially
the area under the corresponding N(v, s, f) curve
of Fig. 9. ]

Similar fine structure does not appear in the po-
wer output curves, Fig. 6, essentially determined
by the single-pass gain [Eq. (52)], which is pro-
portional to f Rey, (v) W(v) dv. The integrand of
the latter quantity is plotted in Fig. 11 for sever-
al small values of (&o —v)/y~b. This curve is
closely related to N(v ) [see Eq. (43b)] and exhibits
a similar fine structure. However, the fine.
structure does not manifest itself in the power out-
put curves since the area under Rey, (v)W(v) does
not change appreciably for slight detuning from
the atomic center frequency.

8. CONCLUDING REMARKS

We are also studying the influence of the popula-
tion fine structure on the gain profile of a second
transition optically coupled to either of the levels
of the laser transition. ' In important special
cases analytical solutions have been obtained for
a laser field of arbitrary intensity. The results
will shortly be submitted for publication.

The results of this paper may also be applied
in studying the "inverted" Lamb-dip, 3 which is
observed by introducing a resonant absorber into
the laser cavity. " In this case an additional sat-
urable loss must be included in the energy-bal-
ance relation, Eq. (56a), which becomes

Re y1(v) W(v)

—10
I

—5 0
kv/yob

I

10

an interesting discussion on microwave resonance
theory. Most importantly, every phase of this
work has benefited from the discussions and en-
couragement of Professor Ali Javan.

APPENDIX A: ENSEMBLE-AVERAGED DENSITY MATRIX
IN THE REST FRAME OF THE ATOMIC ENSEMBLE

FIG. 11. Velocity dependence of the space-averaged
out-of-phase component of the induced polarization
Hey~(v) &(v), for small values of detuning. The figure is
drawnfor the case I=6.72, ys=yb, andes/ysb=25. The

single-pass gain for a particular value of detuning (v -tu)/

y~y is proportional to the area under the corresponding
curve. Since the areas in the figure are all about the

same, the fine structure exhibited in the velocity distri-
bution curves does not manifest itself in the tuning dip

of the single-pass gain curves (Fig. 4).

Imp (v, I)+Imp (v, I) =I/4sQ,
amp abs

(103)

where Xamp and gabs are the velocity averaged
susceptibilities of the amplifier and absorber, re-
spectively, as given by Eq. (57).
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$(s, f) = 8 sinks cos vt, (Al)

which may be decomposed into two oppositely di-
rected travelling-wave components at frequency v:

In this Appendix, we show how one can utilize
the ensemble-averaged equations of motion in the
rest frame of an ensemble moving with velocity v
to obtain a solution equivalent to the laboratory
frame solution derived in the text. Consider an
atomic ensemble comprised of all those atoms in
the medium travelling with axial velocity compo-
nents in a narrow interval between v and v+dv. In
the laboratory system [coordinates (s, f)I], the
atoms experience a standing-wave field,
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g(z, t) = 2r g [sin(vt+kz) —sin(vt -kz)] . (A2) p (v, z', t')
aa

Viewed in a coordinate system in which the atoms
are at rest, [coordinates (z ', t') ], the field corn-
ponents, Doppler shifted in frequency to v+, are
given by

$(z', t') = —,
' 8 [sin(v t'+k z') —sin(v t'+k z')]

=4—. g [{A (z')e —A (z')e + ]-c.c.), (A3)

OQ im(v -v )t'
=n + Z [a (A A) e +cc], (A8a)

a
p

2m — +

p (v, z', t')

OQ im(v -v )t'
=nb+ Z [52 (A A~) e +c c ]. (A8b)

p
m +

where v = v+ kv, (A4a)

k =v/c,

+ik z'

and A (z') = e (A4c)

d 8 8 8
dt 8t 8z ' 8t'

(A5)

In the moving frame the total and partial time de-
rivatives are equal,

Note that these expansions have been written in a
form in which the phase factors A+ have been taken
out of the Fourier coefficients II~+, a„, and b„;
We may obtain relationships among the Fourier co-
efficients by inserting the diagonal and off-diagonal
elements of p into the equation of motion [Eq. (A6)]
and equating coefficients of like temporal harmon-
ics. This procedure leads to a set of coupled dif-
ference equations identical in form to the set ob-
tained in the laboratory frame, Eqs. (29) and (31).
Once having obtained expressions for the Fourier
coefficients, we may transform p(v, z ', t') back in-
to the laboratory frame. This transformation is
facilitated by noting that the arguments of the sine
functions of S(z', t'), Eq. (AS), are phases which
are invarient under coordinate transformations

so that spatial dependence is transformed out-
spatial variations only enter in through the phase
factors of the field amplitudes. Accordingly, the
ensemble-averaged density matrix equations of mo-
tion [Eq. (22)] become

v,t,'k, ~'= vt~kz . (A9)

Also note that the Fourier coefficients, being in-
dependent of z'and t', are unaffected by the trans-
formation. Accordingly, one finds that in the lab
frame the components of p(v, z, t) are

, p(v, z ', t ') = —
g [H(z ', t '), p(v, z ', t '

)]

——2(I', ['p(v, z ', t') —p'(v, z ', t')]), (A6)

( )
-ivt g (

+ i(2m+1)kz
p b

v, z, =e 1e
m=o

so that in the moving frame the problem reduces
to the interaction of two applied fields at frequen-
cies v+ with a stationary atomic ensemble. The
frequencies combine in the nonlinear medium to
produce polarization and population sidebands.
Close inspection of Eq. (A6) indicates that we may
conveniently expand the elements of p in the follow-
ing Fourier series:

-i(2m + 1)kz+II e
2m+ 1

(Alo)

p &(v, z, t) =n&+ Z (k2 e +c.c.), (A11b)
b 2m

p (v, z, t) =n + Z (a e +c.c.), (A11a)
2imkz

aa ' ' a 2mm=o

p (v, z', t')
ab

so that the results are identical to those obtained
in the laboratory frame. "

OQ -iv t' im(v -v )t'
Z [II A*(A A*) e e2m+1 + - +m—

-iv t' im(v -v )t'
+II 1A*(A A~) e e ], (A7)

APPENDIX B: SOLUTION TO THE LINEAR
DIFFERENCE EQS. (84) AND (60)

Consider. the homogeneous linear difference equa-
tion (84), which may be written in the form
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where a = 1/2S

and b =kv/2yS .

y —y = (a+ibn)yn+1 n-1 n '

(B2a)

(B2b)

(C1) as kv/y-0, we employ the asymptotic expan-
sion for complex cylindrical functions of large or-
der, first derived by Debye ' using the method of
steepest descent and later enlarged upon by Wat-
son. The relevant asymptotic expansions are

Making the transformation"

.n
y =i C

n v'

v =n —ia/b,

(B3a)

(B3b)

exp [v(tanhr —r) —~4'» ]
v [- (~~ v») tanhI" ]"'

&»( )
exp[- v(tanhI' —I') + w~'&&]

[- (2i») tanhr]"'

(C2a)

(C2b)

and defining z = 2/b, (B4)
where Hv&'&(z) and Hv"&(z) are Hankel functions

one obtains

1(z)+C 1(z) = (2v/z)C (z), (B5)

the well-known recursion formula for cylindrical
functions. " The general solution is a combination
of two linearly independent cylindrical functions,
which for v not an integer may be written

and cosh I'= v/z

is subject to the restrictions

—~w & arg(- i sinhI') & 2»,

0&ImI'& m

(C3)

(C4a)

(c4b)

(C4c)

C (z)=~J (z)+me (z), (Be)

where 6! and Ot are constants and Jv(z) denotes
the Bessel function of order v and argument g.
Equation (85) follows directly from Eqs. (B3a) and
(Be).

A similar difference equation which appears in
Sec. 5, Eq. (60), is also of the form of Eq. (Bl)
with a =0 and b =kv/2yoS. Accordingly, the two
linearly independent types of solution are

Defining coshI", = 1 —iy/kv
4yg kv (Cea, )

and
—iy/kvcoshI', = (C5b)

tanhr, =- [1+(4S)']"', (cea)

we find, consistent with the restrictions of Eqs.
(C4), that to first order in kv/y,

y ~i"J (4y s/kv),
n n o

(BVa)

I'O=ln - 1 — 1+ 4S ' '~' +w~'m, (c6b)
and y ~i N (4y s/kv),.n

n n p
(Bvb)

where N (z) is the Neumann function of order n
and argument z. It is readily seen from the asymp-
totic expressions for Bessel functions of large
order" that Eq. (B7a) corresponds to the B-type
solutions [Eq. (63)), whereas, Eq. (B7b) corre-
sponds to the N-type solutions [Eq. (67)].

tanhl', = tanhI', 1+—.
kv (4s)'
iy 1+ 4S (cva)

and I' = I' + —. [1+(4S)']kg
0 (cvb)

Consider now the limiting form of Zo: Since

APPENDIX C: LIMITING FORM OF ANALYTICAL
SOLUTION (88); DERIVATION OF Eg. (89)

J (z) = ,'[H »(t),z&H2&(z-)]
v v v

we find that in the limit kv/y-0,

(ce)

Consider the expression Z, = —i cosh[(1 —i y/kv)(tanhI", —I', ) —,'im]—
—iJ'

(
.

/ )(4ys/kv)

„(4ys/kv)
aiy kv

(cl)

[cf. Eq. (89)]. To obtain the limiting form of Eq.

x [- —,'(1 —i y/kv )i7& tanhI', ]

x (cosh[(- i y/kv)(tanhI', —I',)- —,'i»]

x [- —,'(- iy /k) vit»ahnr, ]'~') (c9)
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Defining A = —(iy/kv)(tanhI', —I',), (Clo) limZ, = —i(coshl, + sinhl", )

and using Eqs. (C7), we find after some manipula, —

tion that

.cosh(A —I'„—,'is—)
limZ, = —i „,A "&. ,', as kv/y-0, (Cll)cosh(A —

Mg p)

1
4S11 ~1+( S) j ) as kv/y-0 (Cla)

as stated in Eq. (89) of the text.
The limiting expression for Z, + may be ob-

tained in the same manner. If we note that '

where terms proportional to kv have now been
dropped. Manipulating the hyperbolic functions to
remove the &m term, we obtain a similar calculation leads to

limZ, = —i cosh', +sinhX',

—sinhA+i coshA
coshA —l sinhA

An examination of Eq. (C10) utilizing Eqs. (C6)
reveals that as kv/y-0, ReA- —~, so that

limZ, = ——(1+ [1+(4S)'j '~'), as kv/y-0.

(C15)

Combining this expression with Eq. (72), we ob-
tain y~+ of Eq. (82a), which was rejected on physi-
cal grounds, an additional check that% =0.
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Bn an
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y
einkz
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+ inkv

n odd ab

Alternate method: By independently computing Zo,

Z~, . . .Z„& to a given accuracy from their continued
fraction expressions, one can obtain more accurate
values for y„'s of large n by means of the relation

yn ( ) Zn-1 n-2 oyo~
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[- {(u —v) + iy ] g sigkze ivt
ab 0

X
2 2{+- ) +'Y +(4$) &oPabsin kz

{co-v) +p
ab

and N(0, z, t) =N0
) +P +(4$) y y sinkzab o ab
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Eq. (94)], Eq. (56a) leads to I-4~Qpo N /hp. This re-
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From the usual asymptotic expansion for Bessel func-

'tions (Ref. 28, p. 199), it follows for 3»1 and y &/kv
»1 that 48 Im [41 ~/k (4yg/kv)/J ~~/kv(4y 8/kv)]»1,
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