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An argument is given which shows that there is no undetermined constant in values of the
exchange energy of solid 3He obtained from pressure measurements.

In previous work'~ ' absolute values of the ex-
change energy Z of solid 3He were obtained from
observations of the effect of spin ordering on the
pressure. This work extended to 13 mK, with the
ordering temperature T~ & 2 mK. Thus the high-
temperature series expansion, with the first term
only, is valid for the exchange contribution to the
pressure,

cated that the ordering is antiferromagnetic. '
Since Eq. (1) involves J' and its volume deriva-

tive, a self-consistent procedure was used to ob-
tain J(V) over the volume range from 21 to 24 cm'/
mole. The question has been raised as to whether
the J(V) found are unique. Mathematically, both

and 7 + C are equivalent solutions to Eq. (1)
since they have the same value of

3P g 2 Bln)ZI ].
Vy elnV T

Z' elntst Z8IZt 1 eZ'
V ~lnV eV 2 BV

(2)

In this expression 8 is the gas constant, k is
Boltzmann's constant, and V is the molar volume.
Recently, susceptibility measurements have indi-

However, a simple physical argument shows that
we must have C =O. We will show below that if
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0.8— TABLE I. Values of (4/k I obtained from Eqs. (3)
and (4} compared to those obtained previously by the
self-consistent analysis.
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But we have the problem that the integrand, d(Z/k)~/
dV, is determined experimentally only over the
range from 21 to 24 cm'/mole, while V„, = 8 cm /
mole.

We can see that this presents no particular diffi-
culty by referring to Fig. 1, which shows experi-
mental values of d(J'/k)'/dV versus V. The values
of d(J/k) /dV cover two orders of magnitude for V
between 21 and 24 cm'/mole. The solid line is
given by

FIG. 1. Experimentally determined values of d(J/k) 2/

dV versus V. The solid curve, given by
d(Z/k)' V

dV 24
is a least-squares fit to aV~.

J(V) is "well behaved" and if J'(V) =0 for some
smai] V (here V may assume any mathematical
va]ue, not necessarily a physically obtainable one),
then we must have C = 0. It is clear that if V is
reduced to V„, corresponding to the "hard-core"
lattice spacing, then the atoms are restricted to
lattice sites, there can be no exchange, and J'(V„,)
=0

That this requires C =0 can be seen by integrat-
ing dJ /DV,

~ dv'+ J (V ) (3)
v, dV

where Vo is the starting point for the integration.
Mathematically, Eq. (3) is an identity, with the
additive term J'(Vo) strictly a constant. However,
three points must be considered in determining the
accuracy of the J'(V) obtained from it using the ex-
perimental data. Accuracy of the experimental
values of dJ'/dV is discussed in Ref. 3. (Here we
are not concerned specifically with the accuracy
of the results, but with evaluation of the additive
constant. ) The problem of evaluating J' (Vp) 1s Inst
that for C above. We take Vo= V„, so that J' (Vo) =0.

d(J/k)' v
(4)

and is the result of a least-squares fit to the form
aV . As is obvious from Fig. 1, this form fits the
data quite well. From Eq. (3), J' (V) is the area
under this curve between Vh, and V. Now, unless
some rather unphysical behavior is supposed, this
area will be essentially independent of how the
curve is extrapolated from 21 to V„,. Therefore
the additive constant is zero, and J'(V) is uniquely
determined (within the accuracy of the experiment
as discussed in Ref. 3). The argument concerning
areas would break down for V= 21, but once it has
been established that there is no additive constant
for larger V's, the self-consistent procedure can
be applied with confidence.

A few values oflJ/kl, obtained from Eqs. (3) and
(4), are given in Table I. For comparison, values
obtained previously by the self-consistent analysis,
lZ/k I„, are also shown. The results obtained by
the two methods of analysis are seen to be in very
close agreement, differing by less than 4/0 in all
cases. This slight difference is because the self-
consistent procedure permits sin[ J(/8 lnV to be
volume dependent and the individual points used in
this procedure do not lie exactly on the fitted
curve.
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bility of an additive constant.
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The formulation of a relativistic restricted multiconfigurational self-consistent-field theory
for open-shell atoms is given. The relativistic Hamiltonian is the sum of the one-electron
Dirac-Hamiltonian and the two-electron Coulomb-repulsion terms. The total wave function

is assumed to consist of a linear combination of eigenfunctions of total operators J and J~,
which are themselves assumed to be known linear combinations of Slater determinants of
four-component one-electron orbitals. The applicability of the formulation derived in this
first paper is limited to wave functions expanded in terms of a set of distinct Slater deter-
minants D;, which obey the three conditions. (i) Two or more "core shells" may belong to a
same symmetry specy k but their occupations must be similar. (ii) Distinct "peel shells"
must belong to different symmetry species k. (iii) The symmetry species of the peel shells
must be different from the symmetry species of the core shells. The most important cases
are the calculations using wave functions expanded in terms of the distinct Slater determinants
which arise from the (2P)" (2p), (Bd)" (Bd)", and (4f)" (4f)" configurations.

I. INTRODUCTION

The calculations of nonrelativistic wave func-
tions of many-electron systems (atoms or mole-
cules) have made, in these last years, significant
progress. The self -consistent-field theory, ' with
or without interaction of configurations, and the
multiconfigurational self -consistent-field theory
are now used in many calculations for closed-shell
and open-shell systems.

More recently, the calculations of relativistic
wave functions' have made important advances for
closed-shell systems.

The object of this paper is the formulation of a
relativistic restricted multiconfigurational self—
consistent-field theory for open-shell atoms. Fol-
lowing Kim, we use a Hamiltonian which is the sum
of the one-electron Dirac-Hamiltonian and the two-
electron Coulomb-repulsion terms. The z-elec-
tron wave function is assumed to consist of a lin-
ear combination of eigenfunctions of n-electron
operators J and J, (hereafter called "configura-
tions"), which are themselves assumed to be known
linear combinations of Slater determinants of four—
component one-electron orbitals. The variational
principle must be applied to the corresponding ex-
pression of the energy, while the one-electron or-

bitals and the coefficients of the configurations are
both varying. The practical procedure consists in
deriving the self-consistent-field equations for the
one-electron orbitals with invariable configuration-
mixing coefficients. Having determined a set of
one-electron orbitals in this way, the configuration-
mixing coefficients are chosen to minimize the en-
ergy. These two calculations are repeated succes-
sively until self-consistent one-electron orbitals
and configuration-mixing coefficients are obtained.
Since the second phase of each iteration is iden-
tical to an interaction of configurations, we derive
hereafter only the equations for the first phase of
each iteration (hereafter called relativistic self—
consistent-field equations).

II. HAMILTONIAN, WAVE FUNCTION, AND EX-
PRESSION OF THE ENERGY

A. Hamiltonian

The Hamiltonian H for an yg-electron atom is

where x~„ is the distance between the p, th and the


