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Atomic form factors and incoherent scattering functions for the helium isoelectronic se-
quence through Z=10 have been calculated with correlated ground-state wave functions. The
wave functions are 120-term configuration-interaction expansions which give total ground-
state energies differing from the most accurate available values by 0.02% for Hex and 0.0007%
for Ne zx. Comparison with published accurate calculations for helium indicates that the scat-
tering factors, both coherent and incoherent, for the other members of the isoelectronic se-
quence, should be correct to at least three, and probably four, significant figures.

I. INTRODUCTION

The dependence on wave function of the cross
sections for coherent and incoherent scattering of
a photon by an N-electron atom or atomic ion is
contained in the form factor, or atomic scattering
factor,

and the incoherent scattering function

where I; is the Klein-Nishina cross section, which
for small values of E may be replaced by the
Thomson cross section.

There are now available quite accurate corre-
lated ground-state wave functions for many low-Z
atoms and it is no longer necessary to use approxi-
mations such as the Hartree-Fock or Thomas-
Fermi methods in these cases. This paper de-
scribes the results of calculation of form factors
and incoherent scattering functions for helium and
two-electron atomic ions through Z = 10.

II. WAVE FUNCTIONS

The two-electron ground-state wave functions
used in the present work are 120-term configura-
tion-interaction expansions

respectively. In E(Is. (I) and (2), the momentum
transfer is denoted by O'K, )t)0 is the ground-state
wave function, and r; is the radius vector from the
nucleus to the jth electron. The momentum trans-
fer is given by K =47) (sin —,

' e)/X, where X is the
wavelength of the incident photon, and 8 the angle
between incident and scattered photon directions.
The coherent-scattering cross section is

do, =I, I F(K) i dQ,

n1 n2-1

Z Z Z c(n„n2, l) 4, (ni, n2, l), (6)n1=1 n&=1 l =0 S

in which each configuration 4» is the linear com-
bination of Slater determinants

C„=ZC(ll O; m, -m)

where I, is the Thomson cross section. The total
incoherent-scattering cross section is

&&[I y„,$„(rg)o'p„,$ „(r2)P I

do;=I;NS(K) dQ, (6)
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where C(l l 0; m, -m) is a Clebsch-Gordan coeffi-
cient, and o. and P are the usua. l spin functions.
Normalization constants which usually appear in
configurations of the form given by Eq. (6) have
been absorbed in the linear variational parameters
c(n„no, l) of Eq. (5). The single-particle func-
tions in Eq. (6) are members of the denumerably
complete set of functions' '

where (i I =(n, l'm'nol'( —m') I and Ij) = In, lmnol,

(-m)). The second term in Eq. (12) results from
the fact that the sum in Eq. (2) includes the case
r& =r~.

If the coordinate system is chosen so that the
momentum change is in the positive z direction,
the operators in Eqs. (11) and (12) may be written'

[ 1'(n —1)]'~'
(P, 8, y) -

[ f,(,1,1))syo P

x e ' I „';', (p) 1'P(8, p)

of the variable p= 2gr, where q is the single non-
linear parameter which was used in the variational
calculation .of the ground-state energies. ' The
generalized Laguerre function I,„',(2qr) in Eq.
(7) can be written in terms of a confluent hyper-
geometric series as

where j~(Kr) is a spherical Bessel function. When
Eq. (13) is substituted into Eqs. (11) and (12), the
resulting expressions are linear combinations of
products of integrals over angular and radial co-
ordinates. The angular integrals contain products
of three spherical harmonics, and result in sums
over products of Clebsch-Gordan and Racah co-
efficients which may be evaluated in closed form
by methods described by Edmonds or Rose. The
results are

[r (a+5+1)]' + 1.(-a+j) r(5+1) p'
1'(a+ 1)I' (b + 1)

&
I'( —a) I"(b + 1+j ) j '

(8)

Ground-state energies obtained with these functions
have been found to agree with the best available
values to within 0.02% for 2 = 2, with the error
decreasing monotonically to 0.0007% for Z = 10.

III. METHOD OF CALCULATION

Substitution of the wave function [Eq. (5) into
Eqs. (1) and (2)] results in the form factor F(K)
and incoherent scattering function S(K) being given

f;& =5»[(n', 1) (nol I jo(Kr) ln2l)

+ (n~ l I jo(Kr) I n, l ) (n2l I n2l )

+(n2l In&i) (n,'l I jo(Kr) In2l)

+ (n2 l I jo (Kr) I n, l ) (n', l In2 l )] (14)

and s;;=2(i I j)+2(-1)'", Z (2&+1)
2E y 1/2

m'+i

x [C(ill; 0 0)]' [(n,'l'I j,(Kr) In, l)
x (n2l'I A(«) I n2l) + (nfl Ij (Kr) I n l)
x (n21 I j~ («) I n& l )]. (15)

E(K)=Q c;f ~cj,

and 2 S(K)=Z c;s;;c;—
I E (K) I ', (10)

The sum over X in Eq. (15) is limited by the parity
coefficient C(l Xl'; 00) which vanishes unless Il-l' I~A. & Il+l'I, and l+l'+X is even. The evalua-
tion of the radial overlap integral

where the components c; are the c(n„no, l) of
Eq. (5). The c; are independent of magnetic quan-
tum numbers, as are the matrix elements f;& and

s;;. However, the magnetic quantum numbers do
appear in the calculation of these matrix elements.
That is,

(n, l I n l) = f R„,(r) R„,(r) r Cr (16)

has been described previously. ' The other radial
integral, which is required,

f;,=Z (i Ie'"' &+e'"' & Ij)
m$ m

and s,, = Z (i Ie'
m, m'

+e' ' 2 ~' Ij)+2(i Ij), (12)

(n, l, I j~(Kr) In„lo)

= f, ft„, (r)ft„...(r)j,(Kr)r'Cr

can be expressed as a linear combination of inte-
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TABLE I. Comparison of form factors I'(E) for He z.

sin20
(

0.0
0.025
0.050
0.075
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.60
1.70
1.80
1.90
2.00

Kao

0.0
0.166 243
0.332 485
0.498 728
0.664 971
0.997 456
1.329 94
1.662 43
1.994 91
2.327 40
2.659 88
2.992 37
3.324 85
3.657 34
3.989 81
4.322 31
4.654 80
4.987 28
5.31977
5.652 25
5.984 74
6.317 22
6.649 71
6.982 19
7.314 68
7.647 17
7.979 65
8.312 14
8.644 62
8.977 11
9.309 59
9.642 08
9.974 56

10.639 5
11.304 5
11.9695
12.6344
13.299 4

Analytic
Hartree- Fock

(see Ref. 7)

2.0
1.989 2
1.957 1
1.905 7
1.837 2
1.662 6
1.460 4

1.060 2

0.738 3

0.508 9

0.352 9

0.248 1

0.177 2

0.128 8

0.095 23

0.071 52

0.054 53

0.042 16

0.033 02

0.026 17

Numerical
Hartree-Fock-Slater

(see Ref. 8)

2.0

1.955

1.831
1.652
1.447
1.241
1.049
0.879
0.734
0.613
0.511
0.428
0.359
0.303
0.256
0.217
0.185
0.158
0.136
0.117
0.101
0.088
0.076
0.066
0.058
0.051
0.045
0.040
0.035

0.028
0.022
0.018
0.015
0.012
0.010

Hylleraas
(see Ref. 7)

2.0
1.989 06
1.956 82
1.905 00
1.836 20
1.660 85
1.458 16

1.058 42

0.737 85

0.509 48

0.354 04

0.249 36

0.178 51

0.129 96

0.096 185

0.072 308

0.055 162

0.042 662

0.033 416

0.026 483

Present
work

2.0
1.989 1
1.956 9
1.905 2
1.836 4
1.661 2
1.458 5
1.252 2

1.058 6
0.886 26
0.737 94
0.613 13
0.509 53
0.424 20
0.354 16
0.296 71
0.249 52
0.210 67
0.178 60
0.152 03
0.129 95
0.11154
0.096 123
0.083 167
0.072 239
0.062 983
0.055 114
0.048 398
0.042 643
0.037 695
0.033 424
0.029 725
0.026 511
0.021 257
0.017 216
0.014 071
0.011599
0.009 636 3

grals over products of the spherical Bessel func-
tions, powers of x, and exponentials. The evalua-
tion of this integral is described in the Appendix.
As shown in the Appendix, the radial integrals, and

therefore the matrix elements, depend only on the
ratio of the variational parameter g to the momen-
tum transfer K. It is therefore possible to calcu-
late values of I'(K) or S(K) for all members ot the
isoelectronic sequence with a single set of matrix
elements f;; or s;;. This results in a considerable
reduction in computer time required.

IV. RESULTS AND DISCUSSION

Tables I and II compare the results of the pres-
ent work for Hex with the recent results of Kim
and Inokuti obtained with Hylleraas-type and ana-
lytic Hartree-Fock wave functions. ~ Table I also

shows the form factors obtained by Hanson et al.
with numerical Hartree-Fock-Slater wave func-
tions, and TaMe II shows the incoherent scattering
functions obtained by Cromer and Mann with nu-
merical Hartree-Fock wave functions. The agree-
ment with the values obtained with Hylleraas-type
wave functions is in most cases to within four sig-
nificant figures. This is somewhat better than
might be expected since the Hylleraas-type func-
tions are considerably more accurate in terms of
total energy than are the functions used in the
present work. '

Numerical values for Lixx through Ne rx are too
voluminous to include here. However, they are
available in report form. The values for the
higher members of the isoelectronic sequence
should be at least as accurate as those for Hei,
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TABLE II. Comparison of incoherent scattering functions 2$(Q for He z.
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0.0
0.025
0.050
0.075
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.60
1.70
1.80
1.90
2.00

0.0
0.166 243
0.332 485
0.498 728
0.664 971
0.997 456
1.329 94
1.662 43
1.994 91
2.327 40
2.659 88
2.992 37
3.324 85
3.657 34
3.989 81
4.322 31
4.654 80
4.987 28
5.31977
5.652 25
5.984 74
6.31722
6.649 71
6.982 19
7.31468
7.647 17
7.979 65
8.31214
8.644 62
8.977 11
9.309 59
9.642 08
9.974 56

10.639 5
11.304 5
11.969 5
12.634 4
13.2994

Analytic
Hartree-Fock

(see Ref. 7)

0.0
0.021 63
0.084 80
0.184 3
0.3123
0.617 8
0.933 6

1.438 0

1.727 4

1.870 5

1.937 7

1.969 2

1.984 3

1.9917

1.995 5

1.997 4

1.998 5

1.999 1

1.999 5

1.999 7

Numerical
Hartree-Fock

|,see Ref. 9)

0.0

0.085

0.312
0.618
0.934

1.438

1.727

1.871

1.938

1.969

1.984

1.992

1.995

2.000

2.000

Hylleraas
(see Ref. 7)

0.0
0.020 637
0.080 716
0.175 09
0.296 21
0.584 06
0.881 02

1.362 73

1.656 89

1.817 72

1.902 45

1.946 82

1.970 27

1.982 90

1.989 85

1.993 79

1.996 08

1.997 45

1.998 29

1.998 82

Present
work

0.0
0.020 589
0.080 542
0.174 75
0.295 75
0.583 52
0.880 56
1.145 7
1.3624
1.530 4
1.656 6
1.749 7
1.817 5
1.866 7
1.902 3
1.928 1
1.946 7
1.960 3
1.970 2
1.977 5
1.982 9
1.986 9
1.989 9
1.992 24
1.993 96
1.995 28
1.996 29
1.997 07
1.997 67
1.998 15
1.998 52
1.998 81
1.999039
1.999 367
1.999576
1.999713
1.999 802
1.999 862

since the relative error in the wave function de-
creases with increasing Z. Also, the wave func-
tions used here have been used to calculate the ex-
pectation value —,

' ((x, + xz)), which is closely re-
lated to the atomic form factor, and the results for
the higher-Z ions were considerably better than
those for Hex.

A final result of this work is evident from Table
I. It can be seen that the agreement among the
analytic Hartree-Fock results and those obtained
with the two types of correlated wave functions is
closer than the agreement between the analytic
Hartree-Fock and the Hartree-Fock-Slater results.
The difference between the Hartree-Fock and
Hartree-Fock-Slater wave functions is that the
former includes the effects of exchange while the
latter handles exchange in an approximate manner.

On the other hand, neither the Hartree-Fock nor
Hartree -Fock-Slater wave function includes the
effect of the interelectron correlation energy.
This suggests that at least for a two-electron
closed-shell atom the effects of exchange are
more important than correlation effects in the
calculation of expectation values.

APPENDIX A: INTEGRALS CONTAINING
SPHERICAL BESSELFUNCTIONS

The integral to be evaluated is of the general
form

(Al)

where a and b are real and m is an integer such
that m &l'. With the change of variable p =gz and
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replacement of the spherical Bessel function by

(A2)

the integral I, becomes proportional to

Ia J——e 'J~(kp) p '"dp, (AS)

I,= x' '" "I"(2A.+n+1)P, ,'„(x), (A4)

where x=(1+0 )
'~ . Since k is real, !x!& I, and

the I egendre function may be expressed in terms
of a hypergeometric series as

xE[ —X —n, X+n +1, X+1; 2(1 —x)]. (A5)

If the Euler transformation is applied to the hyper-
geometric series, the resulting expression for
the integral I2 is

1-x "' 1+x ''" I'(n+n+I)
1+x I (~ + I)

where k = b/a, X = I + —,', and n= m -I —1. There are
several expressions in the literature for the inte-
gral I2, all of which contain a hypergeometric func-
tion with nonintegral parameters. ' ' This is an
infinite series which may or may not converge rap-
idly. One method which has been suggested for
the evaluation of I& is that of using the explicit
form of the spherical Bessel function in terms of
trigonometric functions. ' This requires the com-
putation of a linear combination of terms of the
form

cos[(n+ I) tan '(b/a)],

and sin[(n+ 1)tan ' (b/a)],
where n & —1. While it is true that this results in
a closed form expression for the integral, in ac-
tual practice the computation of terms such as the
above may be just as time consuming as the sum-
mation of the hypergeometric series.

A convenient starting point is the expression
given by Erdelyi et al.':

The hypergeometric series in Eq. (A6) is now a
finite sum, and can be expressed in a form which
is quite amenable to rapid computation. Written
out explicitly, and with the parameter ~ replaced
by l+~, it is

1 x —1F l n n l + j''x+1
I"(n+I +-', )

0 j I"(n+I+-,'-j)
r(I+-,')

r(f + ,'+&) -x+ I (A I)

where use has been made of the relationship

which for integer z is also equal to

The 1" functions with half-integer arguments in Eq.
(AV) may be expressed in terms of factorials as

I'(n+ ~) = [(2n —I)!/(n —1)!]v'm/2 " (A9)

with the result

F -l -n- — -n l+ —'1 3. x-1
2P s 2P

n l+j 2n+2l+1

n+1 Rl+2j+1) (x+1) '

2j

The final expression for I„ in terms of the inte-
gers m and l and the variable k = b/a, is

p [I (I ka)lia]}m -i -i I '(m+1) '
' ~ " (1+k) ' (2f+I)l

(m
-l —

1) (/+j) (2m
—I

. x-1xP -X —n, —n, y~1;' x+1
m —1 2l + 2j+1 1 — 1+0

(A11)
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A general approach for describing complex quantum-mechanical systems in terms of c-
number variables is discussed on the basis of a formalism developed by Lax. We apply this

formalism to the particular problem of noise fluctuations in parametric oscillators. From a
microscopic Hamiltonian describing light interacting with optically active atoms in a cavity

with loss, we arrive at an equation for the motion in terms of c-number variables. We then

solve this system for the noise properties of the signal mode near threshold and above, when

the pump and idler modes may be treated adiabatically, and compare our work with the re-
sults of Graham, who treated the signal and idler symmetrically.

I. INTRODUCTION

The obvious device possibilities of a low-noise
broadly tunable optical source have aroused con-
siderable interest, both experimentally' ' and

theoretically, '3 in the optical parametric oscil-
lator. It has long been realized that in order to
analyze the noise properties of such an oscillator
a quantum-mechanical treatment is necessary.
It is also clear that a quantum treatment of a non-
linear problem is computationally cumbersome due
to the noncommutability of the algebra. Conse-
quently, formalisms which help to avoid these dif-
ficulties evolved particularly directed towards
analysis of the laser. '

We have found that a formalism due to Lax, '
which translates the quantum -mechanical problem
into a more workable c-number problem, also has
the added advantage of consolidating all of the nec-
essary information into one equation. This makes
the systematic analysis and solution of the para-
metric oscillator, and related quantum optics prob-
lems, much more straightforward.

Probably the most comprehensive and complete
theoretical treatment of the quantum fluctuations
of optical parametric oscillators was given in a
series of three papers by Haken and Graham, '
and by Graham. '

~
' In the first of these "start-

ing from a microscopic Hamiltonian describing
light interacting with a medium of optically active

atoms in a Fabry-Perot cavity, quantum Langevin
equations for the optical field and atomic variables
were derived. Using an iteration technique, the
atomic variables were eliminated leaving nonlinear
field equations. These equations were solved in
operating ranges far above and far below cavity
threshold. In the second paper, ' Graham pro-
posed an "effective Hamiltonian" which gives the
quantum Langevin equations for parametrically
interacting light fields in agreement with Ref. 4.
The coherent state representation for boson fields
was used to obtain a "classical" Fokker-Planck
equation. In the final paper of the series, '3 this
"classical" Fokker-Planck equation was used to
write down a stochastically equivalent set of
c-number Langevin equations, which Graham was
able to solve, with certain approximations, in the
near threshold region.

Our approach will be quite different. It avoids
the complications of nonlinear quantum-mechanical
Langevin equations with cross-correlated quantum-
mechanical random forces. '~ From one quantum-
mechanical equation, the master equation, describ-
ing the microscopic field-atomic interaction with
loss, we are able to write down a c-number equa-
tion. The atomic variables are eliminated by it-
erating c-number Langevin equations, and a clas-
sical Fokker-Planck equation for the light fields
is found directly without appealing to an effective
Hamiltonian. The procedure translates the mi-


