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III. CONCLUSION

Although the field dependence of the nuclear
magnetic shielding for most substances should be
unobservably small, there is the possibility that
such a dependence could be observed for some
substances in high-precision experiments in strong
magnetic fields. The largest effects would be ex-
pected in molecules for which the chemical shifts

of the magnetic shielding are abnormally large.
As nuclear magnetic resonance experiments are
made with greater accuracy and in higher magnetic
fields, the proportionality of the resonance fre-
quency to the magnetic field should not be auto-
matically assumed, but should be experimentally
verified.
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This paper is an addendum to a paper by the author which presented a relation between the

gradient of the electric field at the nucleus and dipole matrix elements. A scheme is suggested

to take advantage of the result.

The gradient of the electronic electric field at
the position of the atomic nucleus is required for
an evaluation of nuclear quadrupole moments from
the hyperfine 8 coefficients. Recently, ' it was
shown that this could be expressed by the sum rule

2 n ~ se

N is the nuclear charge, m the number of electrons,
m the electronic mass, and

T(j) = &(&a —&o)' "

0 z. k ——, 0 r. k

or the equivalent in terms of dipole momentum or
acceleration matrix elements. [ We correct Eq.
(7) of Ref. l by a factor of 2. j As we indicated in
the earlier paper, the dipole matrix elements gov-
ern radiative transitions, so that (OIqI 0) may be
deduced if measurements of rates are available.
However, experimental techniques are insufficient-

s(j)=-,'Z(~, ~,) 'I(oI Z -,. IA. )I' .

Some well-known dipole sum rules for atoms are

S(- 2) = n/8, average static polarizability (2)

s(-»=-,'«II ~ . I'Io), (2)

S(0)= n h /m, f sum rule
n

s(2)= 4~me'I'/3m'&0I »(r,.) Io) .
(4)

(6)

Tensor sum rules are not restricted to T(2). For
example we have

T( 2) = n'/3e, tensor —static polarizability (6)

T( l) = (o
I I

~ & I'- l-I ~ r I'I 0) (7)
i= 1

ly developed to apply Eq. (l) immediately. Our
purpose in writing the present article is to point
out how an approximate value of T(2) may be ex-
tracted from a set of dispersion measurements.

The T(j ) are analogous in form to the scalar sum
rules S(j);
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&&2 (&, —~,) l(0I 2 r,. l0) I'/[(&, —&,)' —(k~)'] (9)
k i= I

may be expressed as afinite summation
22 n

n((u) = (y, —&0) I (0 I Z r; If&
i'- 1 i=1

&& [(y, —e,)' —(A(u)'j + 0(x';) (10)

where the X,. designate a set of (presumably small)
variational parameters. The y, are poles of the
variational trial function. Together with the squares
of the effective matrix elements, they may be sub-
stituted into Eqs. (2-5) to estimate the S(j). Chan
and Dalgarno' applied these considerations to an
analysis of the ground state of helium. They ob-
tained excellent agreement with an accurate dis-
persion curve over a wide range of frequencies,
and, for the most part, good values of S(j) (see
Table I). The correspondence is close in all cases
except S(2), the 5-function sum rule. We shall re-
turn to this discrepancy later and explain why a
fractional error of comparable magnitude would
not be expected in an estimate of T(2) for a non-
spherically symmetric system.

Chan and Dalgarno' perform a strictly theoretical
variational calculation. This approach is not use-
ful in many-electron systems, since the available
approximate wave functions are much less accurate
than those in heliumlike atoms. However, it is
possible to analyze atoms and molecules of arbi-
trary complexity in terms of quantities obtainable
from experiment alone.

Let l7iJ&, J=1, g be a, finite set of orthonormal
functions. Assume that a unitary transformation
is performed, reducing them to a set 1$$ in which
the atomic Hamiltonian IIO is diagonal, with ma-
trix elements H»= ((„IHO Ig~&. If a variational
trial function of the form

T(0)=0, "depleted" f sum rule

Dalgarno and his co-workers' have extensively
applied the S(j) to infer accurate values for the rel-
evant atomic parameters. Their success suggests
that similar schemes may be useful for properties
associated with T(j ).

It may be shown ~ that a variational calculation
of the ac polarizability

a((u) = —,
' e'

Z n

and n((u)=e Z ~a&0I ~ r; &„&
k= 1

o. '((u) = 3e'

(e, -e,) I(ol Z ~,. lu) I'--'. I(0 I Z r,. Iu& I'
X

(e„—eo)' —(h(o)' (12)
We return now to the question of the poor accu-

racy of S(2) in helium and its relevance to an es-
timate of T(2). Chan and Dalgarno' point out that
S(j) diverges logarithmically as j-2.5. S(j) is
understood to include an integral over the continu-
um, whose high-energy contribution assumes the
for m

TABLE I. S(j) for ground state of He (Ref. 5).

Accurate values Predicted values

g (H» —&0)~a
(H» —~0)'- (~~)'

We now show how the H» and the squares of the
matrix elements may be deduced from measurable
quantities alone. Let the original (nondiagonal)
basis functions IqJ) be formally expanded accord-
ing to lp~&, the true eigenfunctions of the system

ln. & &c„ly,& .
The matrix'elements of Ho in the lqz& representa-
tion are sir6yly

HJI ~L ILC JLeL )1

where the cz, are the sigenenergies of the lpga&,
pr esumably known spectros copically. The free
parameters C JL, are selected to ensure that the
lgz& form an orthonormal set and to include the

relevant regions of Hilbert space. The computed
IIJI are used to obtain the diagonal representation.
The M~ may be deduced by fitting Eq. (11) to an
experimental dispersion curve. As previously,
these pseudomatrix elements and energies may be
inserted into Eqs. (2-5) to calculate the S(j).

Similar considerations apply to the T(j), if one
replaces the spherically averaged dispersion curve
with a set of measured values of the ac tensor
po larizability

=&k

is constructed for calculating the ac polarizability,
it follows that, with an error of second order,

2e(H» —eo) ($~ I Z r, I0)
i=1

(H,„—&0)' —(k(o)'

0

+1

0.0323
0.0976
0.3478
0.7525
2.00
8.7

121.3

0.0310
0.0950
0.3447
0.7523
2.00
7.82

53.3
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S(j)-J, eg d4
This indeed blows up as indicated. A large sam-

pling of the continuum is indicated for j= 2.
A detailed examination of the asymptotic behav-

ior of the matrix elements reveals that, for elec-
trons of arbitrary orbital angular momentum L,
we have

S(j) f e' '' de,

The singular behavior as j- 2. 5 arises solely from
s electrons. Thus, if as is the case in the T-sum
rules, only the bound p and higher I electrons con-
tribute to the summation, the high-energy contri-
bution to T(j ) is no worse than

T(j )- J e, '~'de,

Energy & 10
(units of 27.2 eV)

Tensor polarizability (ao)

Exact Fitted

0.54
1.44
2.34
3.24

4.14
5.04
5.94
7.74
8.55

—30.17
—31.26
—33.59
—37.76
—45.26
—60.43

—103.17
+ 95.00
+ 29.95

—30.58
—31.03

33031
—37.50
—45.05
—60.34

—103.34
+ 94.94
+ 29.62

TABLE II. Birefringent dispersion for 2p state of
H. [(01q IO) (fit) = —0.007 685 ao, (0 Iq I 0) (exact) =
—0.008 333 ao . ]

This formula is derived by recognizing that

(13)

2

o.'(&o) =
( ), Q (e„—e,)

x(f&oA s; u&l'--'1&of ~ r;f»l')

which does not exhibit the divergence until j-3.5.
(This obtains also in many-electron systems. )
Consequently, it appears more appropriate to use
the Chan-Dalgarno S(1), not S(2), as a model for
T(2).

To test this assertion, we calculated, by im-
plicit summation, ' o. '(&o) for the 2P state of atomic
hydrogen at 80 wavelengths from the far infraredto
the green. This is equivalent to an experiment.
We obtain an accuracy of better than 1 part in 10
by expressing the solution to the characteristic
inhomogeneous Schrodinger equation as a power
series in the frequency. The coefficient of each
term in the expansion may be calculated in closed
form. For Iqz), we made the simple choice of the
!i.e. ) p~ hydrogenic states of n = 1, n = 3, and a
linear combination of n=4 and n= 5. We fitted by
least squares a three-term summation for o.'(&o),

using the expression
32

o '(a ) = @,&& (e~ —~0)'

(6j, 'Eo)

(~~ —~D)' —(+~)')

is identical to Eq. (12). Equation (13) follows
from the depleted f sum rule We .guarantee in
this manner that our set of matrix elements and
energies satisfies Eq. (8).

A synopsis of the comparison between exact and
fitted values of o. '(v) is shown in Table II. The
fitted and exact T(2) agree to within 8%, similar to
the Chan-Dalgarno S(l) and Sternheimer corrections. 'a

Experimental studies of birefringence in molec-
ular gases via the Kerr effect have been made for
many years. " " (The ideas presented here apply
to molecules as well as atoms. ) With modern dig-
itized data-taking techniques, it should be possible
to achieve a level of accuracy both for absolute
values of tensor polarizabilities and for the shape
of dispersion curves sufficient to use the sum rules
to advantage. Shearer' has recently optically
pumped the metastable 'Pa states of the rare gases,
demonstrating that it is possible to orient non-
spherical atoms. This presents a possible alter-
native to the Kerr effect for rendering gases op-
tically anisotropic.
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Accurate eigenvalues and radiative lifetimes are obtained for the bound 2p 3P and 2p3p 'P
states of the heliumlike ions He r to Ne xx. A high-order Z-expansion perturbation procedure
is used that does not require the explicit solution of perturbation equations. The results are
compared with variational calculations. The predicted wavelengths of the ls2p 3P-2p P and

1s3p P-2p3p 'P transitions in helium are, respectively, 320.31 and 308.97 A. Lines have been
observed in helium at 320.39 and 309.04 A.

I. INTRODUCTION

Because of the conservation of angular momen-
tum and parity, the 2p 'P and 2p3p 'P states of he-
lium and heliumlike ions, although embedded in the
continuum, are stable againstautoionization within
the LS coupling approximation. Their lifetimes
depend on the probability of radiative transitions to
lower states and are much longer than the lifetimes
characteristic of autoionizing states. Becker and
Oahler' have pointed out the importance of such
highly energetic states as initiators of reactions
involved in radiation chemistry and in the chem-
istry of high-temperatur e gases.

The 2P 'P state of helium has been produced
through electron impact by Burrow and Schulz
and identified by the trapped-electron method.
This state should also be observable in the elec-
tron energy-loss spectrum, although it has not yet
been identified. The cross sections for the exci-
tation of the 2P P and 2p3p 'P states by electron
impact from the ground state have been calculated
by Becker and Dahler, ' along with several other
doubly excited states. The 2P3P 'P state will be
more difficult to observe in electron-impact ex-
periments because its excitation cross section is
much smaller than the 2p 'P cross section. A

radiative transition at 320. 39 A, observed by
Kruger and included in Martin's tables, has been
tentatively identified as the 2p P-1s2p P transi-
tion.

The helium 2p 'P eigenvalue has been calculated
by Holgien using a configuration-interaction wave
function. Several other less accurate calculations
are cited by Becker and Dahler. ' In this paper we
report precise variational upper bounds for the
2p"P and 2p3p 'P helium eigenvalues and oscil-
lator strengths for radiative transitions to the
1s2p, 1s3p, and 1s4p'P and 'P states, respective-
ly. The results are extended to the heliumlike
ions by a high-order Z-expansion technique. We

also calculate the sum of all oscillator strengths
from the 1s2p "P state to the ~pn'p "P states.

II. THEORY

The eigenvalue problem to be solved is (in
Z' a.u. )

8%', = (H, + Z ' V)0, = E,4, ,

where IIO is a sum of two hydrogen-atom Hamilto-
nians, V is equal to 1/r» and r» and is the inter-
electronic coordinate. A variational approximation
to E, and 4, is obtained from the stationary values


