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The possibility of an observable field dependence of the nuclear magnetic shielding in NMR
experiments is discussed. It is shown that in most molecules such an effect should be un-
observably small. However, in some rnolecules, especially where the magnetic shielding is
abnormally large, it is possible that the field dependence of the shielding could be large enough
to be observable. In NMR experiments of high accuracy in strong magnetic fields, the pro-
portionality of the resonance frequency to the magnetic field should therefore not be automat-
ically assumed, but should be experimentally verified.

I. INTRODUCTION

When a single nuclear magnetic resonance line
is observed with liquids, it is generally presumed
that the resonance frequency is exactly proportion-
al to the external magnetic field. This presump-
tion has indeed been supported by those past ex-
periments in which the proportionality has been
tested. However, in many of the highest-resolu-
tion NMR experiments on chemical shifts, a small
field dependence of the magnetic shielding would
escape notice since the resonances are often mea-
sured at only a single magnetic field. It is the
purpose of this paper to point out that as nuclear
resonance experiments are performed with greater
precision and in higher magnetic fields, there is
reason in some cases to expect small departures
from exact proportionality between the resonance
frequency and the magnitude of the external mag-
netic field Hp.

II. FIELD-DEPENDENT NUCLEAR MAGNETIC SHIELDING

Departures from simple proportionality between
the resonance frequency and the field can arise
from a magnetic field dependence of the nuclear
magnetic shielding. ' Thus, if o represents the
total magnetic shielding and if v is the usual field-
independent shielding, the total shielding should be
field-dependent and given by

0' = 0'+ 7'IIp+T= 2

where v' is a molecular coefficient defined by the

above relation. The odd powers of Ho in Eq. (1)
vanish by the symmetry requirement that the mag-
nitude of the shielding must be independent of the
direction of the magnetic field. The term in Hp

in Eg. (1) will give rise to a cubic dependence of
the angular resonance frequency w upon Hp since

&u = (1 o)yHO= (1——o)yHO 7yHSO- (2)

&'"+& '= Z,(H, +2p/~', )m,',—

+ (e /8mc ) Z~(Ho+ 2g/x~)2(x~+y2), ( 8)

where m,~ is the z-component orbital magnetic
moment operator. With this, the fourth-order
perturbation calculation of the energy can be ca&-
ried out in the usual manner. If TV~' represents

It should be noted that although the value of o can
not be empirically obtained by observations of the
dependence of + upon Hp, the value of ~ can be
found in this manner.

Quadratic terms in the magnetic shielding would
be expected both from higher-order perturbation
shifts of the energy levels of specific molecular
states and from slight shifts in the distribution of
population among the different states upon applica-
tion of the magnetic field. As discussed previously, '
the perturbation with the external field Hp and the
relevant magnetic moment p, taken parallel to the
z axis is given by



POSSIBILITY OF FIELD-DEPENDENT NUCLEAR 1321

the sum of a,ll such fourth-order terms which are
proportional to p,H' and if v'& is the perturbation
theory contribution to 7', then we obtain

v, = (W,"/WHO)

The large number of terms involved in the fourth-

order calculation are directly given by the general
perturbation-theory expressions' and will not be
listed here. It has not been feasible to calculate
reliable numerical values for v'&. However, its
general magnitude can be estimated by consider-
ing a typical term. Such a typical term z& would
be'

(OX I g,m ~ In'X')(n'X' I g~m, , In" X")(n"X"
I Zqm&t, In" 'X" ')(n" 'X' "

I g, (m,,/x'„) I 0&)
(E, E )(E „E)E „, E )

One way of estimating the magnitude of a typical
term r& is to approximate the matrix elements of
m', „ to the Bohr magneton P and to assume that the
energy differences in the denominator are each ap-
proximately equal to the same value ~, in which
case

The analogous approximations in evaluating a typ-
ical term o' in the magnetic shielding 0 give

o'= -2P /r 6 .
Consequently, we have

(8)

If we take x=ao, h=e /2ao, and P= —,'e o.ao, we
obtain

within the sensitivity of present NMR experiments.
However, most experiments of high sensitivity are
not carried out in widely different magnetic fields,
so an observable field dependence of the magnetic
shielding could easily escape detection. It is ap-
parent from the above discussion that the field de-
pendence of the magnetic shielding would probably
be most easily observable in compounds, such as
cobalt, where the chemical shifts in the normal
magnetic shielding are unusually large.

Field dependence of the shielding can also arise
from the alteration with magnetic fields of the pop-
ulation distribution over the different states. If
o'~ is the shielding in the pth state, g~ is the dia-
magnetic susceptibility of that state, and W& is the
energy when H is zero, then we have

7', H2O/o' = —,'o. (Hoao/p) = 7. 1xlo ' (9)
o = [ Q&o~ exp( —W~ + —,

'
$&Ho)/k T]

where in the last step we have taken Hoao/p equ»
to 1, as it would for a field of 62 600 G.

The fractional shift of the magnetic shielding
implied by Eq. (9) is too small to be observable.
On the other hand, it is well known that some sub-
stances have a chemical shift in the magnetic
shielding much larger than would be obtained by
evaluating Eq. (7) with assumptions similar to
those used above. The reason for this is presumed
to be much lower values for 4 as a result of near
degeneracies. If all the energy differences in the
denominator of Eq. (5) should be equally small, we
could evaluate Eq. (8) by using Eq. (7) to eliminate
4, in which case

(lo)

where in the last step we have assumed the same
value of Ho as used above in Eq. (9) and have taken
for 0' the value of 0. 01, the magnitude of the chem-
ical shift experimentally found for the magnetic
shielding of some cobalt compounds.

The detection of a magnetic shielding change
even smaller than that indicated by Eq. (10) is well

x [Qq exp(- Wq+ —,
'

)WHO)/kT]

The contributing states may be either low-lying
electronic states or states of differently oriented
molecular rotation. States which differ only in
molecular orientation will not in this way give rise
to a magnetic field dependence of the shielding if
the molecule or complex is sufficiently symmetri-
cal that $ and o are orientation independent, as in
the case of most cobalt complexes studied with
nuclear magnetic resonance.

Since the bulk magnetic susceptibility of a solu-
tion may become-field dependent in sufficiently
strong magnetic fields, the bulk magnetic suscep-
tibility correction of nuclear magnetic resonance
can, in principle, give rise to a departure from
proportionality between the resonance frequency
and the magnitude of the externally applied fieM.
Such a bulk susceptibility effect can be distin-
guished from field-dependent magnetic shielding
by dissolving the substances being studied and those
being used for field calibration in the same sample,
so that the bulk susceptibility correction is the
same for all.
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III. CONCLUSION

Although the field dependence of the nuclear
magnetic shielding for most substances should be
unobservably small, there is the possibility that
such a dependence could be observed for some
substances in high-precision experiments in strong
magnetic fields. The largest effects would be ex-
pected in molecules for which the chemical shifts

of the magnetic shielding are abnormally large.
As nuclear magnetic resonance experiments are
made with greater accuracy and in higher magnetic
fields, the proportionality of the resonance fre-
quency to the magnetic field should not be auto-
matically assumed, but should be experimentally
verified.
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This paper is an addendum to a paper by the author which presented a relation between the

gradient of the electric field at the nucleus and dipole matrix elements. A scheme is suggested

to take advantage of the result.

The gradient of the electronic electric field at
the position of the atomic nucleus is required for
an evaluation of nuclear quadrupole moments from
the hyperfine 8 coefficients. Recently, ' it was
shown that this could be expressed by the sum rule

2 n ~ se

N is the nuclear charge, m the number of electrons,
m the electronic mass, and

T(j) = &(&a —&o)' "

0 z. k ——, 0 r. k

or the equivalent in terms of dipole momentum or
acceleration matrix elements. [ We correct Eq.
(7) of Ref. l by a factor of 2. j As we indicated in
the earlier paper, the dipole matrix elements gov-
ern radiative transitions, so that (OIqI 0) may be
deduced if measurements of rates are available.
However, experimental techniques are insufficient-

s(j)=-,'Z(~, ~,) 'I(oI Z -,. IA. )I' .

Some well-known dipole sum rules for atoms are

S(- 2) = n/8, average static polarizability (2)

s(-»=-,'«II ~ . I'Io), (2)

S(0)= n h /m, f sum rule
n

s(2)= 4~me'I'/3m'&0I »(r,.) Io) .
(4)

(6)

Tensor sum rules are not restricted to T(2). For
example we have

T( 2) = n'/3e, tensor —static polarizability (6)

T( l) = (o
I I

~ & I'- l-I ~ r I'I 0) (7)
i= 1

ly developed to apply Eq. (l) immediately. Our
purpose in writing the present article is to point
out how an approximate value of T(2) may be ex-
tracted from a set of dispersion measurements.

The T(j ) are analogous in form to the scalar sum
rules S(j);


