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However, it can also be found with the aid of the per-
tinent expansion coefficients Eq. (15) and the orthog-
onality relation Eq. (A9) .

V. V. Ivanov, Theory of Stellar Spectra (National Aero-
nautics and Space Administration, Washington, D. C. ,
1967), p. 112; D. I. Nagirner, Astrophysika 3, 293

(1967) [English transl. : Astrophysics 3, 133 (1967)].
Dr. Ivanov has informed me that a new book by him on

radiative transfer is in preparation, in which in a sense
the Fourier transform [Eq. (17) of I] plays the central
role as well.

Another interpretation with the aid of Eq. (31) is also
known. In the core of the line, the optical depth is such
that the contribution by the layers near the boundary to
the emitted radiation is dominant. The local excitation
temperature defined there in the usual way by n(2)/n(l)
is low. Therefore, the radiation temperature at this
frequency is low as well. Proceeding along the fre-
quency scale to the wings, the optical depth decreases
and more layers with a higher excitation temperature
contribute. Hence, the radiation temperature at these
frequencies increases. For frequencies defined by

k(u)L/coso. ~ 1, the slab is optically thin. All layers
are now equivalent. The decrease in the intensity of
the radiation follows the common Doppler profile, as
already proved in Eq. (33).

D. G. Hummer, Monthly Notices Roy. Astron. Soc.

(to be published).
When the radiative transfer is determined by the

Doppler line, the emergent intensity is found by sub-
stituting for Q (u) in Eq. (32) a Voigt profile. As can be
inferred from Kqs. (19) and (A2) of I, the radiative
transfer is determined by the Doppler part of the Iine if
~7t'/2kpL» a ln(kpL/2&7t). This requires a small value of
a and not excessively large kpL.

Reference 8, p. 174. A further advantage of this
representation is that a close analogy is brought about

between all the formulas given in this paper for a Doppler
profile on the one hand and for a Lorentz or Voigt pro-
file (a& 0) on the other.

Reference 8, pp. 5 and 57.
E. T. Whittaker and G. N. Watson, A Course of Modern

Analysis (Cambridge University Press, Cambridge,
1962) .

R. Courant and D. Hilbert, Methods of Mathematical
Physics (Wiley-Interscience Publishers Inc. , New York,
1953), Vol. I, p. 129.

Reference 31, Vol. I, p. 134.
Reference 8, p. 174.
G. Szego, Orthogonal Polynomials (American Mathe-

matical Society Colloquium Publications, New York,
1959), Vol. XXII, p. 96.

C. van Trigt, thesis, University, Utrecht, The Nether-
lands (unpublished) .
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An iterative method for determining bound-state eigenvalues and properties of the radial
Schrodinger equation is appraised. The method stems from iterating the integral equation
(= p(T+ 2& ) '(—Vg), where T and V are the kinetic- and potential-energy operators. The
basic theory is briefly reviewed, and calculations are performed for the Coulomb and screened-
Coulomb potentials. The lowest three p eigenvalues, together with the expected values of
(p~) ', p~, and (p~)2, are obtained from a single iterated eigenfunction sequence. Convergence
is rapid for eigenvalues but slow for expected values. There is some sensitivity to the choice
of the numerical integration formula. Regarded as a numerical method, this approach may be
most competitive for the determination of zero-energy potential-strength eigenvalues. Its
disadvantages are listed. Analytical improvements to eigenfunctions can be easier to obtain
by iteration than by perturbation, and some success has been achieved. A simple example
suggests that the rate of convergence of an iterated eigenfunction sequence is less than that of
a related perturbation sequence unless the choice of starting function is bad.
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I. INTRODUCTION

In this paper, we report on the utility of an iter-
ative method for calculating bound-state eigen-
values and properties associated with the radial
Schrodinger equation

d
where T(r) = —2 2, O a r(~' dy2

is the kinetic-energy operator, V(r) is the poten-
tial energy, and g(r) is the r-multiP/ied radial
wave function. The method is based on an inte-
gral-equation equivalent of (I), namely,

because of their dependence on the adjustment of y.
As an analytical method of improving approxi-

mate wave functions and estimating eigenvalues,
this iterative approach has enjoyed success from
time to time. Activity has been mainly in momen-
tum space where an integral equation arises natu-
rally as the Fourier transform of the Schrodinger
equation. But there has been some work in co-
ordinate space' '" and recently considerable atten-
tion has been paid to eigenvalue bounds derived
from the conjugate eigenvalue equation. " ' The
present paper is concluded with a simple example
which suggests that the rate of convergence of the
sequence (Q» j is less than that of a related pertur-
bation sequence unless the choice of g is a bad

one. However, analytical improvements to wave

functions are, in principle, easier to obtain by

iteration than by perturbation.

y
' (exp(-y r —r' ) —exp[- y(r+ r') ] } . (4)

which is formulated using the bound-state free-
particle Green's operator (T+ —,'y )

' with kernel

II ~ GENERAL THEORY

The theory is clear-cut when the operator (- V)

is positive definite, thus admitting a square root,
and given that the operator

y...=(r+ ,'y') '(- vy, ), a=o-, l, 2, . . . , (6)

The alternative form (3) of the Schr'odinger equa-
tion has been called the conjugate eigenvalue equa-
tion. %hen y is regarded as a fixed parameter,
Eq. (3) gives rise naturaily to eigenvalues and

eigenfunctions for the potential strength p, ; often
(most simply by scaling procedures) it is possible
to relate them to energy eigenvalues and eigen-
functions for a prescribed p, .'

We employ the iterative sequence Ip»j specified
by

(6)

is a Hilbert-Schmidt operator (i. e. , K has finite
double norm). Equation (3) may then be written

and the standard Hilbert-Schmidt theory of integral
equations invoked. ' ' The potential strength p,

has a discrete spectrum Ip„) whose members can
be arranged in ascending order of magnitude

which ultimately behaves like a constant times the
eigenfunction gp of (3) which corresponds to pp(y),
the p, eigenvalue of smallest magnitude, Illustra-
tive numerical calculations are performed for the
CouLomb potential, and also for the screened-
Coulomb potential. Properties of the lowest three
eigenstates are obtained from a single iterative
sequence. The convergence of expected values is
slow but steady, and the convergence of bounding

sequences for eigenvalues is rapid.
Regarded as a numerical technique, the iterative

method is akin to the power method for finding the
eigenvalues of a matrix. It is likely to be compet-
itive only for the lowest eigenstates, and most
competitive for zero-energy states where more
sophisticated methods" might run into difficulties

0& pa& p, , & ~ ~ & p,„& (8)

(g„, ( —V)P ) = J g„(—V)g„dr= 6„„

then it follows from the Hilbert-Schmidt theorem
that

4»= ~ un&»'4»~
n=o

k=1, 2. . . (Io)

(In general, there could be some equalities here,
but not for a one-dimensional radial problem. ) If
Qr„f are the corresponding eigenfunctions, ortho-
normalized so that
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where a„= (&f&0, (- V) P„),

and the initial function $0 need not necessarily be
in the domain spanned by {g„j. Assuming that ao
is not zero, the sequence Q&»] ultimately behaves
like a constant times go, and (if a, is also nonzero)
the rate of convergence is governed by the ratio
p, o/p, . Thus, if Z(r) is an operator of interest and (-V}~=V {(-V)(7' —.'y') '(-V)]C. (i9)

Certain relaxations of the Hilbert- Schmidt con-
dition on K are possible2»; as far as p, o and $0 are
concerned, the method is not likely to be affected
by the presence of a continuum at the upper end of
the p, spectrum. If the operator (-V} is indefinite,
Eq. (3) must be treated in the form

L,= (e„~e,)/(e. , e.), (i2)

the sequence {L»] will tend to the expected value of
Z(r) in the bound state which is specified by the
parameter values p.o and Z .

It can also be shown that'

The operator on the right-hand side of (19) is pos-
itive definite and self-adjoint, but the signs of the
eigenvalues are now uncertain and negative eigen-
values may well not be physically relevant. The
inequalities (8) and (12) are replaced by~»

(2o)

&0 &0 -&s ~s ''' -&n-~a ' ' - Wo ~ IBOI- IBzl
'''

IB»
''

l&ol ~ (2i)

where A„=v»k/vk, », , B,=v, «.,/v„, k„, (14)

v, , = f Q, (- V) PJ dr . (15)

4k 404»+1 (i6)

The sequences {A»j and {B,) actually have limit
point p, p, and their rate of convergence is governed
by the ratio (p, o/p, ,).

If a, (but not a,) happens to be zero, then Qk
tends to a constant times g„and we obtain bound-
ing sequences for p, If p, p is known, then the se-
quence g&kJ defined by

Nothing can be said here about the sequence {IA»l).
Whenever for a given value of p, the quantity

-2 y is a discrete energy which is not embedded
in a continuum, physical considerations indicate
that the entire p, spectrum is discrete for that
value of y .

III. SCREENED COULOMB POTENTIAL

The negative screened-Coulomb potential has
been studied in connection with the deuteron,
hydrogen plasmas, 24 scattering theories, ~' and has
recently been the subject of a perturbation treat-
ment. " I.et

always has a zero eo, since
V(r)= r 'e '"

p -O.- (22)

a, =(P„(-V)g,) =(p,4„(-V)(,) —(Q„(-V)g,), (17)

and from Eqs. (3}for (0 and (5) with k = 0 the terms
on the right-hand side of (17) are seen to cancel.
Similarly, if

Then the double norm of Kis, from (4), (6), and
(22),

I(p, y) =y ' f f "(rr') 'exp[-p(r+r')]
0 0

&k —ui&k. i- 0» &&{exp[—y lr-r'I]

then ao and a~ are zero and Qk tends to a constant
times gz, and so on. These ideas were first devel-
oped and applied to vibration problems by Tem-
ple and Bickley. ~ In the event that the powers
of the dominant eigenvalue make p» too small as k

increases (so that accuracy is lost}, powers of an
appropriate scale factor can be introduced. We
can work with Q»P k, Q» Q k, etc. , when P, Q are
very rough estimates of pp, p, &, etc.

—exp[-y(r+r )]) dr dr

which satisfies the relations

0&5 (p, y) &I (o, y) = w/y',

I (p, O) =4p-'ln(4/e),

(24)

(25}



APPRAISAL OF AN ITERATIVE METHOD ~ ~ ~ 1317

Q» =re, , 4=0, 1, 2, . . . , (26)

so that Eq. (5) becomes

and is thus finite unless both P and y are zero.
Hence, K is Hilbert-Schmidt.

Remembering that P(r) is r multiplied, we set n=o

n=1

2
5
8

11
16

2

8
11

3.960 21
3.91771
3.917 70
3.917 70
3.917 70

14.931 9
14.157 8
14.153 8
14.153 8

2.096 77
2.31556
2.31973
2.31982
2.31982

1.238 22
1.477 90
1.496 32
1.497 68

0.782 33
0,734 04
0.733 28
0,733 27
0.733 27

1.080 14
0.974 06
0.968 07
0.967 61

TABLE II. Screened Coulomb potential: y = 0.313P.

0.904 07
0.820 38
0.81916
0.819 13
0.81913

1.478 62
1.249 66
1.237 84
1.236 94

re&. i(r)=r ' f,
" (exp[-ylr-r' l]

—exp[-y (r+ r')] )

n=2 37.367
33.497
33.281
33.266

78.8
66.7
63.4

0.929 69
1.102 95
1.152 82
1.162 13

U.773
0.909
0.944

1.306 28
1.176 06
1.149 50
1.145 24

1.492
1.344
1.308

2.027 70
1.699 53
1.639 02
1.629 63

2.550
2.132
2.036

x exp(-pr') e„(r') dr' (27)

which reduces to

e~,q(0) =2 f exp[-(P+y)r ]e„(r )dr (28)
r =O

at zero r If y. is zero (corresponding to zero-en-
ergy bound states), Eq. (27) simplifies to

re~„(r) =2 f min(r, r ) e ~"' e~(r') dr'. (29)

IV. NUMERICAL RESULTS

Whenever suitable, Eqs. (27) and (28) can be re-
cast in terms of a variable (y r); likewise Eq. (29)
in terms of (Pr).

particular ratio was used by Salpeter and Gold-
stein for a deuteron model; they found an esti-
mated value of 3. 797 for (po/y) in comparison
with our 3.91770. In Table III appear the eigen-
value sequences for the zer o- energy screened-
Coulomb potential. Here our values of (2p, „/P) for
the lowest three states are 1.68374, 6. 5066, and
about 14.6. Harris ' has obtained approximate
values 1.74, 7. 14, and 13.33 by a variational
method, and the directly calculated value for
(2p, o/p) of 1.683 by Sachs and Goeppert-Mayer27
is still quoted in the more recent literature.
(Expected values of powers of r are not relevant
for this latter system. )

A typical iteration integral like (27) was re-
placed by the discrete approximation

x,.e„,(x, /r) =Z, (exp[ lx,. x,. I] exp[ (x, +x,)])

xexp(-px, /y)e„(x;/y) &u, , (30)

TABLE I. Hydrogenic states: P = 0.

n=o

n=l

n=-2

n=3

2
5
8

11
16

Exact

2
5
8

11
16

Exact

2
5
8

11
Exact

2
5
8

Exact

1.020 58
1.000 31
1.000 00
1.000 00
1.000 00
1

2.048 56
2.004 18
2.000 36
2.000 03
2.000 00
2

3.086 72
3.015 31
3.00268
3.000 79
3

4.13443
4 03504
4.002 14
4

1.218 45
1.021 74
0.99978
0.997 07
0.996 69
1

0.659 04
0.53968
0.510 11
0.501 79
0.498 77
0.5

0.479 10
0.384 79
0.352 86
0.340 32
0.333 33

0.392 05
0.308 27
0,272 94
0.25

1.233 36
1.463 95
1.495 38
1.49943
1.499 99
1.5
2.510 28
2.849 26
2.954 26
2.986 30
2,998 21
3

3.699 47
4.158 40
4.354 33
4.439 27
4 5

4 ~ 80276
5.403 71
5.727 26
6

2,042 25
2.859 34
2.981 62
2.997 69
2,999 95
3

7.508 55
9.524 12

10.200 61
10.413 03
10.492 87
10.5

16 ~ 222 5
19~ 955 9
21.677 1
22.446 6
23

27,637 8
33 7558
37,258 6
40.5

Illustrative calculations of iterative sequences
for eigenvalues (g„/y) and expected values of
(yr) ~, yr, and (yr)2 were performed for the Cou-
lomb potential (Table I) and also for the screened-
Coulomb potential with y = 0. 313p (Table II). This

where x = yr and (x„&o,) are the points and weights
of the numerical-integration formula. The same
integration formula was used to evaluate all the
integrals in a single program, thus saving a fac-
tor of about 100 in time. The particular formula
used to give the results in Tables I-III was a trap-
ezoidal rule with 100 equal intervals from 0. 0 to
10.0, combined with a 19-point Gauss-Laguerre
quadrature formula from 10.0 to ~. The trape-
zoidal rule was chosen because the discontinuity
in the slope of the kernels should have no effect on
it. Beyond x = 10.0 there is little contribution to
the integral and different means used to integrate
the tail of the integrand gave similar results. In
each case the starting function was eo= e '", but
the iteration is insensitive to choice of starting
function. After one or two cycles, similar results
were obtained with, for example, 8o = 1.

Sixteen iterations were performed, and the
bounding sequences Q~) and (Bj given by (14) were
stable through eight figures after twelve iterations.
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Only the sequence (B») is quoted in the tables
[designated by (p, „/y), and (2p,„/p), ] since A» «B»,
and only some of the k values are shown to save
space. Appropriate (I.»'I sequences are also given.
Only a, single sequence (8») was calculated for each
of the three systems, and sequences suitable for
the next highest states were deduced from it, as
indicated in Eqs. (16) and (18). Although this
method of finding subdominant eigenvalues is
highly subject to round-off errors, the calculations
were stable through 16, 11, and 8 iterations for
the next three hydrogenic states, and through rath-

er fewer iterations for the other systems (the

highest k value shown is the last stable one for e
= 1, 2, 3). Better accuracy could, of course, be ob-

tained for ~ & 0 if a fresh iterative sequence were
generated for each state, with renormalization at
appropriate stages. But such refinements con-

sume more machine time, and were felt to be un-

justified in the present context. The calculations
were run in FORTRAN on a CDC 3600 computer in

single-precision arithmetic which is good to about

10 significant figures, and the average running

time including compilation was about 40 sec.
In an attempt to improve the expected value of

(yr) ' for hydrogen (which for n = 0 is 0. 3% too low),
an alternative integration formula was tried with

40 equal intervals in 0. 0 to 2. 0, 80 intervals in 2. 0
to 10.0, and the same 19-point Gauss-Laguerre
formula past 10.0. The main effect of this change
was to lower the eigenvalue results in about the
fourth significant figure, but the (yr) ' values were
improved slightly. This fact, combined with the
stable convergence of the eigenvalue sequence with
each formula, would seem to indicate that the iter-
ative method is somewhat sensitive to the particu-
lar integration formula in use. Because of the ex-
cellent results for the first two hydrogenic eigen-
values, we put our faith in the trapezoidal rule with
equal intervals from 0. 0 to 10.0.

then it follows from (27) with P = 0, y = 1 that

C, = Co, (independently of &) (33)

and S» = Co+ (So—Co) 2 (34)

The rate of convergence of the overlap integral S,
is thus exactly —, (the value of p, o/p, ,) and this is
independent of the initial trial function Hp.

If we take

y, =exp(- nr), nx 1

C,'= f y, exp(- r) r dr = Co

(independently of k),

and the consequent overlap integral

S,'=f y e" r'dr

has the value

(33)

Thus judging by the overlap integrals S~ and S~',

the perturbation approach to the true eigenfunction
converges more rapidly than does the iterative ap-
proach whenever

as the unperturbed wave function for a Rayleigh-
Schrodinger perturbation expansion, the perturba-
tion is (n —1)/r and it is possible by standard meth-

ods to determine y„, the wave function corrected
through order k in the perturbation. For compari-
son with H„ the normalization is arranged so that

V. COMPARISON WITH PERTURBATION THEORY
[(n —1)/(n+1)] &-', , i.e. , n &3 (39)

As a simple example let us consider the hydro-
genic ground state where go= 1, y= 1, and $0= re "
(not normalized). The overlap of &f&»(= r8, ) with
r exp(- r) is

Since & = 1 gives the true eigenfunction, the itera-
tive approach is only superior when a bad initial
trial function is chosen.

Qualitatively, one might expect a perturbation
treatment to be better; ideally such a treatment

S, = f 8, (r)e "r' dr.
0

(31)
TABLE III. Screened-Coulomb eigenvalues at zero energy: y=0.

If we also define

C» = f 8» (r ) exp( —r )r dr, (32)

2
4
6
7
8

16

(2v0/p).

1.754 93
1.684 06
1.683 74
1.683 74
1.683 74
1.683 74

(2Vi/P).

6.630 9
6.5112
6.506 8
6.506 6
6.506 6

(2p&/P),

15.333 4
14.698 9
14.642 0
14.623 5

(2P3/P),

28.698
28.609
26.424
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involves corrections resulting from a small per-
turbation to the potential, whereas in the iterative
approach corrections are generated by the operator
(T+ —,y ) (—V), involving the whole potential.
However, the single quadrature required for an
iterative correction to a wave function is in prin-
ciple easier to carry out analytically than the dou-
ble quadrature required for a first-order perturbed
wave function. Thus in some cases it may be
possible to improve a wave function analytically by
iteration but not by perturbation. It has been
pointed out' that the first iterated improvement
to a hydrogenic 1s function is a so-called Os func-
tion.

VI. CONCLUDING REMARKS

As a numerical tool, this iterative method is
conceptually very simple but it has shortcomings.
These are (i) the difficulties with the basic theory
if K is not Hilbert-Schmidt, (ii) the slow conver-
gence of expected-value sequences, (iii) the diffi-
culties in dealing with subdominant eigenvalues,
(iv) the sensitivity of results to integration formu-
las, and (v) the possible difficulties in relating the
two different types of eigenvalue equations. Per-
haps these help to explain its relative lack of popu-
larity. The method may well be seen to best ad-
vantage in the calculation of zero-energy potential-
strength eigenvalues, which are useful in determin-
ing the number of bound states admitted by a given

(x+2/(l+1)r '+-', y'] '
(4o)

which has kernel

I/+ 1/2 (yr& ) If l+ 1/2 (yr& ),
(r& =min[r, r ], r& =max[r, r']), (41)

where I„&~& and K„,&~ are the modified spherical
Bessel functions, or alternatively the ~-2 term
might be absorbed into the potential.

If the Schrodinger equation is many-dimensional
and nonseparable the difficulties mount. But some
analytical progress has been made for He and

H2, ,
' ' and the numerical approach may well be

feasible, certainly in two dimensions. The free-
particle Green's function in n dimensions is
known. '

Methods which combine features of the two types
of eigenvalue equations (1) and (3) have been sug-
gested

potential. '
As an analytical method, the approach has en-

joyed some success devolving from its simple
Green's operator. It may be useful occasionally
when perturbation theory fails.

Equation (1) which we considered was for s
states. For states with higher-orbital angular mo-
mentum, one can either work with the operator
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Possibility of Field-Dependent Nuclear Magnetic Shielding
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The possibility of an observable field dependence of the nuclear magnetic shielding in NMR
experiments is discussed. It is shown that in most molecules such an effect should be un-
observably small. However, in some rnolecules, especially where the magnetic shielding is
abnormally large, it is possible that the field dependence of the shielding could be large enough
to be observable. In NMR experiments of high accuracy in strong magnetic fields, the pro-
portionality of the resonance frequency to the magnetic field should therefore not be automat-
ically assumed, but should be experimentally verified.

I. INTRODUCTION

When a single nuclear magnetic resonance line
is observed with liquids, it is generally presumed
that the resonance frequency is exactly proportion-
al to the external magnetic field. This presump-
tion has indeed been supported by those past ex-
periments in which the proportionality has been
tested. However, in many of the highest-resolu-
tion NMR experiments on chemical shifts, a small
field dependence of the magnetic shielding would
escape notice since the resonances are often mea-
sured at only a single magnetic field. It is the
purpose of this paper to point out that as nuclear
resonance experiments are performed with greater
precision and in higher magnetic fields, there is
reason in some cases to expect small departures
from exact proportionality between the resonance
frequency and the magnitude of the external mag-
netic field Hp.

II. FIELD-DEPENDENT NUCLEAR MAGNETIC SHIELDING

Departures from simple proportionality between
the resonance frequency and the field can arise
from a magnetic field dependence of the nuclear
magnetic shielding. ' Thus, if o represents the
total magnetic shielding and if v is the usual field-
independent shielding, the total shielding should be
field-dependent and given by

0' = 0'+ 7'IIp+T= 2

where v' is a molecular coefficient defined by the

above relation. The odd powers of Ho in Eq. (1)
vanish by the symmetry requirement that the mag-
nitude of the shielding must be independent of the
direction of the magnetic field. The term in Hp

in Eg. (1) will give rise to a cubic dependence of
the angular resonance frequency w upon Hp since

&u = (1 o)yHO= (1——o)yHO 7yHSO- (2)

&'"+& '= Z,(H, +2p/~', )m,',—

+ (e /8mc ) Z~(Ho+ 2g/x~)2(x~+y2), ( 8)

where m,~ is the z-component orbital magnetic
moment operator. With this, the fourth-order
perturbation calculation of the energy can be ca&-
ried out in the usual manner. If TV~' represents

It should be noted that although the value of o can
not be empirically obtained by observations of the
dependence of + upon Hp, the value of ~ can be
found in this manner.

Quadratic terms in the magnetic shielding would
be expected both from higher-order perturbation
shifts of the energy levels of specific molecular
states and from slight shifts in the distribution of
population among the different states upon applica-
tion of the magnetic field. As discussed previously, '
the perturbation with the external field Hp and the
relevant magnetic moment p, taken parallel to the
z axis is given by


