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for the 3s-3p transition. Since the multiplet
strength for both transitions will be proportional
to Z, the transiti n probability will be propor-
tional to Z for the 3p-4s transition and to Z for the
3s -3p transition. Taking the screening into account
a calculation based upon the Z dependence for the
mean life of the 3p levels in Nex, Naxx, and Mgxxx

shows that the ratio between the mean lives for the

4s levels in Ne x and Naxx should be 30-40, in rea-
sonable agreement with the observed values.
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In the previous paper, the Biberman-Holstein integral equation was solved for a slab and
for all line shapes of interest in the limit of high optical depth. The eigenfunctions and eigen-
values obtained are used for the general calculation of the stationary number density in the
excited state, when collisional excitation and deexcitation takes place, when excitation takes
place by absorption of external radiation, or by both combined. General expressions are
given for the line shape of a spectral line emitted by an optically dense slab, showing typical
broadening and self-reversal.

I. INTRODUCTION

In many plasmas, the assumption of (local) ther-
modynamic equilibrium for the number densities
of atoms in low-lying levels is invalid. It is there-
fore necessary to solve the rate equations directly.
For most levels, it can be assumed that the plas-
ma is optically thin so that the radiation escapes

without being absorbed. Resonance lines are
severely absorbed, however, and allowance for
this effect must be included. Up to now this has
been done by fairly rough approximations' or by
numerical calculations. ' In a preceding paper'
(hereafter referred to as I), we solved the trans-
fer equation, when the optical depth was large,
for a number of line shapes, Doppler profiles
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with and without hfs, and Voigt and Lorentz pro-
files. The geometry in that paper was taken to be
a slab. These results are applied in order to ob-
tain accurate solutions to the problem mentioned
above for a realistic model.

In this paper, we shall consider the rate equa-
tions for the resonance states in the following
approximation: We have two-level atoms consist-
ing of a ground state and an excited (resonance)
state. In Sec. II, it is assumed that the atoms
are excited by collisions with electrons or ab-
sorption of resonance radiation emitted some-
where else in the volume. There is no external
source of radiation. They are deexcited by ra-
diative decay or by collisions with electrons. The
system is in an enclosure (which we shall assume
to be a slab) so that it can lose energy by radiation.
This approximation contains the essential part of
such systems in practice. It can easily be extend-
ed to apply to real atoms. This point will be dis-
cussed at the end of Sec. II, in connection with the
scheme given by Bates, Kingston, and McWhirter. '

The fundamental solutions of the transfer equa-
tion already obtained by us are used to find the so-
lution to this stationary problem. It will be shown
that if we split up the rate equation for a level with
self-absorption into rate equations for so-called
quasilevels, the resulting expressions are for-
mally the same as the expression for a level with-
out self-absorption. They therefore fit into a
scheme such as that given by Bates, Kingston, and
McWhirter for an optically this plasma.

In Sec. III, we apply the solutions obtained in I
to the calculation of the density of excited atoms
when the excitation mechanism acts by absorption
of outward radiation. The formulas found in both
Secs. II and III are cast in such a form that they
can easily be applied to calculate the line shape of
the spectral line emitted by an optically dense slab
in every practical situation. This point will be
discussed in Sec. IV. In particular, the formulas
exhibit a characteristic broadening of the line and
the mell-known self-reversaI.

II. STATIONARY PROBLEM IN RADIATIVE TRANSFER:
COLLISIONAL EXCITATION

state. It has been shown by Biberman' and Hol-
stein' that the equation describing the decay is
given by

y-n+y K(ir —r' i) n(r') dr',
Bt y

where u(r, f) is the density of excited atoms and

y
' the natural lifetime of the excited atoms. The

integration is over the volume V. The integral
kernel K is

@ir r i) dv& (v)&(v) exp[ —k(v) ir —r'I]
(2)

0 4~ lr —r' t2

n(r, f) =n(r) exp[- Pt],

we obtain

(I —P/y) n(r) Z(gr —r' )n(r') dr'.

This is a homogeneous eigenvalue problem. In I,
the eigenvalues P,. and the eigenfunctions g& were
determined for a slab with thickness L and for
large optical depth. For a Doppler profile

Q~

~(v)dv=9(u)du=- ~ du, u=2 ' (ln2)"',
hv~

and absorption coefficient

u(v) = u(u) = n, e (u),
2 N

u, = " f (ln2)"'
SZC 4Vg)

'e (v) is the line shape of the spectral line; k(v) is
the absorption coefficient. The crucial assumption
in Eqs. (I) and (2) is that the emission profile is
proportional to the absorption profile or Q (v) ~ k(v).
This assumption is fulfilled for a Lorentz profile
when the broadening is due to pressure broadening
but not when there is natural broadening. For a
Doppler profile it is fulfilled to satisfactory ap-
proximation. If we assume in Eq. (I) an expo-
nential decay

A. Restatement of Previous Results we have the eigenvalues

The transient solution to some problems in ra-
diative transfer has been studied in I. Our aim is
now to discuss the stationary problem. Since the
results obtained in I will often be referred to in
the following sections, we shall restate them
briefly here.

Suppose that at t=O there exists in a volume V
a certain density of atoms excited in the resonance

1/2

(1n D~) -v, k, L-

and the eigenfunctions (independent of possible
hfs)

0&-(I —5')"' + u, &
~ (f), $= 2x/L

m~0
(4')
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The numbers p.
&

have been given in Table I of I and
the coefficients a

&
in the Tables III and IV of I.

For a Lorentz profile

radiation emitted somewhere else in the volume,
we have

8 (v) dv = 8 (u) du =——1 du

u +1'

and absorption coefficient

u=2i (V —Pp
A(2, l)n(2)+n, n(2) K(2, 1)=n, n(1) K(1, 2)

+A(2, 1)fK(
~

r —r' ) n(2) dr' . (7)

2me Nf
k(v) = k(u) = ko g (u) ko =

SZC +Pg

the eigenvalues are

(p,/r)(k. L)"'-I"„k.L--,
and the eigenfunctions are

(5')

The numbers p.
&

have been given in Table II of I
and the coefficients b~& in Tables V and VI of I.
The eigenfunctions constitute a complete ortho-
normal system. Every function can be expanded
into a series of those eigenfunctions which is con-
vergent in mean square. Integrals in which the
eigenfunctions g& appear are readily evaluated in
many cases by using the relation between the
Tschebyscheff polynomials U„($) and trigonometric
functions

We have changed our notation in accordance with
the convention adopted by Bates, Kingston, and
McWhirter': n(1) (independent of place) and u(2)
(dependent on place) are the number densities in
the levels 1 and 2 [ground state and first excited
(or resonance) state]; n, is the electron density;
K(1, 2) and K(2, 1) are the rate coefficients
(cm /sec) for collisional excitation and deexcitation
by electrons. Finally, A(2, 1)(=y) is the radiative
decay constant. The coefficient K(1, 2) and K(2, 1)
are dependent on the electron temperature T,.
For convenience we shall take T, independently of
place in the following discussion. This require-
ment is often fulfilled due to the high thermal con-
ductivity of the electrons. However, it is un-
necessary to make this assumption. The formulas
can easily be generalized to cover this case as
well.

Since the eigenfunctions of the homogeneous prob-
lem Eq. (3) constitute a complete set, we can ex-
pand the number density n(2) in Eq. (7), as

U„(cosy) = sin(m+1)p/sing . (6)

In I, we discussed the extension of the theory to
more complicated line shapes, Voigt profiles, and

Doppler profiles with hfs. For a Voigt profile, the
results for a Lorentz profile apply provided that
the requirement stated in the beginning of Appendix
A of I is fulfilled. This will always be assumed.
The asymptotic eigenfunctions and eigenvalues are
all independent of possible hfs of the spectral line,
except the eigenvalues for a Doppler profile. Here
we have Eq. (26) of I. Therefore, only in this
case the results need sometimes be modified.
They will simply be stated since the proof of it is
always straightforward.

The collective behavior of the excited atoms in
Eq. (2) can be accurately described with the so-
lutions of Eqs. (3) -(5). The solutions can equally
well be used to solve the stationary problem.

(6)

The eigenfunctions (,. are selected according to the
broadening mechanism. If the line shape is de-
termined by Doppler broadening with or without
hfs, we should use Eq. (4). If there is pressure
broadening and the line shape is a Lorentz or
Voigt (a 40) profile, Eq. (5) is taken.

By substituting Eq. (8) in Eq. (7), the term with
the Biberman-Holstein integral kernel is immedi-
ately resolved, because of Eq. (3). We now take
the inner product with an eigenfunction. g&. Since
the eigenfunctions constitute an orthonormal set,
we find (for j = 1, 2, ~ ~ ~ )

A&(2, 1)n&+K(2, 1) Z a, f g&z, g;d&
z-1 1

B. General Solution =K(1, 2) f' n, g~($)d&,

Let us consider two-level atoms consisting of a
ground state and an excited (resonance) state.
When, for instance, electrons excite and deexcite
atoms and the medium is optically dense so that
atoms are also excited by absorption of resonance

$ = 2x/L,
~%t

where L is the breadth of the slab. Az(2, 1) is our
former P&. The letter P has already been used by
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Bates, Kingston, and McWhirder'4 for the rate
coefficient for radiative recombination. Equation
(9) constitutes a set of linear equations for the
coefficients c(& of the type

(A+B)a =b, (10)

with A= [A~(2, 1)64y], B=[K(2, 1) f (t)&n, g&d)] .

The vector b is given by b = (b„b2, ... )

with b& = K(1, 2) f n, )t)&($) d(;

the vector a = (o)„aa, ~ ..) is to be determined.
First, it should be noted that when the problem
has reflection symmetry, as is often the case, all
odd eigenfunctions must vanish from the solution,
i. e. , the corresponding expansion coefficients
must be zero. The matrix elements of 8 for the
even eigenfunctions can be calculated from their
expansion in Tschebyscheff polynomials of the
second kind, using Eq. (6). The off-diagonal ele-
ments of the matrix 8 couple the different modes
to one another. Their role here is quite similar
to the part they play in quantum mechanics, where
they describe the transitions between different
states. At the end of this section, we shall in-
troduce for these modes the concept quasilevels,
so that the off-diagonal elements describe transi-
tions between different quasilevels. After calcu-
lation of the matrix elements of J3, the inverse
of the matrix A, +8 is calculated numerically and
the vector a is found from the relation

a=(A, +B) 'b.

Zy, (&)f q, (&')dt'
= Q o(~g~ =nEK(1, 2) ~= ~

A&(2, 1)+n,K(2, 1)

The matrices are infinite. It is therefore neces-
sary to truncate them in the numerical calculation
at certain orders n and n+1. If no appreciable
changes occur for the coefficients of the vector a,
the order is considered high enough and the so-
lution has been determined. One can estimate that
in many cases n = 5 will be sufficient.

Let us now simplify by assuming that n, is con-
stant (or that n, varies only very smoothly com-
pared with variations in the density of excited
atoms). The matrix B becomes a diagonal ma-
trix because of the orthogonality of the eigenfunc-
tions. The solution of Eq. (10) is immediately
obtained and we have (for k0L» 1)

J (q($') d$' = —,'w a() q, (12)

go &
being the first expansion coefficient of the

eigenfunctions P& in Eq. (4). For a Lorentz pro-
file (and for a Voigt profile with a &0), we obtain
from Eq. (5)

f +1 2

E)E 0 n4+ 4

where the 52 &
are the expansion coefficients of

the even eigenfunctions. The series is quickly
convergent. Note that, apart from the summation,
Eq. (11) is formally the same as the expression
that would have been obtained if we had neglected
reabsorption of resonance radiation in Eq. (7):

n(2) n+(1, 2)
n(1) A(2, 1)+ n+(2, 1)

C. Limiting Cases and Discussion

When the radiative loss is small compared to the
loss by collisional deexcitation, thermodynamic
equilibrium must be attained. In order to show
that this is correctly yielded by the theory, we
assume that A&(2, 1)«n, K(2, 1) in Eq. (11) so that

n(1) K(2, 1) q

"'') = "' "Z 2,(2)f"(),(2 )22'. (14)

pre recognize the sum in Eq. (14) as the expansion
of the function that is equal to unity for 15 I &»n
the complete set g&. Therefore, we have"

m(2) Z(1, 2) 2, E(2) —E(1))
n(1) K(2, 1)

so that the correct thermodynamic limit is indeed
attained. Another interesting limiting case is
A, (2, 1)»n, K(1, 2). It can be considered as the
opposite of thermodynamic equilibrium'[Eq. (14)].
Equation (11) takes the form for a simple Doppler
line

This case has been treated numerically for a
Doppler profile by Hearn' and for a Voigt profile
by Hummer. " The integrals in Eq. (11)are read-
ily evaluated by using the representation of the
eigenfunctions in the Tschebyscheff polynomials
and Eq. (6). After that, the summation is carried
out numerically. For a Doppler profile with or
without hfs, the integrals become particularly sim-
ple for
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n(2) 'n~(1, 2) k()L k()L )~

n(l) A(2, 1) v 2 2~7/ p

The summation is to be carried out numerically.
The series is quickly convergent so that 3 or 4
terms are sufficient to give an accuracy of a few
percent.

However, the value of this sum can be deter-
mined in another way. Let us reconsider Eq. (7) .
By neglecting the collisions of the second kind
n(2) n, K(2, 1), it can be written symbolics, lly

( ) ( )
n n(1)K(1 2)

A(2, i) (16)

I being the identity operator, Z the operator cor-
responding to the Biberman-Holstein integral equa-
tion, and the other symbols having their common
meaning. The problem is to determine the inverse
operator (I-K) '. Now the essence of the work by
Widom, ' already cited in I, was the determination
of the first order asymptotics of the operator
(I-K) '. Only the result, valid here, is stated
For a simple Doppler profile, we have for koL -~
(see also Appendix B of I)

(I K)- o (Ink()L/2u p )
/2

(17)

n(2) n+(I, 2) k2L
(ink L/ 2~)'

n(1) A.(2, 1)
dg'

If n, is independent of place, the solution of Eq. (16)
becomes

The behavior of n(2)/n(1) as a function of k()L,
Eq. (11), all things [n~(1, 2) and n+(2, 1)] being
equal, ' is therefore as follows: Eq. (18) holds
good if k()L, the electron density, and the electron
temperature are such that A&(2, I)»n, K(1, 2) (but
with koL large enough for the asymptotic expansion
to apply). The relative density n(2)/n(l) increases
essentially linearly with koL. Within this range for
kg the space dependence of n(2)/n(1) remains the
same. A/(2, 1) decreases with increasing k2L and,
at a' certain value of k2L, 2/(2, 1) and n,K(l, 2) be-
come of comparable magnitude. For this case, the
general equation (11) applies. As a function of
place, n(2)/n(1) lies somewhere between the func-
tion (1 —$ )' and the constant function. This limit
(thermodynamic equilibrium) is attained for A,.(2, 1)
«n+(2, 1), see Eq. (14). The rate of approach to
equilibrium as a function of koL is different for the
various types of radiative transfer. Radiation is
much more easily transferred by the mechanism
of repeated absorption and emission with frequency
changes than without such changes (diffusion equa-
tion). The radiative leak is therefore larger in
the former case than in the latter. Hence, ther-
modynamic equilibrium should be less quickly
attained as a function of koL in the former case
than in the latter. This is also seen by comparing
the various expressions for A/(2, 1): no frequency
changes, A/(2, 1)cc(k2L) 2; frequency changes, Dop-
pler A;(2, 1)~(k()L(ink()L/2V m)' ) '; frequency
changes, Lorentz, Voigt A,.(2, 1)~(k2L) . The
condition for equilibrium A/(2, 1)«n, K(2, 1) will be
fulfilled for the various types of transfer at values
of koL increasing in this order. The difference be-
tween Doppler and Lorentz is, of course, due to
the fact that a Doppler profile has a far less ex-
tended wing, so that the radiative leak is smaller.
The analogs of Eqs. (15) and (18) for a Lorentz
profile (or Voigt profile with a 40) can be obtained
in a similar way. The analog of Eq. (15) becomes
(independent of hfs)

By partial integration the result is readily shown
to be

n(2) 2n,K(l, 2) K+ (&k~/2~)1/2(I g2)l/
n(1) mA(2, 1)

18

It can be ascertained numerically that the sum in
Eq. (15) indeed yields 2(1 —g')»2/@~2). " For a
Doppler line with hfs, the term (Ink2L/2M2)' '
is to be replaced by [see Eq. (22) of I]

2[(lnB, k2L/2M') ' + (lnIt„k2L/2v m) ' ] ' .

(i9)

As in the Doppler case, we can also determine
n(2)/n(1) by using the asymptotic expression for
(I-K) ' for a Lorentz profile. It can be shown
that17

n(2) n,K(1, 2)
( L)i/2 8

(1 ~2)1/4
n(i) A(2, i)

Again it can be verified that Eq. (19) is indeed
equal to Eq. (20). Just as in the Doppler case,
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n(2)/n(1) given by Eq. (11) is intermediate as a
function of position between (1 —g )'~ and the con-
stant function. In the above, we have given a gen-
eral scheme for the calculation of the expansion
coefficients n; in Eq. (8). From now on, these
coefficients n,. will be considered as known. In
Sec. IV, the representation of Eq. (8) will be used
to calculate the line shape of the spectral line
emitted by the optically thick slab.

The treatment of a two-level atom is, of course,
only a first step to the calculation of number den-
sities in the levels of real atoms. Bates, Kingston,
and McWhirter' have given a scheme for such a
calculation and applied it to a hydrogen-ion plasma.
Their treatment of self-absorption was fairly rough
since all A, (2, 1) were put equal to zero. It is easy
to see that a treatment of the self-absorbed levels,
according to the lines given here, can be fitted
directly into their scheme. The rate equation for
a level with self-absorption is, according to Bates
et al. , Eq. (7) with terms added describing transi-
tions from and to other levels (()(p = 3, 4, . . . ) and
from and to the continuum. Again, as in Eqs. (9)
and (10), the equation is split up into rate equations
for the e;. It is useful to consider these as equa-
tions for number densities in quasilevels. The rate
equation for every quasilevel, labeled by j, is for-
mally the same as the rate equation for the level
without self-absorption (hence, without integral
equation), but A(2, 1) is replaced by A,.(2, 1). There-
fore, the problem has been formally reduced to one
for an optically thin plasma. Compare in this re-
spect Eq. (11), where the number density in level
2 has been written as a superposition of the den-
sities in the quasilevels with Eq. (13), the solution
for a level without self-absorption. The terms
describing collision-induced transitions between
the quasilevels among themselves (the off-diagonal
elements of 8) and transitions between the quasi-
levels and the other levels (the generalization of
the coefficients of the vector b), etc. , can easily
be identified in the new Eqs. (9) and (10). There
is no radiative coupling between the quasilevels
among themselves, however. The further calcu-
lations may follow the lines given by Bates, King-
ston, and McWhirter. Most of the calculations
given here also apply to other geometries, the
only point being that in these cases the eigenvalues
and eigenfunctions of Eq. (3) are not yet known.

III. STATIONARY PROBLEM IN RADIATIVE TRANSFER:
ABSORPTION OF EXTERNAL RADIATION

A. Solution for a Cold Plasma

Another interesting stationary problem is the one
encountered when atoms are excited by absorption

+A(2, 1)fdr'lC( r —F )n(2).

The first term on the right-hand side describes the
rate of excitation due to absorption of the external
radiation, the second one the rate of excitation due
to absorption of the scattered radiation. It is un-
derstood that n(2) depends on place though this is
not explicitly indicated. In the first term I0 could
be placed outside the integral sign since it has been
assumed that it does not vary over the spectral
line. This corresponds to most experimental situ-
ations because the excitation mainly takes place
due to a broad line. We proceed now to the solution
of Eq. (21).

The expansion of n(2) [Eq. (8)] is substituted in
Eq. (21). However, the expansion now contains
both the even and odd eigenfunctions since the prob-
lem has no reflection symmetry. Following en-
tirely the same procedure that has led us from
Eq. (7) to Eq. (9), we obtain for the expansion co-
efficients n&

Io
Aq(2, 1)o.

q
=

( )n1 hv0
d$q, (5) dva(v)

).(v)i ()+ ()
)2 coscv

It is assumed that. the line shape is a simple Dop-
pler profile. By substituting the expression for the
eigenfunctions [Eq. (4')] and by using Eq. (6), Eq.
(22) takes the form with u= 2(v —vo) (ln2) ' /b, vn
and @06vD/2(ln2)'~ = hv()H(1, 2) n(1)/4m. [B(1,2) is
the well-known Einstein coefficient. ]

of external radiation. It is of importance for the
analysis of decay experiments and for some prob-
lems in astrophysics.

First, we shall consider a special case. It is
assumed that parallel rays are incident at an angle
n to the normal on a slab at x = —21. The optically
dense slab absorbs and reemits the light. Excita-
tion or deexcitation by collisions does not occur
[cold plasma, all thermal energies small compared
to E(2) —E(1)]. However, we shall indicate below
how this requirement can be dispensed with.

The incident external energy per cm and per sec
in a frequency interval dv within an element of the
solid angle dQ is denoted by I0dv. Further, it is
assumed that I0 does not vary appreciably over the
spectral line. The integral equation for this prob-
lem becomes, for ——,'I. & x& —21,

CD

0
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B. Discussion and Extension

A/(2, 1)n& = ' a„,&
d8 sinB

m=o o

x sin(m+ 1) k)u)ll) + cosa))duk u exp—
2 cosQ

B(1) 2)Ip cosQ

0 m=o 0

( k(u)»~ k(n)L l
I~ 2cosni ' 2cosn) '

Here I „is the modified Bessel function of order
~fln2+1. '2 The new variable y=kpL e" /21/ cosa is

introduced. The resulting expression can readily
be expanded asymptotically for koL-~. We then
have

B(1, 2)Ip COSA

2kpL [ln(kpL/2m cosa)]'

x g (-1) a„ /. (23)

B(1,2) Ip In(k~/2z'/2)
COSA

11A(2, 1) In(kpL/21/'/2 coso. )
47TCE

(24)

and a similar expression for the odd ones. These
formulas are useful when we want to generalize the
problem by including collisions.

A closed-form solution of the problem can be ob-
tained when Eq. (23) is resubstituted in Eq. (8).
By applying the orthogonality relation to be derived
in Appendix A[see Eq. (A10)]and Eq. (6), the re-
sulting expression is identified as the expansion of
cos '$ in the Tschebyscheff polynomials. P The
solution of Eq. (21) therefore becomes (for kpL» 1)

n(2) B(l, 2) Ip '

h, (k~/2&1/2) 2 cos
n(1) 1/A(2, 1) In(k~/2 ~1/2 cos Q)

(25)

The expression for A/(2, 1)(=p&) [Eq. (4)] is sub-
stituted. In order to be able to make a further an-
alytic reduction of Eq. (23), we do not use the nu-

merical expressions for'l1/ but p/= v 1//2&/, &,. being
the jth eigenvalue of the asymptotic integral equa-
tion given by Widom' for n=l. [See I, Eqs. (17),
(18), (20), and Appendix B.] The summation in Eq.
(23) can now be carried out for the even eigenfunc-
tions using Eq. (A5) of Appendix A. For the odd

ones, the sum can be transformed into a more
rapidly converging one by Eq. (A6). For the even
eigenfunctions, we therefore have

Now suppose that radiation from a black body at
a temperature 7„ from all directions (0 & o. & —,

'
1/) is

incident at x= —, L.—Itis known [but will be shown
again in Eq. (30) of Sec. IV] that at large absorption
local thermodynamic equilibrium exists between
the radiation field and the two-level atoms. At the
left boundary of the slab, therefore, we should find
that the relative density n(2)/n(1) is given by the
Boltzmann factor corresponding to the radiation
temperature T„. We want to check that this is in-
deed the case in Eq. (25). Carrying out the inte-
gration over a half sphere in the right-hand side of
Eq. (25), and making use of the fact that black body
radiation is isotropic, we obtain (for kpL» 1)

n(2) B(1,2)I, cos 'g g2 kv cos '$

n(l) A(2, 1) 1/ g,
(26)

For $ = —1, we therefore find the Boltzmann factor,
as expected.

In deriving Eq. (26) the term due to stimulated
emission in Planck's law for Io was neglected. In
fact, we used Wien's law, valid if kv=—E(2) —E(1)
» kT„. This is consistent with the requirement—
always imposed here —that the density in level 2
should be small compared to that in level 1.
From Eq. (26), it is readily shown that, if also
black-body radiation of temperature T„ is incident
on x=+ —,

' L, the relative density is given every-
where by the Boltzmann factor as it should. This
can also be obtained directly from the expansion
into the eigenfunctions by combining Eqs. (24),
(12), and (14). Moreover it can be checked with
the aid of the formulas to be derived in Sec. IV and
the asymptotic expansion ' of the expression for
the energy absorbed per cm2 and per sec '8 that all
absorbed radiation is emitted. This Inust be the
case since it has been assumed that no deexciting
collisions take place.

In the above it has been assumed that the plasma
is cold. When excitation and deexcitation by, for
instance, electrons occurs, in addition to absorp-
tion of external radiation, Eq. (7) can be general-
ized with the aid of Eq. (21). Again the relative
density n(2)/n(1) is expanded according to Eq. (8).
By following the reduction procedure of Eq. (7) to
Eqs. (9) and (10), it can be verified that the ex-
pansion coefficients o. / are calculated from Eq. (10)
when the right-hand side of Eqs. (22) or (23) is
added to every element 5,. of the vector b. A
closed-form solution is possible when n, is con-
stant and A/(2, 1)»n,Z(2, 1). Simply by adding
Eqs. (18) and (25), we find
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e(2) [)p(eaI/2»"')]'" (2„~) 2)e I() (a)aaa
n(1) mA(2, 1)

&(1, 2) I() cos n cos ']
77[in(koL/2m coso()] (27)

In the above, Eq. (21) has been solved for a simpl'e
Doppler profile. It is also possible to obtain the
analog of Eq. (23) for a Lorentz or Voigt profile
(a 40). This will not be given since with'a slightly
different representation of the eigenfunctions, the
calculations become much easier.

This problem will be discussed further in Ap-
pendix B. The difficulties in determining the an-
alog of the closed-form solution [Eq. (25)] have not
as yet been overcome. The impression exists that
it is not a known function.

IV. SPECTRAL LINE SHAPE

A. Basic Formulas

s VI„(r, s) = ' R(v)[A(2, 1)n(2)

-(@1,2)n(1) —B(2, l)n(2))I„(r, s)].(28)

The two foregoing sections have shown how in
various cases the density of excited atoms can be
found as a superposition of the eigenfunctions of
the Biberman-Holstein integral equation. Once
this is known, the radiation is also determined.
In this section, it is our purpose to derive explicit
expression for this field. It is assumed in the fol-
lowing that the relative density can be written ac-
cording to Eq. (8), with coefficients o.

&
as calcu-

lated, for instance, in Secs. II or III. These co-
efficients vary from case to case. The most ap-
propriate method is, therefore, to calculate for
every eigenfunction the corresponding radiation
field. The final field is found as a superposition
of the fields corresponding to every eigenfunction.
An advantage of this method is that hfs offers no
special difficulties. The eigenfunctions are inde-
pendent of it, see Eqs. (4') and (5'). Therefore,
we include it in the discussion. The radiation
emitted by a slab and its line shape is, of course,
a very interesting quantity. In astrophysics, for
example, it represents the only possibility of ob-
taining information concerning the radiating body.

The intensity of the radiation (energy/cm2 sec) at
the point in space r transported in the direction de-
noted by the unit vector s within an element of
solid angle dA at the frequency v is designated by
I„(r,s) dv. A well-known differential equation for
I„(r, s) in terms of n(1) and n(2) gives

s v'is the directional derivative. All the other
symbols have their common meaning. As is cus-
tomary we neglect stimulated emission in Eq. (28),
and introduce the dimensionless frequency N de-
fined by Eqs. (4) and (5). For a Doppler profile
we write kob v22/2(ln2)'~2= kv&p(1, 2)n(1)/4m, and for
a Lorentz profile kob, v~/2 = kv+(1, 2)n (1)/4m,
in. accordance with the definitions in Eqs. (4) and
(5), ' and I„du=I„dv Eq.uation (28) is a linear in-
homogeneous differential equation of order 1 along
the line (1s), 1 being a real number. The method
of integrating this equation is well known. Co-
ordinates (c(, p) on the unit sphere are introduced
such that the normals on the right-hand- and left-
hand sides of the slab correspond to n= 0 and m,

respectively. The azimuth is p, 0~ p- 2m. The
problem has symmetry for rotations about the
normal. Since s ~ V= cosc(d/dx, the solution of
Eq. (28) becomes

I„(», e)= ' A(2, 1)2 (e)f ' a'*I""'a))
0

& n(2; + —,'L+fcosn)

x exp — + —,5+x- icosak(u)
cosQ

+I„'(9—,'I., p)e»p(- (e —', I a»)), (29)
cosQ

in which the + sign is used for 0 ~ a & —,
'

m, the —sign
for 2m&a&m.

From a mathematical point of view, the second
term in the right-hand side of Eq. (29) is due to an
integration constant: I„(+~ L, c() =I„'(+ ', L, n). Ph—ys-
ically, it represents radiation incident on the left
(-) or right (+) boundary of the slab, of the type
described in Sec. III. Since it is of no further in-
terest for us, we shall put it equal to zero.

It is instructive to develop Eq. (29) asymptotical-
ly for large values of k(u) L by the Laplace meth-
od, which applies when x is more than a few ab-
sorption lengths remote from the boundary:

A(2, 1) n(2) A(2, 1)
a(1, 2) u(1) k(u)

&& [cosa(d/dx)n(2)/B(1, 2)n(1)]dv ~ ~ . (30)

Now, dn(2)/dx is of the order n(2) L ~. Consequent-
ly, the second term in the right-hand side of Eq.
(30) is an order of coso/k(u)L smaller than the
first one. Since only the frequency range is con-
sidered in which this factor is small, it can be ne-
glected. From the first term, we see that the in-
tensity is isotropic, independent of frequency, and



1306 C. VAN T RIGT

corresponds to thermodynamic equilibrium with a
Bolzmann factor at an excitation temperature de-
fined in the usual way by n(2)/n(1). Local thermo-
dynamic equilibrium therefore exists between the
radiation field and the two-level atoms in this fre-
quency range. Equation (30) has been derived un-
der fairly restrictive conditions. The enclosure
has been taken to be a slab; stimulated emission
has been neglected and the density inthe ground
state has been assumed to be independent of place.
All these conditions are not essential for the meth-
od and can be removed.

B. Line Shape. Doppler ProNe

The new variables w —,
' L +1 cos o= + —,

' L$ and
x=s ,'L are i—ntroduced in Eq. (29). For the inten-
sity emerging at the right (0 & n & —,n), and at the
left (—,m & n & r), we obtain

noted that an odd eigenfunction can never exist by
itself. It must always be accompanied by one or
more even eigenfunctions in order to ensure that
the density n(2)/n(1) as a function of place is
everywhere positive.

The net radiation emitted by an odd eigenfunc-
tion (i.e. , the radiation emitted at both g = + —,

' L),
is always equal to zero. This is clear since the
mean value of an odd eigenfunction is zero. %e
shall now examine Eq. (32) as a function of the
frequency, the line shape of the spectral line (see
Fig. 1). The discussion will be restricted to the
case of even eigenfunctions since similar argu-
ments apply to the odd ones.

For small values of ksL Q (u)/2 cosn (i.e. , in the
far wings of the line), Eq. (32) takes the form

A(2, 1) b vn koLR (u)
fl(1, 2) 2(ln2)'~ '~ 4Icosnl

hve A(2, 1)iI(u)I k(u)L
4ii 2lcoso. I 2Icoso. I

x d$ n(2; + —,'L$) exp
a(s)L(

2)cosnI
~1

(31)

Therefore, in the far wings, the intensity falls off
according to a common Doppler line.

For large values of ksLB(u)/2coso. (i.e. , large
koL/2 cosa and in the core of the line), the asymp-
totic behavior of the modified Bessel functions
yields

and zero for x= —,L, —,m &a&gandx= ——,L,O& e& —,m
1 1 1 1

(no light entering the vessel from the outside).
Since we want to calculate this expression for
every eigenfunction of the Biberman-Holstein in-
tegral equation as explained at the head of this
section, we insert n(2) = n(1) f&(g) in Eq. (31), with

(& given in Eq. (4'). Hence, when Q (u) is a Dop-
pler profile with or without hfs, we obtain for the
emerging intensity due to the jth eigenfunction

A(2, 1) hvn cosn
fl(1, 2) 2(ln2)' Icoso. I

t/2A(2~ 1) kvn
a(1, 2) 2(ln2)"'

2 Icoso. I M (2m+1) a „~ . (34)
k uI m=o

In the center of the line, the intensity shows a dip.
This is the self-reversal of the line. See, for the

23

(32)

0,1-

in which I,, is the modified Bessel function of
order m+1. '9 The factor (coso'/IcosnI)~ ' re-
quires further discussion. For the even eigenfunc-
tion, j=1, 3, . .., it is equal to one. Therefore
the intensity emerging at + 2 L at an angle n is
equal to that which emerges at ——,'L at an angle
m —0.. This should be the case since the problem
has reflection symmetry. For the odd eigenfunc-
tions, j = 2, 4, ..., it is equal to one for x= —,L, 0 ~a
& —,m and equal to minus onefor x= ——,L, —,m& a ~m.1 1 1

-At first sight, it mightappear impossible for nega-
tive radiationto be emitted. It should, however, be

-4 -3 -2 -1 0 1 2 3 4

FIG. l. Intensity emitted by an homogeneous layer of

gas in a direction perpendicular to it in units of 27IA(2, 1)
6vn B(1,2) (in2) [i.e. , 2I„(s'L, O)B(1,2) (in2) /rA(2, 1)

Eon) corresponding to the first even eigenfunction (j = 1)
for a simple Doppler profile as a function of the di-
mensionless frequency u = 2(v —vp) On2) /»D. (a)1/2

kpL = 100, (b) kpL = 500 (c) kpL = 1000 See Eqs ~ (38) (40) .



ANALYTICALLY SOLVABLE PROBLEMS IN RADIATIVE' 1307

features described by Eqs. (33) and (34), also Fig.
1. Note further that the intensity at the center
decreases with the square root of kpL.

As has been said, the radiation emitted by a
layer of gas is found by multiplying Eq. (32) with
the pertinent expansion coefficients n& and sum-
ming. We want to pay somewhat more attention to
the problem of which the solution was obtained in
Sec. II.

When the electron density is constant, the gen-
eral situation is described by Eq. (11). This case
is intermediate between the two limits described
by Eqs. (14) and (15) or (18). We want to know the
corresponding radiation. When Eq. (14) is in-
serted in Eq. (31), and the well-known expression
for A(2, 1)/B(1, 2) is substituted, the result takes
the form

(35)

Hence, the gas layer radiates as a black body at the
electron temperature T, in the core of the line,
just as it should do. Instead of Planck's law,
Wien's law is found, since it has been assumed in
this paper that stimulated emission is absent or
n(2) «n(1). It should be noted that Eq. (35) shows
no self-reversal. This point will be discussed be-
low.

The emitted radiation corresponding to the limit-
ing case [Eq. (15)] is found by inserting Eq. (18)
in Eq. (31). We have, for a simple Doppler pro-
file,

njg1, 2) Ave k, L
a(I 2) (1 2)"'

xexp
2i I

2l snt 36

For a Doppler profile with hfs, the term [In(koL/
2v m )]U is to be replaced by [see Eq. (22) of I]

2[(lnB,k, L/2M') ' ' + (ln R„k,L/2M' ) "'] '

The discussion of the line shape described by Eq.
(36) is entirely similar to the one given for the
general case [Eq. (32)]. It has been argued in
Sec. II that, if n(2)/n(1) is given by Eq. (11), n(2)/
n(1) as a function of position lies somewhere be-
tween (1 —$) and a constant function. There-
fore, the corresponding line shape will lie between
Eqs. (35) and (36). In particular, the self-rever-
sal is less than that exhibited by Eq. (36).

The part that describes the line shape in Eq.
(36), namely,

( 2loooot) '(2loooot) (37)

has already been derived previously by Ivanov as
an approximating formula, for A&(2, 1)» n,K(1, 2).
It appears to express the numerical results ob-
tained by Hearn' for this case well as it should do.
As noticed by Ivanov, in the limit of koL/coso. -0,
Eq. (37) becomes proportional to 9 (u). It is there-
fore a reasonable approximation to the line shape
when A&(2, 1)»v, JC(l, 2) for all values of kP since
it gives an exact result for kpL-0 and A;pL

The physical interpretation of the broadening of
the spectral line and its self-reversal (see Fig. 1)
is well known. In the wings of the line the medium
is optically thin, and the photons escape immediate-
ly once they are created. In the core, however,
photons are strongly absorbed. After absorption,
there is a chance that they may be re-emitted to
the wings, where they can escape. This enhances
the intensity in the wings and decreases it in the
core. '

In the theory of this type of radiative transfer,
the basic assumption is that the emission profile is
proportional to the absorption profile (complete
redistribution). The exact redistribution function
is known but the problem seems to be intractable
with this function. Since the approximation of com-
plete redistribution is fulfilled quite well, it is
expected that this approximation yields fairly good
eigenfunctions and eigenvalues. However, this
assumption naturally has a direct effect on the line
shape of the emergent intensity. Hummer, using
a simplified redistribution function, has shown
numerically that the differences in the far wings
can become as large as 80%%ug in the worst case, and
in the core can amount to 20%%uo. This might be con-
sidered discouragingly high. However, in the far
wings also, natural broadening shows itself, in
most cases masking the error there entirely. "
Furthermore, the total integrated intensity, being
directly related to the eigenfunctions and eigen-
values (see below), is fa,r less sensitive to the
assumption. In addition, it is possible that the
assumption of complete redistribution has a larger
range of validity than expected. The exact re-
distribution function has been derived on the as-
sumption that no changes in the velocity of the par-
ticle occur during the absorption and reemission
process. This will often happen but the problem
is complicated since collisions will also contribute
a certain amount of pressure broadening. It there-
fore remains an open question.

The total radiative loss of a slab per cm' and
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"0
dP ~ dn sino'Icos+I ( duf„(n)

0 ~ 00

, A(2, 1) &vn

B(1,2) 2(ln2)"' (InkoL/2vn) v'

(38)
It is interesting to note that it decreases as a func-
tion of k0L. We are now able to check the internal
consistency of the theory. Suppose that a density
n(2) = n(l)(, ($) could be created in the slab. This
function is positive everywhere as a function of
place, so that this is possible in principle. By the
definition of the eigenfunction and the decay con-
stant A, (2, 1), the radiative loss per cm~ and per
sec is [see Eq. (12)]

per sec (i. e. , the total radiation emitted at both
x= + —,

' L) can be calculated by integrating over all
frequencies and the total solid angle. The pro-
cedure is similar to that used in deriving Eq. (23).
In first-order asymptotics, we have for the ra-
diation corresponding to an even eigenfunction
[n(2)/n(1) = g&($); j= 1, 3, . . .] and for a simple Dop-
pler profile

suiting emerging intensity cannot be written as a
superposition of the intensities corresponding to
the eigenfunctions, as for a nonequilibrium case.

When, however, the density of excited atoms
continuously decreases to zero at the boundary, a
certain departure from thermodynamic equilibrium
is always present. This is connected with self-
reversal however slight it may be. In order to be
able to represent arbitrarily small self-reversals,
the emerging intensities corresponding to the
eigenfunctions with higher j should show less self-
reversal for higher values of j. This is indeed the
case.

Therefore, we may expect that in every non-
equilibrium situation the above mentioned diffi-
culty does not occur. The theory is essentially a
nonequilibrium one. Thermodynamic equilibrium
is a somewhat singular limiting case (see also
Ref. 12).

A more quantitative discussion is impossible at
this time since nothing is known about the asymp-
totic properties of the eigenfunctions g& for j-~.

C. Line Shape: Lorentz (Voigt) Profile

+I /2 00

kv0n(1) A~(2, 1) dxPq(x) dv'8 (v)
-X (2 0

= kv, n(1)-,'LA, (2, I)-,'ma, , (39)

The line shape for a Lorentz or Voigt profile
(a &0) with or without hfs is found by inserting
n(2) =n(1)g&(() in Eq. (31), g&($) being given by
Eq. (5 ). However, with a slightly different rep-
resentation of the eigenfunctions, viz. ,

Equation (38), for j= 1, and Eq. (39) should be
equal. If the proper expression for A, (2, 1) is in-
serted [Eq. (4)], it is found that

gj($) (1 —$ ) Z b„'
&

C ($),
m-"o

(4o)

22~~1 ~ 2m, 1 8~ ~0 1
m=O

a relation between the eigenvalue and the expansion
coefficients of the first even eigenfunction of the
integral equation treated in Appendix B of I. It
can be proven by induction that the formula is valid
for all even eigenfunctions. It should be noted that
the proof fails for the odd ones, since both Eqs.
(38) and (39) give then zero Actually, . another re-
lation is valid which will be proven together with
the above mentioned one in Appendix A.

Finally, we want to discuss an important point.
The reader will have noted that Eq. (35) shows no
self-reversal while the general formula Eq. (32)
does. Moreover, the net radiative loss in Eq. (35)
is 0-(lnkoL/2V~m )'~ ' while the general formula
[Eq. (38)] yields ~(ink L/2' m ) ' . First we note
that this is not at all surprising. The convergence
of the series in Eq. (14) is certainly not uniform.
Hence, when this series is substituted in Eq. (31),
the interchange of summation and integration is not
allowed. Therefore, in this special case, the re-

cosa I 2tcosnl 2)cosa I

I'(m+ —.') k(u)L
mf

I '3/4 2tcosnL (41)

I 3/4 is the modif ied Besse1 function of orde r
m+ —,

' and 2 (u) is a Lorentz or Voigt profile
(a+0) with or without hfs. Compare this with Eq.

the resulting formula becomes much easier in
form Here, C. ~~4($) is the Gegenbauer polynomial
of order 4 and degree nz. The coefficients bm &

are related to the original 5„& [Eq. (5')] by a linear
transformation. This point will be discussed fur-
ther in Appendix B.

When n(2) =n(1)(&($),with g&($) given by Eq. (40),
is inserted in Eq. (31), we obtain for the emerging
intensity due to the jth eigenfunction
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(32). The discussion of Eq. (41) is identical to
that given for Eq. (32). Here it is only intended to

give the analogs of Eq. (33) through Eq. (36). In
discussing the line shape described by Eq. (41),
we shall confine ourselves to the even eigenfunc-
tions j = 1, 3, . ~ . .

For small values of k,I.8(u)/2cosn (i.e. , in the
far wings of the line), Eq. (41) takes the form

I'(+)I'(—) A(2, 1), k I '8 (u)
I'(+) B(1,2) '~ 2!cosn!

(42)

Therefore, in the far wings, the intensity has the
common Lorentz or Voigt shape.

For large values of k Ie, 8(u)/'2cosn (i.e. , large
kg/2 cosn and in the core of the line), the asymp-
totic behavior of the modified Bessel functions
yields

2"'I (&) A(2, 1)
(2s)t~2 B(l 2)

In order to obtain a general idea of the emission
of a layer of gas, we shall study the two limiting
cases Eq. (14) (thermodynamic equilibrium) and
Eq. (20) (opposite of thermodynamic equilibrium).
The emission is obtained by inserting these equa-
tions in Eq. (31), just as in the Doppler case. At
thermodynamic equilibrium Eq. (35) again applies,
but now 9 (u) is a Lorentz or Voigt profile (a 40)
instead of a Doppler profile.

For the opposite of thermodynamic equilibrium
[Eqs. (19}or (20)] we have for a line with or without
hfs.

3r(f)2-"' u. Z(I, 2)

1/4

( )gga k(u)I
2)cosa I

kuI kuI
44

2 I cosn I
"'~ I"(m+ a) bi

k,I,e(u)

This is the self-reversal of the line. Compare the
analytical results of Eqs. (42) and (43) with Fig. 2.
The self-reversal (increasing with the —,

' power of
kcI, ) is less than for a Doppler profile. This is
brought about by the fact that the eigenfunctions
are flatter than for a, Doppler profile (see Ref. 25
and the discussion of the eigenfunctions in I).

0.2

Equations (42)-(44) should be compared with Eqs.
(33)-(36), given for a Doppler profile, and the com-
plete analogy should be noted. In particular, the
physical interpretation of the broadening and the
self-reversal are the same. Moreover, the ar-
guments given for the use of Eq. (37) as an ap-
proximating formula for all values of koL apply
as well to that part of Eq. (44) that describes the
line shape.

Finally, the total radiative loss of a slab per
2cm and per sec. is calculated by integrating Eq.

(41) over all frequencies and the total solid angle.
In first-order asymptotics for koL- ~, we obtain,
in exactly the same way as for a Doppler profile,

2ff' fr

J dP dn sinn cosn
o

0,1

4 A(2, 1) ~ ( )„,'' B(1,2)

i I

-40 -30 -20 -10 0 10 20 30 40

r(m+ —,') I'(m+-,')
s

"'~ m! (m+ 1)!

FIG. 2. Intensity emitted by an homogeneous-Iayer-

of gas in a direction perpendicular to it in units of
2 I'(4)A(2, 1)Avz/B(1, 2) ti. e. , Q(—'L, 0)B(l, 2)/2 I"

& (4)A(2, 1)Avt. ] corresponding to the first even eigen-

function (i =1) for a simple Lorentz profile as a function

of the dimensionless frequency u= 2(v —vp)/&vg. (a)

kpL=100, (b) kpL=500, (c) kpL=1000. See Eqs. (47)-
(49). It should be noted that 4vL, is also a function
of kpL if resonance broadening is important.

V. CONCLUSIONS AND REMARKS

It has been shown how the eigenvalues and eigen-
functions of the Biberman-Holstein integral equa-
tion can be used for the solution of various station-
ary problems at high optical depth. Sometimes
even closed-form expressions could be found.
Though numerical calculations cannot entirely
dispensed with, those required here have a major
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advantage in addition to being simple. The point
is that we do not deal with the identity operator I
and the operator corresponding to the Biberman-
Holstein integral equation K separately, but sub-
tract them analytically and use the resulting ex-
pression for I-K. At high optical depth, where
I-K is very small, this enhances the accuracy con-
siderably. Although the assumption of high optical
depth is quite frequently fulfilled, it is an interest-
ing question to consider whether an extension of
the theory to lower optical depth is feasible. Usu-
ally the levels lying immediately above the reso-
nance level(s) are neither optically thick nor thin.
This problem must be solved to enable us to cal-
culate the number densities in all levels. A so-
lution of the Biberman-Holstein integral equation
for all values of koL is considered as being infea-
sible for the moment, as it very probably will
continue to be in the near or perhaps even distant
future as well. Therefore, it appears that only
two possibilities remain.

First, we may perform these calculations fully
numerically. Secondly, we may try to devise a
reasonable approximation procedure. Since we
have used the analytical method up to now, we shall
adopt the second procedure. The problem is re-
lated to the question posed already in Sec. III of I,
in which a guess was made about the second term
in the asymptotic expansion of A&(2, 1) for koL-~.
Now two questions can be put. (i) Can a function
be proposed for A&(2, 1) such that all A&(2, 1) re-
duce to A(2, 1) for k,L-0 and that they have the
correct asymptotic behavior for koL-~? (ii) How

do the eigenfunctions behave as a function of koL?
As to the first question: There are many possibil-
ities. For example,

p&A 2, 1

A~(2, 1)=l(, (koLg~v)(, nk L/2~v)

asymptotic expansion are now, correctly, loga-
rithms. Although this seems to be a better pro-
posal, a fundamental difficulty remains. In these
papers, it has always been assumed that the emis-
sion coefficient is proportional to the absorption
coefficient. It is believed that this does not sig-
nificantly affect the results at high optical depth.
At low and moderate optical depth, however, it is
an entirely different matter. Therefore, a first
step towards solving the problem posed would be
to determine the solutions of a theory of radiative
transfer from which this assumption has been re-
moved.

The importance of this problem has already been
pointed out in Sec. IV in connection with the cal-
culation of the radiation emitted by a layer of gas.
When these solutions are known it is very probable
that we can make a justified guess about A&(2, 1)
and the eigenfunctions for all values of QoL. The
guess can be tested experimentally by the deter-
mination of A&(2, 1) from decay experiments.

ACKNOWLEDGMENT

The author is greatly indebted to Professor
H. L. Hagedoorn for a thorough reading of the
manuscript, many suggestions for its improve-
ment, and discussions.

APPENDIX A

In this Appendix, a number of relations are de-
rived between the eigenvalues and the expansion
coefficients of the eigenfunctions of the integral
equation

fulfills the above requirements for a simple Dop-
pler profile. But if the second term in the asymp-
totic expansion of this expression is considered,
it becomes clear that it is in fact

ccrc,

This is contrary to the conjecture made in I, about
which we are fairly confident, that the higher-order
terms are logarithms. Therefore, the possibility
proposed above is ruled out. A better approxima-
tion for A&(2, 1) is likely to be the Fourier trans-
form of the Biberman-Holstein integral kernel,
f(o) under Eq. (6) of I, if we substitute a value'for
Lcr„such that the correct asymptotic formula for
koL is found. The higher-order terms in the

(A1)

As has been shown in I, these quantities have a
bearing on the eigenfunctions and eigenvalues of
the Biberman-Holstein integral equation when the
line shape is a Doppler profile with or without hfs.
In Appendix B of I, the following expansion was in-
troduced for the normalized eigenfunctions:

(A2)

U„($) being the Tschebyscheff polynomials of the
second kind. It was also shown there that the ex-
pansion coefficients a &, for the even eigenfunc-
tions, are the solutions of the matrix problem
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j.
2v~ga2jj I + +2&, 2ma2m, j &

m -"0

and, for the odd ones:

j=1, 3, . . . (A3)
(A3) that

—,'zX, Q (2n+1) a,„,~a~„„=5;„.
n=0

(A7)

j.
2v~p2&+1 g + +2&+1 2m+la am j t

j= 2, 4, . . . . (A4)

The matrix elements are given by

o., =[(0+1)'—m'] ' —[(0+1)'—(m+2)'] ' .

We now derive a few interesting identities. Both
the left- and right-hand sides of Eq. (A3) are
summed over k. The sum over the matrix ele-
ments can be calculated using the expansion in
partial fractions of tg—,'mx, viz. ,

'

Similarly, for the odd functions, using Eq. (A4),
we obtain

,'r&—q Q (2n+ 2)ap„, g, ) ag„,g, , = 5;,~ .
n=0

(AS)

The relations (A7) and (A8) are orthogonality re-
lations for the columns of the matrix consisting
of the eigenvectors of the systems (A3) and (A4).
Also, an orthogonality relation exists for the rows.
The spectral representation" of the operator
K"'($, $') in Eq. (Al) is

Hence,

4x 1
v „, (m+1)'-2

1
a2k ~

k=O

mtgmm mtgm(m+ 1),2
( )Sm 4(2m+ 1)

&'"(5, $') = + & f (5)f;(5') .
J=1

(A9)

=(~2v)~ Z &~a ~a„~ .
/=1

We introduce the new variables $ =cos3, g'=cos3',
multiply Eq. (AQ) with sin(m+ l)8 and sin(n+ 1)8'
and integrate over 8 and 3' from 0 to m. With the
aid of Eq. (A2) the right-hand side of Eq. (A9)
takes the form

This relation has been proved in Sec. IV, Eqs.
(38) and (39), using physical arguments. With the
aid of the expansion

it can similarly be proved for the odd eigenfunc-
tions that

On the other hand, the left-hand side of Eq. (A9)
can be evaluated as well, using the Fourier ex-
pansion of K ' (cos3, cos8') [see Eq. (A4) of I],
VlZ.

q

2 ~ sinn' sinn''
(cos3~ cos@ ) =

n=1 n

A short calculation shows that

2(2m+ 2)
r(2 2)~ 1] ~ .~, y (AS)k=0 m=o L& ~+

,' Xv, a,—,a„,~= „5,„/( m+1) . (A10)

Since the integral kernel in Eq. (A1) is symmetric,
the eigenfunctions fulfill an orthogonality relation. 3'

For the even eigenfunctions, we have

x f d8 sin(2m+ 1)8 sin(2n+ 1)8 sin3
0

APPENDIX 8

In Sec. IV C, an expression was derived for the
emerging intensity due to the jth eigenfunction
when 8(u) was a Lorentz or Voigt profile (at 0)
with or without hfs.

For this, a representation for the eigenfunctions
was used different from that given in Eq. (5'),
namely,

+2m, j 2m, 2n 2n&i ~i j '
m, n =0

A straightforward calculation shows that

u, ,„=(2n+ 1) a,„,
Hence, it is immediately inferred by using Eq.

C ~ (t) is the Gegenbauer polynomial of order —',
and degree m. Here the transformation matrix
will be calculated which makes it possible to ex-
press the coefficients b'

&
in the b

&
of the usual

representation [Eq. (5')].
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By applying the orthogonality relationship for
the Gegenbauer polynomials, we have" (2n+ 3 I'(4)

4

I'(m —n+ —') I'(n+ m+ 1)
I'(m- n+ 1) I'(n+ m+ 74)

'

(B3)
b'

n! (n+ 4) [I'(-')]'
-1

I'(—,') I'(m —n+-,') I'(n+ m+ 2)

x (1 —$ ) C& (g)P (~)= g k
m-"0

x
~

dp (sing)'~ C„'~ (cosy) sin(m+ l)y . (B2)
20

It has been shown in Sec. IV C that with the
representation [Eq. (Bl)] a close analogy exists
between the formulas for the emerging intensity
for a Doppler profile and for a Lorentz or Voigt
profile. The analogy extends also to other formu-
las. For example, Eq. (12') becomes

The latter integral can be calculated bp using a
formula due to Szego, expressing (sing&)'~'

C„~ (cosy) in a sine series. By the orthogonality
of the sine functions on [0, m], it is immediately
inferred that, in matrix form,

.(2.)'I'
44g($) =

3[F(P)]P &t„
-1

(B4)

O'= Bb,

the matrix 8 having the matrix elements for
n, m=0, 1, 2, ... :

!n, m 1 mt ~?n, 2m+ 1 P2n+ 1,2m

This should be compared with Eq. (12). Also the
expansion coefficients n& for a Lorentz or Voigt
profile (a 0 0) with or without hfs can be given for
the problem treated in Sec. III A. We tart with
Eq. (22).

g "=2(~ —~o)/»r, ko». /2= kv B(l, 2)n(1)/
4w, and the representation Eq. (Bl.), we have

.CO 00

iI (R l)a = ' Z b' da(sina)' 'c' '( sa) du@(u)e —
)0 fft =0 2 cos~

0

2 I'(4) IpB(1, 2) g „ I'(m+ —'), k(u)L '~ k(u)L k(u)L

Here, I»4. is the modified Bessel function of
order —,'+ m. ' The new variable y = kpL/2p(x'+ 1)
xcosn is introduced. Upon asymptotic expansion
for kpL-~, we obtain

IpB(1, 2) coso. '

k~

„Q ( 1)„I'(m+ -', ) I (m+ —,')
p m! (m+ 1)! (B5)

IpB(1, 2) coso.
2pA(2, 1)

This should be compared with the same formula
for a simple Doppler profile [Eq. (23)]. Upon sub-
stitution of the expression for A&(2, 1)[Eq. (5)],
Eq. (B5) takes the form

„ I (m+-', ) I'(m+ —,')
&m, g ~„p m! (m+ 1)! (B6)

Equation (86) has been derived for a Lorentz pro-
file but is as well valid for a Voigt profile (aW 0).

It has been shown in Sec. III that in the equation
analogous to Eq. (85), Eq. (23), the summation
over m could be carried out by Eq. (A5). The
reader might ask if something like it is possible
for Eq. (B5). This requires the solution of the
integral equation given in Appendix C of I in terms
of the representation [Eq. (Bl)]. This problem
is under investigation. However, the answer to
the question is probably in the affirmative. The
relations between the coefficients a

&
of the

representation for a Doppler profile, Eq. (4'), de-
rived in Appendix A, could also be found by physi-
cal arguments. An example of this has been given
in Sec. IV as regards Eq. (A5). These physical
arguments are the same for a Lorentz profile.
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Since, moreover, a close analogy exists between
the formulas for a Doppler profile and for a
Lorentz profile, it is expected that relations anal-
ogous to these exist as well for the coefficients

5'
&

of E(I. (Bl). This point is under investigation.
Note added in Proof. In the mean time the above

mentioned problems have been solved. The results
will be reported elsewhere. "
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An iterative method for determining bound-state eigenvalues and properties of the radial
Schrodinger equation is appraised. The method stems from iterating the integral equation
(= p(T+ 2& ) '(—Vg), where T and V are the kinetic- and potential-energy operators. The
basic theory is briefly reviewed, and calculations are performed for the Coulomb and screened-
Coulomb potentials. The lowest three p eigenvalues, together with the expected values of
(p~) ', p~, and (p~)2, are obtained from a single iterated eigenfunction sequence. Convergence
is rapid for eigenvalues but slow for expected values. There is some sensitivity to the choice
of the numerical integration formula. Regarded as a numerical method, this approach may be
most competitive for the determination of zero-energy potential-strength eigenvalues. Its
disadvantages are listed. Analytical improvements to eigenfunctions can be easier to obtain
by iteration than by perturbation, and some success has been achieved. A simple example
suggests that the rate of convergence of an iterated eigenfunction sequence is less than that of
a related perturbation sequence unless the choice of starting function is bad.


