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Using the WEB approximation in the spirit of Miller and Good, we have obtained an expres-
sion which connects the energy eigenvalues of two parts: One is supposedly known and the
other is to be solved. We use the Balmer energy formula of the one-electron bound state as
the known part and solve for its relativistic counterpart, the Sommerfeld-Dirac fine-structure
formula. An exact form of the relativistic energy-level formula can be obtained through this
modified WEB expansion to order S .

1. INTRODUCTION V(~) = Z ~e' ~f~,

The problem we are to discuss here is that of
finding the relativistic energy eigenvalue formula
for the one-electron bound-state problem by means
of the modified WKB method in the spirit of Miller
and Good. ' The ordinary WKB method cannot give
the right form of the bound-state energy eigen-
value. The right form was given in the paper by
Good, ' where he discussed the unpubbshed work
of Bassey and Uhlenbeck, and applied their modi-
fied WKB approximation to the bound states of the
single-electron atom. The result is good only for
large quantum numbers. The purpose of this paper
is to report some further progress in this direction,
namely, if use is made of the eigenvalue relation-
ship derived by the author, ' the correct Sommer-
feld-Dirac fine-structure formula is obtained. In
this derivation, we consider the Balmer formula
or the nonrelativistic part of the problem to be
already known while we solve for its relativistic
part. The general formula used is more restricted
but more manageable than that given by Rosen and
Yennie. 4 However, the result obtained is sur-
prisingly good, as we can derive the exact form of
the relativistic Sommerfeld-Dirac energy formula
by this modified WKB expansion to order 5'.
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We proceed on the basis of the solved problem of
the differential equation

2. DERIVATION OF SOMMERFEI.D-DIRAC
FINE-STRUCTURE FORMULA d2 P2(2)„,M,(s)+, M, (s) =O, (3)

We use Eq. (4) of Ref. 3 with some modifications.
One of that equation's characteristics is that the
variables of the known part and the unknown part
are separable. Starting with the Dirac radial
wave equations, we have

by setting M(2') =a(2)M, (s(2)), with a(2) and s(2)
the relationships to be determined. We get, after
some algebraic details, essentially in the same
way as in Eq. (4) in Ref. 3,
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The contour integrals are evaluated by going
around the turning points of the problem. We let
the supposedly known part [Eq. (3)] be the Schro-
dinger equation of the single-electron bound-state
problem with
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and E (the Balmer energy formula)
H

~z2) e2~ 2
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Note here that the angular momentum quantumnum-
ber L is different than the l used before. The in-
tegrals in the right-hand side of Eq. (4) have al-
ready been evaluated. ' If we include the terms of
higher orders in )f2, we get the sum 2m@(n+ 2),
with n=0, 1, 2, ... for the whole thing. In the
processes of evaluation, use is made of the ex-
ternal differentiation given by Krieger et al. ' Ac-
tually, this method gives the same results as the
ordinary method of integration by parts. This in-
terchangeabilityy

of the external- diff erentiation
method used by Krieger et a/. in evaluating the
contour integrations with the method of integration
by parts facilitates the integrations in the left-hand
side, too.

Thus, Eq. (4) reduces to
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which is identical with Bassey's equation [Eq. (14)
in Ref. 2] except for the higher-order terms.
Listed below are the important formulas that are
used (consider a & 0):
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By means of these formulas, it is possible to eval-
uate the following integrals:
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Solving for W

Z le' l
W=ypgp2 1+ g+.

We get, therefore, by substitution of the above
into Eq. (5) and after some cancellations,
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Here, we recall thatn=0, 1, 2. .. , and l W-1.
This is the Sommerfeld-Dirac fine-structure for-
mula.

S. C. Miller, Jr. , and R. H. Good, Jr. , Phys. Rev.
91, 174 (1953).

R. H. Good, Jr. , Phys. Rev. ~90 131 (1953).
P. Lu, Letters al Nuovo Cimento 2 135 (1969).
M. Rosen and D. R. Yennie, J. Math. Phys. 5, 1505

(1964).
P. Lu, J. Chem. Phys. 51, 1524 (1969).
J. B. Krieger, M. L. Lewis, and C. Rosenzweig, J.

Chem. Phys. 4~9 2942 (1967).

PHYSICAL REVIEW A VOLUME 1, NUMBER 5 MAY 1970

Virtual Orbitals in Hartree-Fock Theory*

Sigeru Huzinaga and Catalina Arnau

Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada

(Received 18 July 1969; revised manuscript received 19 December 1969)

An arbitrariness of virtual orbitals in the Hartree-Fock theory is discussed, and it is ex-
plicitly demonstrated that the energy spectrum of the virtual orbitals can be manipulated so
that the convergence property may be improved in the perturbation theory and the configura-
tion interaction calculation based on the Hartree-Fock equation.

INTRODUCTION

In the Hartree-Fock theory of many-electron
systems, the occupied orbitals are the only orbit-
als physically relevant; but since we usually obtain
the occupied orbitals from some kind of eigenvalue
equations which give us more orbitals than needed
to accommodate the electrons of the system, we
have the so-called virtual orbitals. In many cases,
they have no use and accordingly they are simply
ignored.

There are certain cases, however, in which we
do need to use those virtual orbitals resulting from
the Hartree -Fock eigenvalue equation. Among
them are the configuration interaction calculation
and the perturbation calculation based on the
Hartree-Fock solutions. As an example we shall
discuss Kelly's many-body perturbation theory ap-
plied to Be. '& 2

For a closed-shell electron configuration of
atoms and molecules, the Hartree-Fock operator
E may be written (in a. u. )

F=--,'~-P(Z. /~, )+ Z (2Z, -Z,.),
fyOCC

and the Hartree-Fock equation is

E(t); = &,.(t,. (2)
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For the(1s)~(2s)~ 'S state of the Be atom, we have

Here the suffix i numbers doubly occupied orbitals.
The operators J; and K; are defined as follows:
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