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A simple theory of high-energy neutron scattering from liquid He is developed. The in-
elastic scattering cross section for this process is related, for sufficiently high momentum
transfer, to two parameters characterizing the He momentum distribution. These two pa-
rameters are the average kinetic energy per particle and the fraction of particles in the zero-
momentum condensate. Comparison of the theory with recent experimental data indicates
that the condensate fraction po/p is approximately 0.06 at T= 1.27 'K.

I. INTRODUCTION

It has long been supposed that a condensation of
)particles into the zero-momentum state occurs' in
liquid He below the X transition temperature, in
analogy with the condensation in the free Bose gas.
An early estimate' of the relative condensate den-
sity p, /p was 0.08, while more recent calculations'
find values near 0.11, or even as large as 0.25.

In any event, our theoretical interpretation and
understanding of liquid-helium phenomena depend
on the existence of a condensate, although direct
experimental measurement of po/p has not been
made.

Hohenberg and Platzman have suggested that
the inelastic scattering of neutrons in the 1-eV
energy range can be used to measure the momentum
distribution of individual He4 atoms and, thereby,
the occupancy of the zero-momentum state. The
energy and momentum transfer must be sufficiently
high so that the neutron scatters from an individual
He4 atom; the resonant energy in the scattering
process will then be k&o, (k) = k'k'/2MHe. Hohenberg
and Platzman analyze the conditions under which
one might hope to resolve a "condensate peak" on
top of a broad background distribution, and they
conclude that such an observation may be possible
with good energy resolution (-1%) in the experi-
ment.

In this paper, we will investigate the same
neutron scattering process with a somewhat dif-
ferent theoretical analysis. We will be able to
show that, although the ideal "peak on top of a
broad background" will not occur, the nature of
the rapidly sharpening cross section below Ty,
observed by Cowley and Woods' and more recently
by Harling, ' allows direct interpretation as a con-
densate contribution. We will use, for comparison
of the theory with experiment, the higher energy
data of Harling. Our analysis of the condensate
part of the cross section follows that of Hohenberg
and Platzman4; and the reader should refer to
their paper for this part of the calculation and for

a more complete discussion of the physical ideas
involved.

II. THEORY, COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

It is well known that the neutron-He4 inelastic
scattering cross section is given' in the Born ap-
proximation, for N helium atoms in thermal equi-
librium in the target, by
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with a the scattering length for He atom-neutron
scattering. cr& is traditionally called the bound-
helium-atom cross section, and in the analysis
below we will take' o~ = 1.13 b. Since experimental
determinations are usually expressed, for a given
incident neutron energy, as a function of energy
transfer and scattering angle 8, the kinematic re-
lation
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where M„ is the neutron mass, Fik =Pi (kf - R~) is
the momentum transfer, 5u = ef —ey is the energy
transfer, and U(k) is the Fourier transform of the
neutron-helium atom interaction. U(k) can be re-
placed by a constant over the range of k appropriate
here, and e ~k~«1 for energy transfers of in-
terest. Equation (1) can then be written, as an in-
elastic cross section per scatterer, in the form
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will be useful. The ~-integrated quantity, or
single differential cross section, can also be ob-
tained experimentally, and is given by'

going back to the free-particle form

—' f [d'q/(2m)'] n '(q)15 [&u —&u, (q+ k) + (u, (q)]
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Here p(«) is the particle density operator (~(«)
xg(rt) in the Heisenberg picture, ( ) refers to the
equilibrium thermal ensemble average, and p
=& p(«)).

For noninteracting bosons, S(k, &u) can be deter-
mined by familiar methods, and the result is

(k, ~) = »(p,/P){6' —(d, (k)] —6[~ + (d, (k)]]

Now, the theoretical problem is the calculation
of the function S(k, u&) for liquid He~. This function
is defined as the Fourier transform of the particle
density commutator

—5[(u —(u, (q)+ (u, (q+ k)]),
from which the above log term emerges for the
free-particle momentum space distribution n'(q)
for particles not in the condensate. Their analysis
then includes some justification for employing the
free-particle form together with the actual n '(q)
for He'. Further analysis and numerical estimates
then involve a knowledge of n'(q), together with
the possibility of broadening the 6 function in the
integrand. We wish here to employ a somewhat
different method, and our task is made simpler
if we restrict our attention to the high-k regime.

Consider first the free-particle solution (6) and
observe that the background contribution becomes

S (k, (o)
wP 1/2 e "

background ~, PA.
'

„(—p(4(u, ) '((u —(u, )' —p(4(o, ) '((u+ (u,)',

whenever 4p~do '(a&+e, )' —pp, »1 or, since p, ~ 0
in general, whenever

„p 1/2
pX

p(go(k) » 1,
(8)

t I
—p[(I/4(o, )4)+(u,)'- p] )
—P[(1/4(u, )((u —(o,)' —p]

where ~,(k) =k'/2M, A, is the thermal de Broglie
wave length (2mb'/MkBT)'~', and po is the number
density of particles in the zero-momentum mode.
Recall that

and p, =0 for T&T (p),

while p, =0 and p 40 for T &Tc(p) =(2vS'/MkB)
[p/g( —,)]'~'. The function S splits into two pieces.
The zero-momentum condensation shows up as a
5 function, while a "background" contribution
(the log term) emerges as a result of helium a.toms
not in the condensate.

Now, a realistic extension of Eq. (6) to real
liquid He', both above and below the X-transition
temperature, is required. We expect, for reasons
discussed in Ref. 4, that there will be both a con-
densate contribution and a background contribution
for He4, although the free-particle result in Eq.
(6) is clearly not appropriate. Hohenberg and
Platzman4 analyzed the background contribution by

(dk(do 2

(do p(do(k)

In the cLassicaL high temperature limit, et p- PX'
-0, there is of course no condensation, and (7) is
the classical solution (e~t /PX' = 1) for the full
S(k, e). However, the form (7) remains valid (for
free particles) without the classical low-density
or high-temperature limit condition, under the
"high k, sufficiently off resonance" conditions (8).

Now, we might expect to find a similar simplifi-
cation of the background contribution in the inter-
acting system at sufficiently high k. The condition
(8) is irrelevant, of course, but for some k values
we might expect the background term to attain the
cia.ssical Gaussian farm, centered about the res-
onant position + &u, (k). The relevant energy for
comparison in (8) should not be P ', but something
like the actual kinetic energy per particle in the
He4 system.

To make this supposition more precise, we may
first supply an "experimental" justification, and
then introduce some theoretical analysis to make
quantitative predictions. First, an examination
of experimental data' above Ty(T =4.2 K), where
we need not consider a condensate contribution,
shows that the cross section is quite close to a
simple Gaussian shape in co for fixed k. The width
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of the Gaussian is clearly not just k~T, but the
resonant position is &uo(k) for k in the experimental
range (k-12 —16A ').

In order to provide some theoretical component
to these assertions, let us examine several exact
relations" satisfied by the function S(k, e). S(k, &u)

is an odd function of ~ which satisfies the following
sum rules for all k:

helium potential and S(k). The precise form of
C(k) can be found in Ref. 10. However, C(k) is,
for large k, much smaller than the other terms in
Eq. (11). One finds" ) C(k = 15A ')l &1400 ('K)'
while &u, (k= 15 A ') = 1360'K. (KE)/N is the actual
kinetic energy per particle in the He', and is ap-
proximately 12-15 'K at T =0. Therefore, a set
of approximate sum rules for high-experimental-k
values is
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Here, S(k) is the liquid-structure factor. This
function rapidly approaches 1 for large k and can
be approximated by 1 in the k region of interest
(k-12 —16A '). Furthermore, coth —', P&u can be re-
placed by &u/I ur 1, since I —,P&ol » 1, for all Id con-
tributing significantly to the integral at high k.
C(k) is a complicated function of the two-body

(KE&= u), (k) &u,'(k)+4 (u, (k) .
J

Now, we wish to employ Eqs. (12-14), together
with a phenomenological Gaussian form for T & T~.
If we take

Sk m~- ~ 1/2 1 2(KE) -1 2 1 2(KE) -1k, ~)= 2&~) exp- —— (g, ((g-~,) —exp ((g~~ ) (15)
(k) L 4 3 N 0 o 4 3 N

for T ) 1"~ then Eqs. (13) and (14) are satisfied
identically, and Eq. (11) is satisfied to within ex-
ponentially small factors, since &[3((KE)/&)]
x ~,(k)»1. The three sum rules for high k serve
to fix the normalization, width, and resonant po-
sition once the odd Gaussian choice is made. The
Gaussian form is, of course, not uniquely dictated
by either the exact or the approximate high-k sum
rules. However, we have used here the physical
argument that at large momentum transfer the
helium-neutron collision takes place in a time
short compared to helium-atom collision times.
Consequently, the helium target consists, in some
sense, of a thermal bath of "free" helium atoms
characterized by their average kinetic energy.
Use of the sum rules with a Gaussian form pro-
duces a quantitative statement from this physical
picture, and Eq. (15) is of course trivially exact
in the limit of zero interaction between He atoms.
It will be observed that (15) is simply the classical
free particle S(k, Id), with —,

' k~T replaced by the
true (KE)/N for He4. The contention is that the
high-k scattering experiment above T~ measures
essentially only a single moment of the momentum
distribution; i.e. , the kinetic energy.

The cross section has an essentially Gaussian
form centered about ~0(k), and the only para. meter

at our disposal is ((KE)/N)(T). This is not to say
that the cross section is Gaussian in ~ with 8 fixed
(as seen directly in the experiment). Although k
changes little over the range of observation, ' the
distinction between constant k and constant 8 is
Significant for numerical calculation. A comparison
of widths for constant k and constant e plots makes
this distinction obvious (the width at constant 8 in
the experimental range is about half that at con-
stant k, since the location of the resonance varies
as k'}. Although the theoretical analysis is simpler
at constant k, the direct comparison with experi-
ment is facilitated by calculation at constant 8.

We now use Eq. (15) for T =4.2 'K to calculate
the double differential cross section [Eq. (2)] as
a function of 8 and ~ for an incident energy e

z= 0.1715eV. Vfe then perform the integral indicated
in Eq. (4) to obtain the single differential cross
section cr(8, e ). A plot of a(8, ei=0.1715 eV) is
shown in Fig. 1 for a choice of ((KE)/N) (T=4.2'K}

, equal to 15 'K. Experimental values, taken from
the data of Harling' are also shown. The largest
value of 8(= 154.3 deg) represents, of course, the
largest value of k. For small angles we expect
the high-k approximations to be invalid. Conse-
quently, we concentrate on the large-angle scat-
tering and plot the double differential cross sec-
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FIG. 1. Theoretical
and experimental values
for the single differential
cross section, as a func-
tion of scattering angle,
for incident neutron en-
ergy &g=0.1715 eV and

helium temperature 2'

= 4.2 ' K. The experimen-
tal results are taken from
Ref. 6.
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tion as a function of v, for incident energy 6j
= 0.1715 eV and 8 = 154.3 deg. Again, we use
((KE)/N) (T =4.2 'K) = 15 'K to characterize S(k, &u)

according to Eq. (15). The results are shown in
Fig. 2, together with experimental values for the
same ef and e. Values of (KE) /N from 14.5 to
15.5 'K will serve almost as well, considering the
resolution in the experiment; and we have not at-
tempted to obtain more than an visual fit.

Agreement between theory and experiment seems
reasonably good if we are willing to accept the
value 15 'K for (KE)/N at T =4.2 'K. Present
theoretical calculations of the kinetic energy per
particle are confined to ground-state values; i.e. ,
to ((KE)/N) (p, T= 0). The cross section we are
calculating here depends on ((KE)/N) (p, T), with

p = p(T) given by the density value along the vapor-
pressure curve in order to compare with experi-
ment. Experimentally, p(T) begins to decrease"
rapidly above T& from the T = 0 value mp(T = 0)
=0.145 g/cms. At 4.2'K, the density is somewhat
less than 90% of this value. Various calculations
of ((KE)/N) (p, T = 0) give values, at the T = 0 equi-
librium density, of 14. 16,"13.72, "and 14.06."
The same calculations produce numbers like 11.7, "
11.59, ' and 11.60, " if the density is decreased by
10%. However, the apparent agreement between
these results may be misleading because they are
all variational calculations with the same type of
(Jastrow) wave function. Furthermore, the cal-
culations do not always predict the correct equi-
librium density; the energy minimum in Ref. 13
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FIG. 2. Theoretical and experimental values for the
double differential cross section, as a function of en-
ergy transfer for fixed scattering angle 0=154.3 deg,
for incident neutron energy e~ = 0.1715 eV and helium
temperature T= 4.2 'K. The experimental results are
taken from Ref. 6.
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and Ref. 14 occurs at 90'%%uo of the experimental
density, where the kinetic energy has the lower
value. A quite different type of calculation" (not
a variational solution, with a different two-body
potential) produces a still lower kinetic energy
(10.2 'K) with a 5'%%uo error in density. All such
calculations indicate that the T = 0 kinetic and po-
tential energies are more rapidly varying functions
of density than is their sum.

If we suppose for a moment that ((KE)/N) (p, T = 0)
is known accurately, then since

[p(T), T]= [p(T), 0]

and since the derivative in the integrand is posi-
tive, we can be sure that ((KE)/N) [p(T), T] lies
above the ground-state value at the reduced den-
sity p(T). A more complete statement can be
made in the phonon region (T- 0. 6 'K), where p(T)
has essentially its zero-temperature value and

the second term in the above expression can be
calculated. Since (KE) = —mBE/sm)N I/ T, where
E is the Helmholtz free energy, we can relate E
in the phonon region to the sound velocity, the
mass derivative of which can then be related to
the kinetic energy. Thus, one finds

(P, &) =
N (PP) —

P (~P ,(P, P) $(PP)}-,
1 d, d (KE)

mc' dp dp N

where (]= —(v /90p)(k T)'/hc)'. The coefficient
of the [ ] term in this expression is, therefore,
only 0. 03 (T/T~)''K. Unless the factor [] is
very large indeed, ((KE)/N) [p(T),T] = ((KE) /N)
x [p(0), 0] over the phonon region. Theoretical
estimates indicate that [ ] is &5.

The observations above lead us to believe that
our choice of (KE)/N=15'K at T=4. 2'K, used to
obtain a good visual fit of the theoretical cross
section to experimental data, is not at all un-
reasonable. An increase in kinetic energy caused
by an increase in temperature is offset by a corre-
sponding decrease produced by a decrease in den-

sity. ((KE)/N) [p(T), TJ apparently does not change
very much below 4 deg, if we accept the 15 'K
estimate at 4. 2 K. For the T &T~ analysis, we
will see below that a lower bound on ((KE)/N)
[p(T), T] is required, and we might set this lower
bound at 12 K, in view of the uncertainties de-
scribed above in theoretical calculations of
((KE&/N)(p, T = o).

Now it is clear that a smaller (KE)/N will have
the effect of sharpening the cross section. As the
temperature is lowered, any smaller estimate for
((KE)/N)[p(T), T] will make the cross section more
peaked. We know that as T drops below T&, the
presence of a condensate should also have the ef-
fect of sharpening the cross section, even if no
small peak on top of the background contribution,
as suggested by Hohenberg and Platzman, can be
seen experimentally. We should find that the form
(15) can be used for all T & Ty with a reasonable
estimate for ((KE)/N)(T). A slowly sharpening
cross section, as the temperature is lowered,
would indicate a slow decrease in kinetic energy.
As we go below Ty, however, the form (15) should
fail badly. That is, we expect the cross section
to become both highly peaked (too much so to be
accounted for by a decrease in (KE)/N), and its
shaPe should be distinct from that of the single
Gaussian. The zero-momentum component in-
troduces an additional term whose width is essen-
tially temperature independent and whose relative
weight is proportional to (p,/p)(T)

In order to analyze the condensate part, we will
use the arguments of Hohenberg and Platzman4 to
estimate the condensate width, then apply the ap-
proximate high-k sum rules to obtain a model for
the full S(k, (o). We will assume that the conden-
sate part has Gaussian shape, centered about
+(o,(k). Following Hohenberg and Platzman, we
take the full width at half-maximum in the con-
densate peak to be

r= pok/m„,He'

where + is the He-He scattering cross section and

p is the helium number density. In the range of k

appropriate here, o is not reduced appreciably
from its k=0 value' (o'=2x10 "cm'). We may
then construct a form for S(k, (o) which includes
both the properly weighted condensate and back-
ground terms:

P (P ~ ) = P (P /P )(ir /IV (P )1)
'

(~ ' ' —e "' ' )

+ &(( - P /P )( /(y (P )I) ( ~' ' ' ' ' )

where y, (k), according to our assumption concern-
ing the condensate width, is given by y, (k) =4 r2=0+o(k), with 0-=2&2 M

. (18)
4ln2 21n2 M
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The sum rules then further demand that a.a

ya(k) = .
— ——o 0 I-~ (uo(k). (19)
9 (KE) p,
3 N p P z

The numerical value of the constant Q, using the
0 aboveandthe T=0 equilibrium helium density, is
1.40 'K. Therefore, since p, /p & 1 and (KE)/N is
about 14 'K, it is clear that the Q term in (19)
represents a small correction. We furthermore
expect, since p, /p is probably &0. 10, that the
denominator correction is small.

Above T?„, when po/p= 0, Eqs. (17) and (19) re-
duce to the previous result (15). However, below
T?„, the quantity (p,/p)[p(T), T] enters as an un-
known parameter. Both parameters (p,/p) and
(KE)/N are, in principle, determined by the mo-
mentum distribution for the He4,

2.5-

2.0-

gl. 5

1.0

.5

T = 1.27 I(
&I — .1715 eV
g = 150.9 deg

d
n(q) =(2v)'p, 5(q)+n'(q), p —p,=, n'(q),

(20)
100 110
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o(KE)/~ =J 2, , ~.)ek'ts),

and the independent calculation of n(q) remains a
separate problem. The high-k scattering results
are described, from (17), in terms of the two
quantities p, /p and (KE)/N above, once we have
fixed the width of the condensate contribution.

We must now answer the following questions.
First, for reasonable p, /p and (KE)/N, will the
low-temperature cross section be seen as a dis-
tinct "bump on top of a background' ?" For p, /p
& 0. 10 and (KE)/N = 14 'K, it would seem that no
small "bump" can be resolved by a visual check
of the entire cross-section curve predicted by (17).
Thus, even with infinite resolution in the experi-
ment, the answer to this question, posed by
Hohenberg and Platzman, seems to be no. This
prediction seems to be verified experimentally,
as we will see below.

However, a fairly rapid sharpening of the cross
section below T~ has been observed by Cowley and
Woods' and by Harling. ' Since our theoretical an-
alysis is dependent on very high-k approximations,
we will use only the Harling data for numerical
comparison. The basic question to be answered is
now the following: Can the sharpening of the cross
section below Ty be ascribed entirely to a decrease
in (KE)/N with an assumed p, /p =0 (no condensa-
tion)'? That is, is it necessary to include a po/p
somewhere between 0 and 0. 1 in order to explain
the behavior of the cross section at low tempera-
tures'P

The double differential cross section, ' as a func-
tion of energy transfer for a scattering angle 0
=154. 3 deg, for incident neutron energy ei
= 0. 1715 eV and helium temperature T =1.27 'K,

FIG. 3. Theoretical and experimental cross sections
at 1.27 'K. The theoretical curve has been broadened
by the resolution function appropriate to the data (Ref.
6). The kinetic energy per particle has been fixed
initially at 14 'K, the most reasonable a priori value.
The one remaining adjustable parameter, pp/p, is found
to be 0.07 by a least-square fit.

is shown in Fig. 3. The data shown here is an
average of three experiments, each normalized to
the same total cross section. The experimental
results are broadened by an instrumental energy
resolution' of I'& = 0.0042-eV full width at half-
maximum. Since this resolution is comparable
with our theoretical condensate width, the ob-
served cross section should be compared with the
convolution of the theoretical cross section and a
resolution function

It((o-(o')=(7) y~) '"exp[-r~ '(~-~')'I,

with yet = (4ln2) ' I'&'. The "resolution broadened"
theoretical cross section is also shown in Fig. 3.

In Fig. 3, (KE)/N has been taken to be 14 'K.
This represents our best a priori number for
(KE)/N; that is, we have not adjusted it to im-
prove the fit. (KE)/N is rather restricted if we
demand that it lie between the previous 4. 2 re-
sult and a reasonable T =0 value. It is probably
closer to the T = 0 value, since p(T) = p(0) at this
temperature. p,/p has been chosen equal to 0. 07
by a least-square fit of the "resolution broadened"
theoretical curve to the experimental data between
0. 090 and 0. 120 eV. The mean-square deviation
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N
s' —= —Q [(theory). —(experimental). ]

Z—

3.0

is equal to 0. 0045 (b/sr eV)'.
The reasonable agreement between theory and

experiment implies that the presence of a con-
densate can be used to interpret the sharpening of
the cross section below T~. However, as discussed
above, we really want to know how necessary the
condensate is, in viem of the uncertainties in
(KE)/N. Consequently, we next suppose that
po/p = 0 and adjust (KE)/N to obtain a least-squares
fit of the "resolution broadened" theory to the data.
The result is shown in Fig. 4. (KE)/N is 12.2'K
and the mean-square deviation is found to be z'
= 0. 0085.

The most we can say from this analysis is that
the theory with adjustable condensate and a fixed
theoretical estimate of kinetic energy per particle
seems to be in better agreement with the data than
the theory without a condensate and an adjustable
kinetic energy. If the best (KE)/N in the zero-
condensate calculation were absurdly small, we
would be in a better position to discard the pos-
sibility of the choice po/p=0. However, 12.2'K
for (KE)/N at 7 = 1.27 K is in our opinion not a
sufficiently absurd number, and we can only note

2o 5
T = 1.27 K
E')= .171S eV
e= 154.3 deg

2.0

gl. S

I
1.0

.S

.Sso .090 .100 .110 .120
ENERGY TRANSFER leV}

.190

FIG. 5. Theoretical and experimental cross sections
at 1.27 K. The lower curve represents the best least-
squares fit of the resolution-broadened theory to the
data (Ref. 6). pp/p iso.062, and (KE)/%is, 12.5'K. The
upper curve shows the actual cross section predicted
for these parameters without resolution broadening.

9.0

2.S-
T =1.$7 K
E~- .1715 eV
8= 154.9 Qg

2.0

1.S

1.0

.100 ~ 110 .120
ENEfl&Y TRANSFER teV)

oem
.190

FIG. 4. Theoretical and experimental cross sections
at 1.27 'K. The theoretical curve has been broadened
by the resolution function appropriate to the data (Ref.
6). The condensate fraction po/p has been fixed initially
at zero. The one remaining adjustable parameter (KE)/N
is then found to be 12.2 'K by a least-squares fit.

that the presence of a condensate improves the
agreement with experiment.

If we admit the presence of a condensate on this
basis and adjust both p, /p and (KE)/N to obtain the
best mean-square fit of the "resolution broadened"
theoretical curve to experiment, we achieve the
results shown in Fig. 5. Here (KE)/N =13.5'K
and p,/p = 0. 062, while the mean-square deviation
is z'= 0. 0043. This is our best determination of
(KE)/N and p,/p at T = 1.27 'K from the data shown.
The upper curve shows the theoretical cross sec-
tion for these parameters, while the lower curve
shows the resolution-broadened result appropriate
to the experimental conditions of Ref. 6.

In order to estimate the uncertainty in this p, /p
value, we should look again at the results above
T~. Our theoretical picture makes sense only if
p, /p=0 at 4. 2'K. A least-squares fit of the
ps/p = 0 resolution-broadened theory to the 4. 2'
data in Fig. 2 gives (KE)/N = 14. 8 'K, with zs
= 0. 0020. Agreement seems remarkably good
(i. e. , like the curve in Fig. 2). On the other
hand, if we allow the freedom of a nonzero con-
densate [i.e. , use Eq. (17)] and adjust both pa-
rameters, the "best" least-squares fit produces
(KE)/N= 15.2'K and po/p =0. 022, with z'=0.0014.
This best fit, with a small condensate above Ty,
is meaningless. It reinforces the intuitive feeling
that two free parameters may give a slightly better
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fit to experimental data even though one of the
parameters should be fixed a Priori. The obvious
conclusion to draw here is that differences in z'
of - 0.001 are meaningless, and that we will not ob-
tain pc/p values to within better than +0.03 with
the present data unless a better a Priori number
for (KE)/N can be assigned to a given tempera-
ture. We therefore conclude that our theoretical
interpretation of the data in Ref. 6 implies a con-
densate of p,/p = 0. 06 +0. 03 at T = 1.27 'K.

It is now clear that reasonable agreement be-
tween the theoretical expression (17) and addition-
al experimental data at high momentum transfer
can be achieved. We should emphasize that a good
"two-parameter fit" to any T & T& data, where the
two parameters are Gaussian widths, is not at all
convincing without a knowledge that the two pa-
rameters are related to (KE)/N and p, /p accord-
ing to the demands of the sum-rule theory. The
relatively narrow range of values possible for (KE)/
N and reasonable for p, /p is the only thing that

makes any conclusion possible from a two-param-
eter fit. Further two-parameter fits to the data
should be carried out in order to determine both
pc/p and (KE)/N as functions of temperature with-
in the limits dictated by experimental errors.
Since statistical errors are less important than
resolution-broadening effects here, it, is perhaps
better not to average-in data with the worst reso-
lution (the I'p used above is an average resolution).
Some of the Harling data, ' with Kg=0.0027, seems
to show a more pronounced peak around the reso-
nance, but careful analysis is necessary to deter-
mine if this is statistically significant. "
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