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Generalized variational expressions are presented for calculating rigorous lower bounds to
the true expectation value (¥|F &) of a positive semidefinite operator F. These extended
formulas, which involve an additional variational function, always lead to an improvement
over the results previously obtained. The improvement is illustrated numerically with an ap-
plication to various properties of the helium-atom ground state.

I. INTRODUCTION

We have recently proposed a number of formu-
las!™2 for calculating rigorous lower bounds to the
true quantum-mechanical expectation value
(¥|F|¥) of a positive semidefinite operator F > 0.
These bounds are calculated in terms of some trial
function ¢ which approximates the true wave func-
tion ¥; in particular, one requires an estimate
(strictly, a lower bound) for the overlap integral

S=1{¢1¥)]

of these functions, *

It was recognized that the calculated lower bounds
could be optimized with respect to any adjustable
parameters in the approximation ¢, so that one
had a form of variational principle for each prop-
erty under consideration. Here we wish to intro-
duce an additional variational flexibility which al-
lows one to always improve the previous results.
The extended formulas therefore supersede our
previous lower-bound formulas, and permit one to
improve the calculated bounds by a more satisfac-
tory variational procedure. In Sec.IIl, the new
formulas are illustrated numerically with a simple
standard application to various properties of the
normal helium atom.

II. VARIATIONAL LOWER BOUNDS

To obtain the generalized variational form of the
lower-bound formulas, we introduce an arbitrary
variational function y and consider the Gram deter-
minant!; 5 G of the vectors |¥), | ¢), and Flx),

where |¥) and | ¢) are normalized, and, as usual,
all elements of G are assumed real. Noting that G
must be non-negative we infer that

@I 1SSl F gy o (1-sDY2 | (1)
where 6F" is defined by

GF 2 =1 F2 1) - I FY 1 9)2 (2)

and where FV denotes the vth power of the positive
semidefinite Hermitian operator F. Applying
Schwarz’s inequality to the left-hand side of (1),
we obtain the lower bound, valid for arbitrary v
and y,

[(x1F” 16} - 6F”(1-s2)1/22

®IF? Ly

(ZIFIT) > ®)

so long as the expression in brackets is positive.

In formula (3), one can now freely vary both ¢
and y, as well as v, to maximize the lower bound.
Of course, by taking x= ¢ we get back the result
previously obtained, * but formula (3) will always
improve this result for suitable y. Note that as
S=1{¢1¥)| —~ 1, the lower bound again becomes
exact in the limit y - ¢, ¥(v=1).

A similar extension is readily obtained for each
of the three remaining lower-bound formulas which
have been presented. These results may be readi-
ly inferred by choosing vectors [¥), |¢), Fly), H
| ¢) in Ref. 2, or by choosing F1/2|¥), F~1/2|¢)
FV=1/2|y) in Ref. 3. The final results are found to
be

|
(FIFIE) > 821 +[S((XIFVI¢)(F;1)—1<X|Fy:lll’¢>)—(f:11)6FV2(1—82)1/ 22 @
(F™%) F-Dx I FY T E D= IFT ™ T 1¢)%)
(¥|F|T) 2[(Sav_ﬁuy)/(AH)2]2 , (5)
aIF? "y
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s 1w Nsa, -/ em - sxiF T o)
and (¥IFI¥)> ——3+——7 -1, -1 v-1, .2
F77) (FTOHKIF IXXF D) =xIF 1)) (6)
where in each case the expression in brackets is supposed positive, Here we have introduced the abbre-
viations, for various operators B,
(B)=(¢|Bl¢) , (7a)
(aBP=(B*-(B)* , (7b)
and in (5) and (6) the quantities a,, By, y are now defined by
2
o, =(XIF"19)(aB)"+ (B) - B, )(xIF” 1 oXE) - )| FUHI9)) (82)
2 2 2
8 2=r e’ - (IF” 1 o)) - I F HI 9 (3)
2 2 2 2 2
y =(1-S")aH)"-S ((H)—Ek) , (8c)
where HV = EpY¥ is the Schrodinger equation for the state in question.
Each of the more complicated formulas (4)-(6) b=(c3/m)e €12 (92)
requirés certain additional information (more ’
complicated matrix elements, knowledge of the by
p ’ X E(ba/’ﬂ’)e b7’1 b’}’2 . (9b)

eigenvalue Ep, etc.) for its computation, but each
yields a better lower bound than the simpler for-
mula (3). In particular, formula (6) must always
give the best result for any particular choice of x.
Each formula also reverts back to the correspond-
ing previous result'~? when we take the particular
choice x=¢. We note finally that in calculating
8F of Eq. (2), as in calculating AF of Eq. (7), one
should use the “symmetric-sum operator” de-
scribed in Ref. 1 to strengthen the bound.

III. NUMERICAL ILLUSTRATION

Toillustrate the numerical improvement obtained
from formulas (3)-(6) over the previous re-
sults®, we consider again the standard example of
one- and two-electron properties F=7", 7,," n
=+1,+2, of the normal helium atom. The lower
bounds will be calculated entirely within the simple
screening approximation, with

Table I exhibits lower bounds calculated from
formulas (3)-(6) in the approximation (9), with the
previous results® included in parentheses for com-
parison, and all values expressed as a percentage
of the true value.® In all cases, the overlap S has
been calculated using the “improved” method de-
scribed in Refs. 1-3, Table II gives the corre-
sponding optimum values of the variational param-
eters b, c, v, as determined by Powell’ s method
of conjugate directions.”

Table I shows that the numerical improvement
is fairly small except for the operators 7, and
7,2, where the remaining error is reduced by
about . However, the relative advantage of for-
mulas (3)-(6) will generally be more significant
in cases where it is not practical to optimize ¢ or
v completely., Therefore, one should certainly
consider this additional variational freedom in any
numerical application,
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