
PHYSICAL REVIEW A VOLUME 1, NUMBER 4 APRIL 1970

Surface Effects in One-Dimensional Classical Fluids
with Nearest-Neighbor Interactions

B.U. Felderhof*
Baker Laboratory, Cornell University, Ithaca, Nese York 14850

(Received 22 August 1969)

An exact study is made of the surface thermodynamic properties and grand canonical distri-
bution functions for a one-dimensional gas of classical particles with nearest-neighbor inter-
actions bounded by hard walls. The density profile is expressed in terms of the bulk pair cor-
relation function. We also analyze the interface near a potential step.

I. INTRODUCTION

There are two alternative approaches to the cal-
culation of thermodynamic surface properties of
many-particle systems in thermal equilibrium. '
In the first, one aims at calculating the partition
function for a system of finite size, and one iden-
tifies the surface properties by studying its func-
tional dependence on volume and shape. In the
second approach, one studies the molecular dis-
tribution functions near the surface or interface
and calculates the surface properties as averages
over these functions. The latter approach natur-
ally requires a much more detailed description,
and besides the surface free energy, it also yields
the density profile. Of course, when carried out
exactly for a finite system both approaches give
the same results for the thermodynamic proper-
ties. ' Rather than the exact distribution functions,
it is tempting, however, to use distribution func-
tions calculated in the thermodynamic limit by
letting the system become infinite in certain direc-
tions. If the concept of surface free energy per
unit area has a well-defined meaning, this should
make no difference.

We have studied the surface effects for an exact-
ly soluble model of a fluid, namely, a one-dimen-
sional system of classical particles with nearest-
neighbor interactions. In the finite system, the
particles can move along the interval 0 &x& I and
are reflected by hard walls at x= 0 and x= /. The
thermodynamic limit is taken by letting I tend to
infinity, and we are then interested in the bound-
ary effects near x=0. The logarithm of the grand
partition function for the finite system may be
calculated exactly to terms of order unity. The
grand canonical one- and two-particle distribution
functions for the infinite system may also be cal-
culated exactly. The thermodynamic surface
properties calculated via both methods are identi-
cal.

The study of the distribution functions near a
hard wall is of interest, since this situation has
often been used as an idealized model of the liq-

uid-gas interface. ' Bellemans has derived clus-
ter expansions for the surface properties and dis-
tribution functions near a hard wall. '

For the case of hard rods, Leff and Cooper-
smith' have investigated the translational invar-
iance properties of the canonical distribution func-
tions for the finite system. They have shown that
there exists a central region, which becomes
smaller as the order of the distribution function
increases, in which the functions have translation-
al invariance. These results were later extended
to forces of finite range. ' Flicker' has shown for
hard rods that in its central region the two-parti-
cle correlation function is a constant for large
separation of particles. Millard' has investigated
the grand canonical one-particle distribution for
hard rods, both for the finite system and in the
thermodynamic limit.

In Sec. II, we calculate the grand partition func-
tion to the desired order. In Sec. III we study the
distribution functions. As is well known, in the
present model the Kirkwood superposition approx-
imation is exact and one may calculate all higher
distribution functions from the one- and two-par-
ticle functions. ' It turns out that there is an in-
teresting relation between the density profile and
the bulk pair correlation function given by Eq.
(3.20). In Sec. IV, we study the thermodynamic
surface properties, namely, the particle excess
and the surface energy via both methods.

Owing to the nonzero range of the interaction,
one can not give a unique microscopic definition
of the local pressure, but, for systems with pair
interactions, Irving and Kirkwood" have shown
that a natural definition may be found which leads
to a local momentum balance equation valid on a
microscopic level. This definition is easily ex-
tended to the case of nearest-neighbor interactions,
and we verify explicitly that the hydrostatic equa-
tion is satisfied microscopically, i.e. , the pres-
sure is constant throughout the system. This is
of interest in relation to existing theories of non-
uniform fluids. ~ ~ '

In Sec. VI, we analyze the case where the sys-
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1186 B.U. FELDERHOF

tern extends to x&0 with a finite potential step at
x=0. In this case, we find the nonuniform distri-
bution functions and the thermodynamic properties
associated with the interface. Again, the density
profile is simply related to the bulk pair correla-
tion functions on both sides of the step. In future
work, we hope to use this method to study the
liquid-gas interface in the one-dimensional many-
body cluster interaction model. "

written

=-(z, P, L)= 2 z f f .. fL
N 0 o 1

&&exp(- pU )dr d~2, . . . , dr

where, in standard notation,

(2. 4)

II. GRAND PARTITION FUNCTIONS

Consider a one-dimensional classical system of
identical particles mass m, on the line segment
(0, L}bounded by hard walls. We assume nearest-
neighbor interactions; i. e. , the total interaction
potential between N particles is given by

P=l/k T, z=e /A, &=(h /2mmk T) (2. 5)
2 I 2

and where the first term is unity by convention.
The Laplace transform with respect to I of the
grand partition function

N-1
v (r. .. r )= 2 y(~ , —r. ), .N ' '' N . 1

8+1 (2. 1)
4'(z, P, s) = f e =(z, P, L)dL

is found to be given by

(2. 6)

where we have numbered the particles along the
line, 0&re& r2& .. . , & rN&1. It is easily
shown that if p(r) is bounded below, and if for
some fixed positive 8, and so

y(r) & rvx, for r &A„e &0
—(1+e) (2. 2)

then the interaction satisfies stability and weak
tempering conditions sufficient to ensure that the
system has a proper thermodynamic limit. " The
above conditions are also sufficient to exclude a
phase transition. " An example of a system with
interaction potential (2. 1) is given by a system
with pairwise interactions

z
@(z,p, s)=s +s

~(p )
(2. 7)

where J(p, s)= f e d~
' (2. 8)

(2. 9)

We also consider a slightly modified system in
which the first particle interacts with a particle
fixed at the origin (we shall call this the 0 system}.
The total interaction potential for an 0 system
with N particles is

N
v = Z, q (~~ r.~).,-

1&2
(2. 3)

with a two-body potential p, (r), which has a hard
core with diameter a and which vanishes identically
for r & 2a.

The grand canonical partition function may be

0 -I
(z, p, s)=s

1 ~(p )
(2. 10)

Inverting the Laplace transforms (2. 7) and (2. 10)
one finds

The Laplace transform of its grand partiti;on func-
tion " o(z, p, L, ) is given by

:-(z, p, L)=[- s0 J (p, s0)] e ' [1+o(e )]0;s ' 0

(z, P, L}=[—s zZ (P, s )] e ' [1+o(e )]0;s ' 0

(2. ii)

where so(z, P} is the root with largest real part of X is given by

1 =zJ(P, s) . (2. i2) X(z, p)=s, -Res, —e (2. ia)

The subscript; s in (2. 11) denotes partial differ-
entiation with respect to s at constant P. Finally,

where e is small and positive and where s, (z, P) is
the singularity with next largest real part of



SURFACE EFFECTS IN ONE-DIMENSIONAL CLASSICAL FLUIDS 1187

(2. 7) and (2. 10). If s~ is real, one may show"
that s, = 0. From (2. 11), it follows that the grand
potential of the system is given by

q(s, P, L) = in=(s, P, L)

=s L ln—[- s 'Z (P, s0)]+o(e ).
—xl.

0;s ' 0

(2. 14)

A similar expression holds for the 0 system. In
the thermodynamic limit, the first term in (2. 14)
dominates, so that the bulk pressure P(s, P) of the
system is given by

The energy per particle e and the particle density
p follow from the thermodynamic relation

ds =pd(Pp)- pedP

= pd inc —p(e ——,
' k T)dP .2 (2. i8)

q (s, P) = —in[- s0'J (P, s )] (2. 17)

the surface grand potentia/. It is related to the
surface tension y of a single surfa, ce by

The second term in (2. 14) represents the boundary
effects. We may call

Sp= (2. 15) e(s, P)= 2Py-. (2. 18)

III. DISTRIBUTION FUNCTIONS

The probability density for finding the first particle of the system at a distance x from the origin is de-
fined by

P (x. s p L) [=(q p L)]-& Q s f . ~ ~ f 5(ri —x)exp( pU&)dr-i
L I,
0

(3.1)

It is obviously given by (in simplified notation)

P, (x; L) = s (L —x)/. (L)

the above procedure one finds for the joint prob-
ability distribution of the first n particles in the
limit L -~

—s,x
[ (

—X(L —x))] (3.2) (x , .. ., x )
~ ~

Henceforth we shall drop the subscript zero in sp.
In the thermodynamic limit L, - one has

=P (x )~(x -x )~ ~ ~(x -x 1) . (s. 7)

P, (x) = lim P, (x; L) = se
J ~DO

(3.3) Hence the nearest-neighbor distribution serves as
the conditional probability in a Markov chain. ' ~"
Obviously,

Similarly, the probability density for finding the
first two particles at x, and x2, respectively, is
given by

(x) = f &(x y)P.(y)dy, -
+ 1 p

(s. 8)

P, ,(x„x,; I.) =z'e ~ " " ='(L, ,)/=(L)

—sx, —Pq (x, —x,), , —&(L- x,))]= ZSe i [1+0(e

where P& (y) is the probability density of the jth
particle at y. On account of the convolution nature
of this process it is convenient to take Laplace
transforms and to define

In the thermodynamic limit, one finds

P, ,(x„x,) = P,(x,)~(x, —x,),

(s.4)

(s. 5)

P. (&)= f e "P (x)dx . .
p

From (3.8), it follows that

(s. 9)

where X(r) is the nearest-neighbor distribution

(3.8)

and where we have made use of (2. 12). Continuing

P. ,(&) =lV (&)P.(&) .
2+

From (3.6), we have explicitly

N(() =J(p, s+ ])/J(p, s) =Z[]]/J

(s. io)

(s. is)
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where the second equality defines a convenient no-
tation.

The density profile in the thermodynamic limit
is defined by

p(x)= Z P.(x)
2=1

(s. i2)

After Laplace transformation, we find from (3.10)

)
s 1

s+ t' 1 —zJ'[$] (s. is)

P. .(&, o)

= f dx f dre " P. .(x, x+r), (3. 14)
0 0 2)

where we have used (2. 12). Fisher and Bokut"
have evaluated the sum of the first eight terms in
(3. 12) numerically for hard-core square-well pair
interactions. As is evident from (2. 10) the density
profile may be simply expressed in terms of the
partition function of a finite 0 system. '

The probability distribution P~
&

(x, x+ r) for
~ 7

finding particle i at x and particle j at a positive
distance ~ has a Laplace transform

where G(r) =g(r) —1 (3.21)

It should be noted that the microscopic definition
(3.12) of the density profile gives rise to consid-
erably more structure than is encountered in the
usual semimacroscopic treatments. 2O In the latter
theories, the density profile is always given by a
monotonic function. It is clear from (3. 20) that
with our definition the profile will show the oscil-
lations present in the pair correlation function.
Thus in a certain region of the (p, T) plane the pro-
file will be oscillatory even at an asymptotically
large distance from the wall. " Recent experi-
ments ' of light scattering from diffuse interfaces
near the critical point are in excellent agreement
with the semimacroscopic theories. It should be
stressed that in this type of experiment one sees
only the long-wavelength Fourier components of the
density profile, whereas the more detailed struc-
ture, which actually is present, is completely
washed out. In principle it should be possible to
study the finer details with the aid of more subtle
probes.

Besides the pair distribution p, (xj r) we consider
the neighbor pair distribution N, (x

~

r) defined by

which is easily found to be given by

P. .(~, o) = (zZ[g]) (zZ[e]) . (S. 15)

&2(x r) = Z P . . 1(x, x+ r) .
~

1 2P 2 +

From (3. 15), it follows that (for r &0)

(3.22)

Z
2=1 j=2+1 2$

(s. 18)

has the Laplace transform

s 1 zZfg]p'(~') s ~ 1-zZ[~] I-zZ[~]

Hence, the pair distribution in the thermodynamic
limit, defined (for r& 0) by

~,(x r) =p(x)~(r) . (3.23)

P (xy L)=ze2 — q( -x)

Finally we consider the probability density
Pn(x, y; L,) for finding a particle at the point nL+ x,
where x&0 and 0& n& 1, and its right-hand neigh-
bor at the point nL+y, where y & 0. By the same
method as before we find

Therefore, we may write (for r &0)
~=- (nL+ x)=- (L uL y)/=(L). —-(s. 24)

p, (x~ r) = p(x)pg(r), (3. 18)
Hubstituting (2. 11) and taking the thermodynamic=
limit L-~, we obtain

where g(r) is the pair correlation function in the
bulk. From (3. 17), we have

P (x, y) = —7 'exp[s(x- y) —Py(y —x)] . (3.25)
Q q$'

zJ[o
Pg(o') =

1 g )
~ (s. i9) This is just the neighbor pair distribution in the

bulk of the system, as may be seen by taking the
limit x-~ in (3.23) and using (3.6) and (4. 2).

From (3. 13) and (3. 19) it follows that there is a
simple relation between the density profile and the
bulk pair correlation function, namely,

p(x)=p+(s- p)e "+s f pG(r)e dr,
0

(s. 20)

IV. SURFACE THERMODYNAMICS

In this section, we wish to investigate how the
average properties of the boundary layer in the
thermodynamic limit L -~ are related to the high-
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er-order terms in the grand partition function
(2. 14). Firstly, we consider the Particle excess
I', defined by

r = 1
™

[p(x) —p] dx . (4. 1)

p = —J/J
~

S
(4. 2)

This is easily obtained from the Laplace transform
(3. 13). From (2. 12) and (2. 16), it follows that the
bulk density p is given by

1 8p 1 pso that X'=— —,+———
2 Bs' 2 s (4. 5)

This result may be checked by integrating (3.20)
directly and using the compressibility theorem'~

OO 1 ~p 1f pO(r)dr =
2 &s 2

(4. 5)

Some more care is needed in the definition of the
surface energy. The total energy of the finite sys-
tem is given by

Hence, we find

JF= J--
~S

s 1 J
s ~ 5 1 —zJ[(t fJ )

JJ
q SS

2 J 2

;S

From (4. 2), we have

JJ
I ~P;ss= —1+
I es

p
J'

(4. 3)

(4. 4)

E(z, p, L)=—', k&T 1 p(x;z, p, L)dx
0

+' f ""f dydlx-yl)N (»yi~ I3 L) (4 7)
L I

0 0

where N2(x, y; I ) is the neighbor distribution for the
finite system. Subtracting the bulk energy for a
system of size I,

Lpe = Lp(l kE~+ &m& )

=-', k T f p(z, p)dx+ f dx f pN(r)y(r)dr,
0 0 0

(4. 9)

one obtains

E(g, p, L) —Lpe= —,'k T f [p(x; L) —p]dx+ ,' f dx[ f —dye(/x-y/)N2(x, y;L) —2 f pN(r)p(r)dr] . (4. 9)
0 0 0 0

With the aid of the identity

', f dx-f dye( x-y~)N(~x- y ) =I, f q(r)N(r)dr fry-(r)N(r)dr,I L L I
0 0

we may rewrite the potential energy term in (4. 9) as

—,
' f dx f dye(rx- y ~

)[N,(x, y; L)- pN(~x- y )] —f rq(r)pN(r)dr Lf pN-(r)y(r)dr
0 0 0 L

(4. 10)

(4. 11)

We define the surface energy S(z, P) for a single
wall by

8(~, P)= '. k &r+ f dxf-q(r)[N (x~r)-pN(r)]
0 0

—~ p f ry(r)N(r)dr (4. 12)

Later in this section we shall prove that

g(g, P) = lim —', [E(x, P, L) —Lpe], (4. 13)
L,

which shows that a simple-minded limiting proce-
dure in (4. 9) yields the correct expression (4. 12)
for the surface energy. The first term in (4. 12)
represerits the kinetic energy of the excess of par-
ticles near the mall. The second term is the change
in interaction energy due to the distortion of the

dx f dye(y- x)I' (x, y)

0 OO

= p f dx f dye(y —x)N(y —x)

= p f rq(r)N(r)dr = 24(z, P)
(4. 14)

which justifies the above interpretation of the en-

pair distribution function near the wall. The last
term represents the loss of interaction energy ow-
ing to the absence of particles on the other side of
the wall. We shall call this term the energy defect
4(z, p). From (3.25) and (4. 2), it follows that the
interaction energy across a partition in the bulk of
the system is given by
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ergy defect. On account of (3.23), the surface en-
ergy may be written

In microscopic theories of surface tension in
systems with pair forces, one has often treated the
liquid- gas interface approximately by neglecting
the vapor side altogether and replacing the inter-
fice by the profile near a hard wall. For the sur-
face potential energy one then writes the three-di-
mensional analog of

—,
' f dx f dry(fr])[p, (x, x+r)- p'g((rJ)]

= f dx f dry(r)[pz(x r) —p'g(r)]

--,' f0 rm(r)p'g(r}dr,

where we have made use of the symmetry p2(x, y)
= p2(y, x) and of the fact that p, (x, y) vanishes iden-
tically for x or y &0. In the case of pair forces,
Ns(x~r) and N(r) in (4. 12) may be replaced by
pz(x~r) and pg(r), respectively, and in that case,
the expressions for the surface potential energy as
given by (4. 12) and (4. 16) are identical. As a fur-
ther approximation one neglects the distortion of
the pair distribution, i. e. , one puts

From the definition of the energy defect, we have

—dP = &dP+ (I'/p)ds

= I d lnz —(I"(p) —&)dP (4. 22)

where in the last line we have used (2. 16). From
(2. 18), it follows that (4. 22) is essentially the
Gibbs adsoxPtio~ equation for the surface tension
y. On comparing (2. 16) and (4. 22), one finds that
the particle excess I' may be found by differentiat-
ing P(z, P) with respect to z at constant P, in the
same way as the bulk density p may be obtained
from s(z, P). Similarly, the surface potential en-
ergy may be found by differentiating P(z, P) with
respect to P at constant z. We note that in the
present case the energy defect & may be found
from P(z, P) by differentiation with respect to s at
constant P, and may be expressed in terms of bulk
thermodynamic properties via (4. 19). Hence, we
find

b, (z, P) = —,
'

p f re(r)N(r)dr = —2 d. /~. , (4. 21)
0

where we have used (3. 6) and (4. 2). Using also
(4. 3), we may write

p, (x~ r) =8 (x)8 (x+ r)p'g(r), V. LOCAL PRESSURE

where 8 (x) is the unit step function defined by

8(x) =1, for x&0

8 (x) = 0, for x & 0

As is evident from the right-hand side in (4. 16), the
surface potential energy then becomes equal to
minus the energy defect. Kirkwood and Buff' have
shown that for liquid argon far from the critical
point, this procedure gives reasonably good agree-
ment with the experimental values of surface en-
ergy and surface tension.

We return to the nearest-neighbor interaction
model. It follows from (2. 12) and (4. 2) that the
surface grand potential defined in (2. 17) may be
expressed entirely in terms of bulk thermodynamic
properties, namely,

|}(z, P) = ln [zp/s']

It is convenient, however, to regard t}1 as a function
of P and s and to use (2. 17) to derive

In this section, we will show that a natural mi-
croscopic definition of the local pressure may be
given which has the appealing property that the
pressure is constant throughout the system. First
we derive the virial theorem for the bulk pressure. "
Assuming for generality a hard-core diameter a,
one has by partial integration the identity

—sr Pq(r) — —sa —Pp(a)e de=- ae

QQ Q (p
Hence, s = p+a%(a)p —Pp r —X(r)dr, (5. 2}a+

where we have used p '= v=(r). In the case of
pair forces, N(r) may be replaced by pg(r), and
then (5. 2) is the virial theorem in its usual form.
The virial theorem in the form originally derived
by Clausius states that the bulk pressure as given
by (5. 2} is equal to the pressure on the walls. Since
the latter is due purely to kinetic momentum trans-
fer we must have

J J
;Ps 2;ssdP=- ' dP- —+ ' dsJ s

~
S ; S

(4. 20) p(0) = s (s. 3)
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Equation (3.20) shows that (5.3) is in fact satisfied.
With the aid of the identity

s = 1 —P
~

(r- a) —N(r)dr, (5. 5}p oo

1-pa ', „a+

N(a) = s+P —N(r)dr
a+

one may also write

(5.4)
which clearly isolates the hard- core contribution
to the pressure.

We define the local pressure p(x) = s(x)/P as fol-
lows

&-a OQX OQ Bp
s(x) = p(x)+]~ dy [Ng(y

~

a) —p N2(y
~

r}drj —p8(x- a) 0 dy s—N (y
~

)dr
x —a a+

(5. 6)

The first term represents the kinetic momentum
transfer per unit time from the left-hand side to
the right-hand side of g. The term proportional
to N, (y

~

a) a.ccounts for the average momentum
transfer due to hard collisions between the first
particle on the left-hand side of x and the first
particle on the right. The additional terms rep-
resent the average force between these particles
due to the remainder of the interaction. The ex-
pression (5. 6) corresponds precisely to the def-
inition of the local pressure tensor given by
Irving and Kirkwood" for the case of pair forces,
when due account is taken of the hard core. They
have shown that in the nonequilibrium case their
definition leads to a local balance equation for the
momentum density. In particular, it follows that
in thermal equilibrium the equation of hydrostatic
equilibrium is satisfied on the microscopic level.

It is easily shown, by taking the limit x- in
(5. 6) and using (3.23), that in the bulk s(x) tends
to its bulk value s as given by the virial theorem
(5.2). In order to show that in fact s(x) = s for
all x, we take Laplace transforms in (5. 6). Using
(3.23), (5.4), and the convolution theorem for
Laplace integrals, one finds

l

p (x; s p, I) is such that one precisely recovers the

surface and higher-order terms in (2. 14). The
definition (5. 6) seems more natural; the absence
of pressure gradients is also gratifying from a
hydrodynamic point of view.

An additional argument in favor of the definition
(5. 6) is that the statement s(x}= s may be viewed
as an integrated form of the first equation of the
equilibrium Bogoliubov- Born- Green- Kirkwood-
Yvon (BBGKY) hierarchy. Integrating the Liouville
equation over the coordinates and momenta of all
but the ith particle, multiplying by the momentum
of particle i and integrating over momentum, one
finds in the thermodynamic limit

».(x)
P

~y S. . (x )d
4 @+a+ ~& sy'L+1

x- a+ sq (x- y) ( )d+ 3t+ 3

+P. . 1(x, x+a)-P.
1

. (x-a, x)=0, (5.9)
zy 2+1 Z Z

—$a
s(5)=p($) II+s

OO OO

—P dx e N(r)drj
a sr (5. 7)

where we have adopted the convention P, ,= 0.
Summing over i, one finds

ln" (z, P, L) = f Pp(x; g, P, Qdx (5. 6)

The spatial variation of the local pressure

where the three terms correspond to the terms in
(5.6}. After some partial integrations and use
of (3.13) this yields s($}= s/g, which proves our
statement.

We may remark at this point that several au-
thors' ~

"have given a rather involved definition
of a local pressure p(x; 1,), in terms of the den-
sity profile p(x; I ), chosen in such a way that it
satisfies

N( ix — )dy)
4 ~X

+N, (x~a)-N, (x- a~a) =0 (5. 10)

In the case of pair forces, N ( ~2r)xmay be replaced
by p, (x~ r) and in that case (5. 10) becomes the
BBGKY equation in its usual form. On differentiat-
ing (5.6) with respect to x and using (3.23), one
finds that the result is identical with (5. 10). Note
that for the above argument it is not essential to
take the thermodynamic limit. We could also have
derived the equivalent form of (5. 10) for the finite
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system and again have viewed the equation as the
statement that the pressure is constant throughout
the system.

Lebowitz and Percus' have derived a local com-
pressibility theorem, which in the thermodynamic
limit reads

[p.(x, y) p(x-)p(y)]dy = p —p(x) .
Jo

We may verify explicitly that this theorem is sat-
isfied. From (3. 18), we have

result with the transform of the right-hand side of

(5. 11)as given by (3. 13), one finds that the (5. 11)
is indeed satisfied.

VI. POTENTIAL STEP

The analysis may be extended to the case where
the system is bounded by hard walls at z= —L and

g = L with a finite potential of constant height C

along the interval (- L, , 0) (see Fig. 1). We num-

ber the particles along the line as follows

[p,(x, y) —p(x)p(y)]dy

= fo [p(y)pg(x- y) —p(x)p(y)]dy

+ f" [p(x)pg(y —x)- p(x)p(y)]dy

The total interaction potential UN+N' for N+N
particles is again assumed to be a sum of nearest-
neighbor interactions. The potential 4 is equiva-
lent to an activity z to the left of the origin given

by

= fo p(y)pg(x y)dy-- xp(x)p

+ p(x) fo pG(r)dh p(x)&- (5. iS}

Taking Laplace transforms and comparing the

z' =zexp(- pC) (6.2)

Correspondingly the bulk density p and bulk pres-
sure p on the ].eft differ from the bulk values p
and p on the right. The grand canonical partition
function of the total system is given by

OO QO

:"(z,z', p, L, L')= Z 5 z z' f f ~ ~ ~ f exp(- pU )dr g~, ,, .. ., dr (6.3).
N=0 N =0 N N-1

The Laplace transform with respect to I. and L, defined by
I C

C(z, z, P, s s)= f dIe f dLe "(z z, P I L)
0 0

(6.4)

is found to be given by

I
S —S

z
1 —zJ(P, s)

ss s's' 1-zd'(P, s) ss ' 1 —z'J(P, s') (6.5)

"(gl (X)

N'

-LI

r, r~

0

FIG. 1. A one-dimensional gas
of particles in the presence of a
potential step.
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where we have made use of the general formula

—sL
~

~
dLd

—s~L [L d
"0

d ( )
—1 f(s)-j (s)

s —s (e. 6)

Inverting the Laplace transform (6.5) one finds that the dominant contribution for large L and I is given
by the roots with largest real part s, and s,' of 1 =sJ(p, s) and 1 =@ J(p, s ), respectively. Thus, one has

(s, s, P, L, L )

—1 1

so so J (p, so}J (p, so))s 0 ~s 0

J(P, s,) —J(P, s,) sP + sDL
[1 (

—XL) (
—X~L

s0 —S0
(e. v}

We shall again drop the subscript zero. The grand potential is given by (in obvious notation)

I I I
I I I I —1 1 J-J —XL -XL

q(g, z, p, L, L)=sL+s L+ln d Jd d +o(e, e )ss J J s- s
qS ~S

(e. 6)

Subtracting the surface contributions from the two ends we therefore have for the interaction grand poten-
tial across the step

(6.9)

where we have made use of (2. 1V).
The probability density for finding the first particle on the left of the origin at x and the first particle

on the right at g is given by

I I MO

p d (
I L LI) P (s, p, L +x )-(s, p, I -x)

[ p ( I)]1 ~1
:"(s,s', P, I,L'

(e. io)

Hence, we obtain in the thermodynamic limit
L ~00

I I I I
(

d

)
s —s s x —sx —PP(x —x ) (6 11)

t

All the other distribution functions may be found by
convoluting this distribution with the nearest-
neighbor distribution N(x) =N(x; s, P) on th—e right-
hand side and with the distribution N (- v)

N(- x; s, p) on-the left-hand side. We need to
carry out this procedure only on one side explicit-
ly. The Laplace transform of the distribution
P,', (x',x} is given by

I

P,d, (q, g) = 5 dx'e" J'0 dxe "P,d, (x', x)

I
d —(s- s )xp(x)=p+(s- s )e

+ pG(r)e dr) ."x (s- s')~
0

Is —s

(e. is)

In the limit of an infinitely high step on the left-
hand side, z and s tend to zero and we recover
the result (3.20). The particle excess may be
found as before and is given by"

is therefore
J[g]-J' 1

~~d~ d-d' s+( -~' ( &-«ldj)
Again there is a simple relationship with the bulk
pair correlation function, namely for x &0

s-s' J[(]-J'[V]
J' —J s+ g —s' —g

Hence, we have for the transform of Pi(x)

(6. 12}

r, =
~ 0

[p(x) —p]~x

1 gp , p z'
+ p I + I

2 8s s —s g —8
(e. ie)

P.(() = [~], 1 . (6. 13)i J J' s+ $ —s' 1 sJ[g]

The Laplace transform of the density profile p(x)

where we have used a subscript zero to distinguish
1",from 1 of Sec. IV. From (6. 15), it follows
that the density at the step is given by

I

p(o+) =s (e. iv)
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Hence there is a density discontinuity ergy

p(0+) —p(0-) = s- s'. (6. iS) a (z, ', P)=-', a T(r +I')+r &q) -~
It is interesting to compare the result (6. 15) with

that obtained by applying linear response theory.
To first order the response of the uniform system
to an external potential 4 (x) is given by"

ep(x)=-P f I'pe(x-y)+p'G(x-y)]C(y)dy .
(6. i9)

Hence, for the potential step we have (for x& 0)

0

ep(x) = —Pe „p'G (x- y)dy

+ro&v) —& +2&0 ~ (6.26)

(6. 27)

Hence, one finds by differentiation and use of
(6. ie)

The interaction grand potential (6.9) may again
be expressed in terms of bulk thermodynamic
properties, namely,

=Pe --.'s', ', + p'G(~)d~, (6. 2O)
ez ~0 (6. 26)

which may be checked to be in agreement with
(6. iS).

For the pair distribution in the thermodynamic
limit as defined by (3.16), we find as before for
g &0, ~&0

Similarly, one obtains, with the aid of (2. 16), (4. 23),
(6. 16), and (6. 25),

g'+2g 6 29
l

Zj 8

p, (x
i
r) = p(x)pg(x), (6.21)

Hence, we may write

where now p(x) is given by (6. 15). For x&0, r&0,
a similar expression holds in the primed quanti-
ties. The neighbor pair distribution for g &0,
z & 0 is given by

r) =p(x)N(x) . (6.22)

h (s, ~', P)=-,'I Z(r +rO)+2~0(~, s', P)

+ f, dx f, d~q(~)[X, (x~r) pX(~)]-
—&(, P) + f dx' fo dy(y)[N'( 'i

Hence, we may calculate the surface energy across
the step, defined by

d~ = r d in@+ I' d in@ —U dP,
C

(6.so)

where UC, is the surface potential energy given by
(6. 29). As the potential step decreases to zero,
the defects cancel against the interaction energy
across the step. The total energy thus tends to
the correct bulk value plus the surface contribu-
tions from the two ends of the system.

Finally, we may again define a local pressure
P(x). For x&0, the definition is identical to (5. 6)
except for additional terms linear in P»(x, x),
accounting for the force exerted by particle 1 on
particle 1. By a rather elaborate calculation one
may again show that for x& 0 the pressure is con-
stant, p(x) = p. Similarly one has p(x ) =p for

&0. Hence, there is hydrostatic equilibrium
throughout the system in the sense

—~) p'~'(~)) —~(s', P),

where

(6. as)
s(x) = s, (P, z exp[- PC (x)]), — &x&+, (6. 31)

as, (z, z', P)= f dx' J'0 dxy(x- x')P, ,(x', x)

(6. 24)

is the interaction energy across the step. Using
(6. 11), one finds

(6.as)

From (6. 22) and (6. 23), we find for the surface en-

where 4(x) = 48(- x). The BBGKY equation (5. 10)
is easily extended to account for an arbitrary ex-
ternal potential 4(x), so that one may conclude that
Eq. (6.31) holds generally. Alternatively this
follows from an analysis similar to that given by
Irving and Kirkwood. "- It is interesting to note
from (6. 18) that the pressure discontinuity p(0+)
—p(0—) at x = 0 still has an ideal gas character in
spite of the fact that Pp(0+) cp(0+). Presumably
this is a general feature reflecting the fact that the
discontinuity in the distribution functions does not
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give rise to a discontinuity in the interaction con-
tribution to the local pressure, which involves an
integral over distribution functions.
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