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The elastic scattering of two particles is interpreted as the formation and decay of an un-

stable particle. The collision cross section and the reciprocal of the scattering delay time
are used to determine rates of production and destruction in a gas of interacting stable par-
ticles. By equating the two rates, a general expression for the equilibrium number density
of unstable particles is obtained. This is tested for two specific types of scattering, and it is
found that in resonance scattering the expression, in the limit as I' 0 (stable particles),
reduces to that predicted by the equations of chemical and nuclear statistical equilibrium.
Dividing a real gas into an ideal stable particle gas and an ideal unstable particle gas, an

equation of state for the latter is inferred from the form of the second virial coefficient. The

physical and chemical "reality" of unstable particle gases is examined. It is shown that their
existence implies small corrections to the equations of chemical and nuclear statistical
equilibrium, as they apply to stable particle abundances.

1. INTRODUCTION

Since its introduction by Eisenbud, the inter-
pretation of the energy derivative of the phase
shift Kdq/dE as the time delay induced in the elas-
tic scattering of two particles, has been rederived
in terms of the collision lifetime matrix, has
been reexpressed in operator form, ' and has also
been rediscovered. It is nevertheless surprising
that such a simple and intrinsically interesting
formula has found practically no application out-
side the field of quantum scattering theory. This,
in spite of a rather natural application of the for-
mula.

Throughout this work, the words "unstable par-
ticle" shall always mean an abound two-body sys-
tem which subsequently decays into the two bodies
composing it. This is in contradistinction to bound
systems, which are unstable to, say P or o. decay.
Interpreting the elastic scattering of two particles
as the formation and decay of an unstable particle,
where the unstable particle is "formed" the instant
the scattering pair "start to interact" and has
"decayed" the instant the scattering pair "stop
interacting, " it is clear that the energy derivative
of the phase shift provides the needed expression
for the mean life of the state:

r(E) = ad /dE .

As a definition of "unstable particle" the pre-
ceding paragraph and Eq. (l) need some qualifica-
tion. It is important to recognize that an unstable
particle is not just a "stable particle" with a finite
lifetime; they are fundamentally different. In

characterizing a particle as unstable, there is the
explicit statement that the particle has a substruc-
ture which no order of approximation can neglect.
For a stable particle, it is tacitly assumed that
the particle will be specularly reflected at a plane
boundary, and hence that a wave function, normal-
ized in some region of space, can be written for it.
The assumption is justified as long as the energies
involved are below the threshold for exciting or
disrupting the substructure (if any) of the particle.
As emphasized above, in this paper unstable means
unbound, and it becomes obvious that for this type
of individual, which may not even exist long enough
to traverse the dimensions of some spatial volume,
it is doubtful whether it can undergo specular re-
flection at a plane boundary and remain intact.
Furthermore, it is uncertain as to whether an un-
stable particle moving in even the weakest of ex-
ternal potentials will not be disrupted by the poten-
tial. In short then, the major distinction between
stable and unstable particles is that for the latter,
any interaction greater than no interaction at all
is capable of altering the identity of the particle
experiencing the interaction.

The fact that an unstable particle may not sur-
vive an interaction should not suggest that there
is something lacking in its definition or that it
does not interact in a physically meaningful way.
A good example of an unstable particle interacting
with a stable particle is that of a nuclear reaction
with three particles in the exit channel. If there
is a final-state interaction between two of the three
emitted particles it may be interpreted as an un-
stable particle. This gives rise to measurable ef-
fects in the kinetic energy spectra of all three par-
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ticles and, in some instances, these spectra
clearly indicate that the exit channel is two-body
rather than three, where one of the bodies is an
unstable particle which subsequently decays into
two stable particles. '

In the course of the presentation here, there
will be two situations where an exact knowledge of
how unstable particles interact would be helpful.
While no direct attempt shall be made to ascertain
this information, it will still be possible to dis-
cover some general properties of how a group of
unstable particles behave as a gas.

In general, all qualitative remarks concerning
Eq. (1) and other relations involving the phase
shifts shall be confined to positive phase shifts or,
equivalently, to potentials which tend to trap par-
ticles. Assuming the scattering particles to be
infinitely long plane waves outside the region of
their mutual interaction, the energy stored in the
unstable system is known precisely; consequently,
unstable particles formed at different incident en-
ergies are distinguishable from each other because
they have different rest masses. This fact is also
reflected by the indicated energy dependence of the
mean lifetime.

The reciprocal of Eq. (1)

2. ABUNDANCE RELATIONS FOR
UNSTABLE CONSTITUENTS

The foregoing discussion is best summarized by
the following set of reactions:

i+j -k- j+ i. (3)

Here, k represents the unstable particle, and i
and j the scattering particles, it being noted
earlier that 4 exists as long as particles i and j
are interacting. In a gas containing constituents
i and j, the equilibrium number density of 0 may
be related to the number densities of i and j if two
assumptions are made:

(i) The predominant mechanism for the produc-
tion of k is the direct elastic scattering of particles
i and j.

(ii) The predominant mechanism for the de-
struction of k is its instability against direct decay
into particles i and j.

In general, assumptions (i) and (ii) are fulfilled
for large scattering cross sections and small life-
times, but they will hold up as long as there are no
processes competing with the reactions of Eq. (3).

In a gas, the differential collision rate per unit
volume between constituents i and j is

~(E) = (1/n) (dt)/dE)
-'

(2)

is the mean rate of decay for unstable particles
with internal energy (formation energy) E. Re-
garding the elastic scattering cross section for
two particles as the formation cross section for
unstable particles, it should be evident that in a
gas of interacting particles, this, along with Eq.
(2), will determine rates of destruction and pro-
duction; and by equating the two, the dynamical
equilibrium abundance of unstable particles may
be calculated. This simple idea, well known in
the fields of chemical kinetics and nuclear astro-
physics, seems to have been overlooked as far as
unstable constituents are concerned.

The general abundance relation (equilibrium
number density), derived in Sec. 2 and applied to
two different types of scattering in Secs. 3 and 4
suggests that a gas of interacting particles may be
divided into two gases, one composed of free non-
interacting stable particles, an ideal gas, and the
other composed of free noninteracting unstable
particles, an ideal unstable particle gas. In Sec.
5, the simplest possible equation of state for an
unstable particle gas is inferred from the form
of the second virial coefficient, and in Sec. 6, the
possible effects of unstable particle gases on the
equations of chemical and nuclear statistical equi-
librium are discussed.

dQ;;d V;d V;, (4)

a transformation to c.m. and relative coordinates
will allow the angular coordinates and c. m. motion
to be integrated out of Eq. (4); and the production
rate per unit volume for unstable particles with
internal energies in the range E to E+ dE may be
defined as

xEg&,(E)e / dE. .

where Bo;//BQ;, is the differential scattering cross
section, and f, (V,) is the velocity distribution func-
tion for particles of type i; f; (V;) d'V, giving the
number of type-i particles per unit volume whose
velocity vectors lie in d'V; about V;. The Kron-
ecker 6 factor 1/(1+ 5,,) introduces a factor of —,

'
in the event that the colliding particles are iden-
tical. For Maxwellian velocity distribution func-
tions,

m- '/' -2f (V )
i e-mq v . /2KT

2gKT
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Here, p;/= m, m//(m, +m&) is the reduced mass;
cr;& is the total scattering cross section; and E is
the relative kinetic energy.

Defining N'(E) dE to be the number density of
unstable particles with internal energies in the
range E to E+ dE, it will be noted that multiplica-
tion with the decay rate of Eq. (2) will yield the
destruction rate per unit volume of unstable par-
ticles:

ergies:

n„'= j N,'(Z)dZ.

If many different angular momenta are to be con-
sidered, then Eq. (11) must be summed over these
states.

3. CHEMICAL EQUILIBRIUM AND UNSTABLE
RESONANT STATE PARTICLES

It should be evident that under conditions of ther-
modynamic equilibrium for the gas, a state of dy-
namic equilibrium will obtain rates of production
[Eq. (6)] and destruction [Eq. (7)], the dynamical
equilibrium abundance or number density may be
solved for:

8g2 1/2
N, (E)= ' ' (KT) '/'

1+ 5gg sf, g)

xE 1 (~)e-z/KT
cK (6)

(r, =(4m/K) (2l+ 1) sin q, , (9)

or, for identical bosons or fermions,

o, =[1+(—1)'](4 /Kv)(2l+1) sing, , (9')

may be substituted for the scattering cross section
yielding an expression which depends only on the
',„(angular momentum) partial-wave phase shift

~1~

N&(E) =n&n/(2vh/poKT) (2/g)

For gas particles i and j obeying Boltzmann
statistics, Eq. (8) is a general expression re-
lating the number N~(E) of unstable particles k
(at internal energy E) per unit volume per unit
energy to the number densities of the scattering
particles i and j and the gas temperature T. In
the case of uncharged spinless particles, the well-
known relation

For stable components, the equations of chemi-
cal or nuclear statistical equilibrium may be de-
rived by demanding that the free energy of the sys-
tem be a minimum at equilibrium. In the chemi-
cal case, the equations relate the equilibrium con-
centrations to each other. The nuclear statistical
equilibrium equations, which are of a similar form,
relate the number density n(A, Z) of the nucleus
with mass number A and atomic number Z to the
free neutron and proton number densities n„and
n~. If two spinless particles of masses m, and

m& come together with angular momentum l to
form an unbound state of positive energy E„, both
sets of equations estimate the equilibrium number
density of the state to be

n~=(2l+1)n;n;(2wK/p, ;;KT) / e ~/ ', (12)

where p, ;& is the reduced mass.
This equation, sometimes referred to as the

"law of mass action, "has on occasion been used
to find the abundances of unstable particles in
stellar interiors. This is not strictly correct,
and it is quite revealing to see how Eq. (12) com-
pares with the formalism developed in this paper.
This can only be done by assuming a specific form
for the scattering phase shift appearing in Eq. (10).
The remainder of this section will be devoted to
resonance scattering, and Sec. 4 will investigate
scattering through a virtual state.

In the scattering of two uncharged spinless par-
ticles through a single isolated resonance, if it is
assumed that the potential causing the scattering
has no bound states for relative angular momen-
tum l, then the /, „partial-wave phase shift may
be written

&& (2l+ 1) (dq, /dE) sin q, e (10)

While not explicitly shown in Eq. (10), it should
be kept in mind that by Eq. (9') identical bosons
can interact only in even angular momentum states
and identical fermions only in odd angular momen-
tum states. To find the total number density n~
of unstable particles at all internal energies, the
distribution NJ (E) must be integrated over all en-

(13)

where E„isthe resonance energy and I is the width
of the state. The second term on the right-hand
side ensures that the phase shift vanishes at zero
energy, and, for narrow resonances far from the
energy origin, it may be neglected, leaving only
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the first term for substitution into &g. (10):

3/2
N~(E)= (2l+1)n;n;

p

(2r)', spar
~ [(z -z„)'+(-,' r)']' (14)

It is interesting to note that the usual resonance
form factor ((E -E„) +(-,'I') ] ' is here raised
to the power of 2. Given the gas temperature and
the number densities n; and nz, Eg. (14) indicates
how the unstable particles k in the gas have their
internal energies distributed over the resonance
level.

Integration of Eq. (14) over all energies yields
the total unstable particle number density nI, and
involves an integral of the form

f(z„,r, T)= —(-,'r)'
- E/KT

[(E E )g (1 r)2]2 d ( )

f(E„,I", T)=e &~ E(E„,I', T),

where 1 I'
E(E„,I', T) = G(E„,I') 1+——

1 I' (—
' I")

2KT E2+ (~ I') (1'7a)

For narrow resonances or whenever F «2RT, the
exponential may be expanded about the resonance
energy E„and the lowest-order terms saved. To
second order in (I'/2KT), the integral is

differ by the factor of E(E„,I', T). The function
E(E„,1, T) accounts for the finite width I" of the
resonance. It is easily demonstrated that in the
limit as I'-0 (stable but unbound particles)
E(E„,I', T)-1, and Eqs. (12) and (18) become
identical. The agreement is important because
it establishes the limit in which the equations of
chemical or nuclear statistical equilibrium may
be used to make predictions about unstable reso-
nant state particles. This region is best defined
by the inequality

(19)

It should be pointed out that assumptions (i) and
(ii) are not unreasonable, there being a broad range
of physical situations where they are satisfied. To
illustrate with an example from astrophysics, at-
tention is called to the graphs of Fig. 1, where the
curves plot the fraction of a particles expected to
be in the form of the unstable He' nucleus (J'= —,';
E„=0. 92 MeV; I'= 1 MeV) when the n particles
exist in a hot dense gas of neutrons. The plots, as
a function of temperature, are for several different
densities, and also show the predictions of chemi-
cal and nuclear statistical equilibrium. This range
of temperatures and densities obtains for the neu-
tron-rich material believed to be ejected in super-
nova explosions. In the numerical integration of
Eg. (14), the zero-spin statistical factor (2l+ 1)
was replaced by the spin statistical weight (2J'+ 1)/
(2S+1)(2l+1), where Z= 2, S= 2, and & =1.

These curves demonstrate quite vividly the ex-
tent of the discrepancy between the two formalisms in
the low-temperature region, where the inequality
KT» —,

' I' is no longer valid. It will also be noted
that even in the high-temperature limit, the two
estimates will still differ since & I"-E„instead of
—,
' r «E„.

4. UNSTABLE VIRTUAL STATE PARTICLES

and

The total number density is therefore

(17b)

If the chemical equilibrium approach to unstable
particles runs into difficulties for resonance scat-
tering, it is safe to say that it does not work at all
for scattering through a virtual state.

For the low-energy s-wave scattering of un-
charged spinless particles, the cross section in
the zero-range approximation may be expressed
in the form

2 @2 3/2
n~ =(2l+ 1)n;n;''

p, ;;KT
o = 4n/(k'+ 1/a'), (20)

xe &~ E(E 1' T) (18)

Comparing this with Eq. (12), it is seen that they

where a is the scattering length, and k is the wave
number. If the attractive potential inducing the
scattering has no bound s states, a is an intrinsi-
cally negative quantity, and the phase shift
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however, and it arises from the mathematical
peculiarities of the virtual-state distribution func-
tion [E(l. (24)] and the fact that the underlying as-
sumptions made in the unstable particle formalism
are consistent with equilibrium statistical me-
chanics for "states" of definite energy. Physically,
there is nothing unique about the 3 y energy value.
As an energy state it is still unbound and unstable
with a finite lifetime of 7' = () v 3 k/y . Moreover,
categorizing 3y as an energy state may be ill
advised. Without interpretation, it may be simply
stated that 3 y is the internal energy value that
all the unstable virtual-state particles in the gas
will possess in the limit as y /KT-O.

2 ' sin g dEdE (30)

f (=-) 2, (2)+1)I, , (31)

and I,=— 2 ' sin g, e dE,-z/ z'r

0
(32)

N„may be written

Here, n, is the total number density of free stable
particles. Defining

5. SECOND VIRIAL COEFFICIENT AND EQUATION OF
STATE FOR AN IDEAL UNSTABLE PARTICLE GAS

N„=n,f . (33)

Consider binary collisions in a monatomic gas
whose particles obey the Maxwell velocity distri-
bution law. It is a property of the Maxwellian that
the c.m. of all colliding pairs also obey the Max-
well velocity distribution law. Consequently, in
assuming that unstable particles do not interact
with the gas in which they exist [assumption (ii)],
it must be concluded that unstable particles have
a Maxwellian velocity distribution. Furthermore,
because of their noninteracting nature (each in-
dividual decays before it can interact), it would
appear that as a gas of particles their behavior is
similar to that of an ideal Boltzmann gas. A gas
of unstable particles, of course, will not exert the
same pressure on the surfaces of a container as
an ideal Boltzmann gas. The reason is that, in
colliding with a wall, an unstable particle has
very little chance of remaining intact, and there-
fore the momentum transfer to the wall is not
simply that of specular reflection of the c.m. mo-
tion.

Whatever the momentum transfer is, however,
it should be evident that the above interpretation
allows the total pressure P, to be expressed as
the sum of the partial pressures of the ideal stable
P, and ideal unstable P„particle gases:

The actual pressure exerted by the unstable par-
ticles may be expressed in the same form as
Eq. (29), if N„ is replaced by an effective number
density N„, defined by

2Nu=n, f, (34)

and where

f -=( ) E, (2 +)1)I, (35)

2 3/2

ZT "' 2"' mZV ' B.E.

This may be added to E(l. (29) (with N „replacing
N„) to give the total gas pressure.

The only difference between E(ls. (31) and (35) is
in the integral term I, .

If in the expansions for stable particle gases,
terms higher than third order in the thermal wave-
length X= (2mb /mKT)'i are neglected (high-
temperature limit), the distrubution functions will
still be Maxwell-Boltzmann while the equations of
state are

Pq ——P +P„. (28)

If an unstable particle gas behaved like an ideal
Boltzmann gas, its equation of state would be

KT ' ' 2 mKT ' B.E.

P„/KT = N„, (29)

2we' "'gN„- n~
w

(2I+ 1)

where the total number density of unstable par-
ticles, from Eqs. (10) and (11), is

In Eq. (3V), it is important to realize that n, is
the number density of free stable particles. That
is, n, only includes stable particles not involved
in an interacting pair (unstable particle). The
total number density of all stable particles, free
or interacting, in the gas is
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n = n, + 2N„= n, + 2n,f, write Eq. (37) in terms of n:

which may be solved for n, :

n, = [-1+ (1+Sfn) ]/4f

=+ n —2fn + Sf n —40f n + ~ ~ ~
2 2 3 3 4

KT " "
mKT + 25/2

x p / (2)+ 1) ( I2/ I/))

23/ 2

(
F.D.

)

Since f is proportional to A.', and only terms to
third order in A. are to be saved, n, reduces to

n, = n —2fn 2 (38)

To the same order in f, this may be used to re-

Here, Eqs. (31) and (35) have been substituted for
f and f; I, is given by Eq. (32); and I, is yet to be
determined.

It is instructive to investigate Eq. (39) in the
specular reflection approximation «, =«l . It be-
comes

2 23/2
+ l 2)+ 1 ' P dE

0

22 3/2 3/2
+n , (2l+1) (cos q, —sin q, ) e dE,2 . 2 d'ql g/g~ F.D.

ynKT g
0

~ ~

(40)

where use has been made of Eq. (32) and the
identity sin'g, = 1 —cos'p, . The first and second
terms will be recognized as just the general two-
body (no bound states) contributions of the first
and second virial coefficients to the equation of
state. " The third term must therefore represent
the overpressure error made in assuming that an
unstable particle will remain intact and will be
specularly reflected by the walls of a container.
This illustrates the point raised in the Introduction,
namely, that the interaction properties of unstable
particles are quite different than those of particles
with bound substructures. The inadequacy of the
approximation that both types of particles interact
in an identical manner with the containing walls
(I,=I, ) is most strikingly revealed in the presence
of this unwanted overpressure term.

It is to be noted that the general solution to the
momentum transfer problem of an unstable par-
ticle colliding with a plane interface would con-
stitute an independent derivation of the Beth-Uhlen-
beck expression for the second virial coefficient. "~"
The intention here, however, is to determine «„
and this may be accomplished by demanding that
Eq. (39) be consistent with the form of the second
virial coefficient. The only way this is possible
3.S 1f

e-8/ ET dE
dZ

'
0

or, by Eq. (32),

I = — '-(4sinq —1)e ~ dE.
t'"

dg
l dE l

0

(41)

Using Eqs. (29), (34), (35), (39), and (41), one
obtains for the equation of state of an ideal un-
stable particle gas

KT ),mZTj v

&&
' (4 sin'q, —1) e ~ dE . (42)

0

This is the simplest (lowest order in X') possible
equation of state, and it is valid in the low-density
high-temperature limit for the case where the in-
teraction potential between two stable particles is
attractive but has no bound states.

While of passing interest, Eq. (42) would seem
to be of little practical value in calculating equa-
tions of state, since this may be done directly
through Eq. (39). The motivation for deriving
(42), however, was not to exhibit any usefulness
it might possess but rather to demonstrate its ex-
istence. The existence of an unstable particle gas
pressure along with well defined number densities
and Maxwellian velocity distributions should pre-
sent convincing evidence that, within the context
of the assumptions which have been made, a gas
of unstable particles behaves very much like an
ideal gas of stable particles. The question then
arises as to just how much "reality" can be as-
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signed to an unstable particle gas'P That is, are
the words unstable particle gas just a concept or
are they physically manifested by measurable ef-
fects'? This question will be dealt with in Sec. 6.

Before closing this section, it should be men-
tioned that the form of the second virial coefficient
referred to, and the equation of state (39), were
derived under the assumption that the interacting
particles, regardless of the statistics they obeyed,
are spinless. The generalization to the case of
spin is straightforward and may be found in Ref. 13.

6. CORRECTIONS TO EQUATIONS OF CHEMICAL AND
NUCLEAR STATISTICAL EQUILIBRIUM

As evidenced in Secs. 3 and 4, the chemical
equilibrium approach to unstable particles is only
valid under very special circumstances. In this
section, it will be argued that if one accepts the
reality of unstable particle gases, then one must
also admit the possibility of corrections to the
equations of chemical and nuclear statistical equi-
librium, as they apply to stable particle abun-
dances. In order to keep the mathematical nota-
tion at a minumum, a simplified version of the
general problem shall be studied. Generalization
to the complete case will be obvious.

Consider a gas in chemical equilibrium where
the different chemical or nuclear species are just
2, 3, 4, ..., x-body bound states of some funda-
mental constituent to be called the one-body par-
ticle. Assuming all constituents to be spinless
and to have no bound excited states, Q„ is defined
as the energy needed to break up an z-body particle
into the x one-body particles composing it. With-
out specifying the different chemical or nuclear
reactions which transmute one species into another,
it is possible, through Eq. (12), to express the
equilibrium number density of any constituent in
terms of the one-body particle number density:

x„=pe,)"(
"

) ( )3/2 Qz/Kr

n„= N„+ Q ) K;„(1+5)„), (44)

where N„ is given by Eq. (43), and, from Eqs. (10)
and (11),

2~I' P (n+ 1)
z,r z r

7rzr

x 2 l sing e-EIETdEdg

0 dE
(46)

K;„is the total number density of unstable par-
ticles that constituent y forms with constituent i
for all values of the angular momentum l.

~ The difference between Eqs. (43) and (44)

body particles, and it is not immediately clear
whether Eq. (43) includes particles in this form.

To illustrate, recall Fig. 1 in Sec. 3, which dis-
played the fraction of z particles in the form of
He when the z particles were imbedded in a hot,
dense neutron gas. Do ~ particles which are
temporarily interacting with a neutron participate
in nuclear reactions at the same rate and in the
same way that free n particles doP For that
matter are free neutrons chemically indistinguish-
able from neutrons in temporary unions with n
particles'? Stated in these terms the answer would
in general appear to be no. We should not, how-
ever, be too emphatic in this "no" since it is not
difficult to imagine situations where the energies
of a chemical or nuclear reaction are such as to
completely neglect the presence of one of the par-
ticipants in an unstable particle.

If it is assumed that unstable particles are chem-
ically distinguishable from stable particles, then
it is clear that Eq. (43) can only refer to particles
which are free in the noninteracting sense. To
find the total number density of a particular con-
stituent, one needs to add its free and interacting
number densities. If the xth constituent can form
unstable particles with itself and all the other con-
stituents in the gas then its total number density is

x=1, 2, . .. . (43) ~n„=Q,. Or, ,„(1+6,.„), (46)

Equation (43) is just a special case of the equations
of chemical and nuclear statistical equilibrium and
the number densities appearing in it are always
termed "free. " The term "free" in the chemical
equilibrium sense means not bound up in some
other form, whereas throughout this work it has
been used to mean not interacting. The distinction
is important because a certain fraction of the two-
body, three-body, and z-body particles will form
unstable particles with each other and with the one-

are corrections to the equations of chemical and
nuclear statistical equilibrium. While these cor-
rections are in general small it still might be pos-
sible to detect them experimentally. For example,
any sampling process which made high-precision
measurements of the total number densities would
be adequate. This could be achieved by, say, a
chemical analysis of the molecules escaping from
a small hole in a container filled with a gas in
chemical equilibrium. Any systematic difference
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between these measurements and the predictions
of Eq. (43) which could be accounted for, at least
in part, by Eq. (46) would be a confirmation of
the chemical and physical presence of unstable
particle gases.

Attention must be called to the fact that Eq. (46)
is an approximation to the actual corrections.
That a particle involved in an interacting pair (un-
stable particle) will participate in chemical re-
actions differently than if it were free should be
clear. That it will not participate at all, as was
assumed in deriving (46), is a question which can
only be answered by a deeper understanding of the
interaction properties of unstable particles.

7. CONCLUSIONS

A word of caution is in order here. Up to now

the discussion has been restricted to the positive
phase shifts expected in the scattering from at-
tractive potentials. Actually, the restriction was
really to positive collision lifetimes or by Eq. (1)

to positive values for the energy derivatives of
the scattering phase shifts; dq/dE & 0. This
should be kept in mind for all the equations ap-
pearing in this work, otherwise, seemingly bi-
zarre phenomena like negative number densities
for unstable particles may occur.

The possibility of extending the unstable par-
ticle formalism into the region dq/dE & 0 by means
of a gas of unstable "quasiholes" with negative
lifetimes and negative particle number densities
is presently under consideration.
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