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The problem of electromagnetic fluctuations in a cavity is treated in some generality using

the fluctuation-dissipation theorem. The general line shape of the energy spectrum is derived.
This reduces to a Lorentzian when E" (cu), the imaginary part of the dielectric constant, is
small and varies slowly with frequency. Deviations from the Stefan-Boltzmann law are calcu-
lated in detail for a cubical cavity.

I. INTRODUCTION II. FLUCTUATIONS IN A CAVITY

In this paper, the problem of electromagnetic
fluctuations in a cavity is treated in some gen-
erality, using the fluctuation-dissipation theorem. '
We first briefly state the theorem: If a system
originally in equilibrium with unperturbed Hamil-
tonian Ho and density matrix p = exp(- H, /cT }/
Tr exp(- H, /vT) is under the action of external
perturbing forces E'f(t) such that the perturbing
Hamiltonian may be written

Let us consider a cavity of general shape with
perfectly conducting boundaries, and assume that
the medium inside the cavity is isotropic and
homogeneous so that the medium has, in general,
a. frequency-dependent dielectric constant e(u&)

and a magnetic permeability g(~}. They are in
general complex. Then

B(~)= g(~)H(~),

where, e.g. , E(&u)= j e E(r, t) dt .

where Ai are macroscopic internal variables, and
if the corresponding macroscopic equation of linear
response can be written in the form

Let Q ~(r, X~) be a complete set of orthonormal
functions satisfying

curl curl P (r, A. )=X 'P (r, A ),
Q Q G G CL

A.(~)= o. .~(~)&~(~),
z sk

(2) (s)

where the expression on the right-hand side is
summed over k, and

etc. , then th Fourier time components of the cor-
relations of the internal variables —,

'
(A~A& (t)

+A. (t)Af) are given by

where P represents eigenvalues other than X~,
required to specify an eigenstate uniquely, and
n is a unit vector normal to the boundary surface.
Then we can expand all electric fields in terms of
Po,p(r, &o, ) and all magnetic fields in terms of the
orthonormal set of functions curl P p(r, &z)/&~.

Let there be a perturbing Hamiltonian of the
forDi

H, = —J [E K(r, t)+H L(r, t)/4mjd'r,

where (A.A. } is defined byj cu

where K(r, t) and L(r, t) are the external forces,
and E and H are electric and magnetic fields con-
sidered as internal variables. Then Eq. (5) is to
be written'

—,'(A. ((u)A. ((u')+A. ((u')A. ((o) )i j j i

= 2v(A. A. ) 6(u)+(u'),
CO

D(r, (u) = e ((u) E(r, ~) + K (r, (o),

B(r, (u) = p, ((o}H(r, (u)+ L(r, (u),
(s)

and z is the Boltzmann constant. The symbol ( )
denotes statistical average with respect to p.

while D(r, u&) and B(r, ~) satisfy the Maovell equa-
tions
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curl E(r, e) = (ie/c) B(r, v),

curl H(r, &u) = —(i~/c) D(r, (u) .

Of particular interest are the correlations at the
same spatial point r:

Expand the fields in terms of their eigenfunctions:

-E(r, (u)-

D(r, ~)
-K(r, u))-

-En p(~)—

D p(~) y p(r, X ),
-K p((o)—

(io)

—c.c. r, A. ~ r, A. (16)

8
p

((u)

-&n p(~)-

Substituting these in Eqs. (9) and utilizing the
orthonormal properties
of pn p(r, A. n) and V x p n p (r, Xn)/An, we have

Vx Q
~ Vxp

The energy spectrum is given by'

e ((o) (u'e((u) I. (&u)

417 47f[M e(QP) p, (M) —A. ]

i~~ p, '~'(~ ) e'~'((u }Sr ((o)n n n np
4m[(u'e ((o) iL(a)) - z 'j

(&) i&~ g"'(~ )e"'(~ )I (~)
np n n n np
41)' 47)'[(d E (Q)) p, ((d) —X ]

~'p(~) & (~)

4m[(u'e((o)p, ((u)-x '] '

(i2)

(~(~)&= . « ~ E& + " (H H&,16'' d+ v d+

(»)

where (E ~ E& and (H ~ H& are given by Eqs. (16)
and (17).

We may average over the volume by 1/VfdV, de-
noted by the symbol ( &. By the orthonormality of
the eigenfunctions,

2k
4m V[exp(h)d/~T) —1]

The fluctuation-dissipation theorem can be applied
to Eqs. (12) and (13) directly. Thus,

i4))'h

np n'p' ar exp(R&u/eT)-1 nn' pp'

d((u p) (o'e
X -C. C.

d(d (d 6p. —A.

If & and p, are real constants, then we have
(d e((d)

~'e((u)y, (a)) —z * ' ') '

nP n'P' ~ exp(h&u/~T)-1 nn' PP'

(14) 540

(~( }&=V g (g / } 1 6( — ).
(2o)

In the high-frequency limit, we may use the asymp-
totic expression for the density of eigenstates

uP g((o)
~'s(~)g((o) —x ' ' ') '

where c.c. means complex conjugate.
The spatial correlations can be obtained easily.

Vk 'dk V(~ p, }3"~

p
J 7)' J

n n Q

C

Then we obtain

(21)



1172 K. M. CASE AND S. C. CHIU

@(~~ )3/2~3

7]2c3[exp(h(u/]( T) —1]

This is the familiar Planck distribution. Similarly,
if the volume V- ~, ( U(&u)} becomes the Planck

distribution.
In general, if we separate the real and imaginary

parts of ~((u) and g((u):

u(&u) = g'(&u)+ 2]]"(&u), ~(&u) = e'((u)+ i~"((u);

then Eq. (16) becomes

87TRd(E(r) ~ E(r)) = g F((u) (t) (r) ~ P (r),
(]., p

(22)

where
]/. ((u){c g + E ]], )(u —g [(u (6 p —6 ]], ) —X ]

[(u2(~d I/I etd]/tl) ]& 2]2 4(u(~II~I + ~d]/dd)2

For simplicity, let us put p, (&u) =l. Then we obtain

E ((u)=E((u)l =(u'e"((u)([(u'e'((u) —Z ']'+(u c'"((u)] '
1 p. =1 Q

(24)

Equation (24) gives the general line shape of the energy spectrum I in the limiting case when e (&u)-0,
E, ( )(u-5 function. When e"((u) is small and varies slowly with frequency, we may expand E, ( )&uaround

~ = ~„where

(u f ((u ) —]& = 0 .1 1 Q

Thus, we find

f '(ll)

I(
) f"(lf ) df" (fl ) I f"'(ll ) ) f" (Ql, ) df "(ff, )I I2 I I2 II

(25)

where Ã22(&u, } is a constant depending on &u„ i.e. ,

2A, 2 I
K2'((u, )= +, + —6"((u, )

n 1„d~"
+a 2

Equation (25} is the usual Lorentzian form which gives approximately the shifts of the peaks from the
eigenfrequencies and the linewidths.

Going back to Eq. (16), we may use Carleman's theorem4 for the asymptotic behavior of (E(r) E(r))
at high frequencies:

2dg 2 [ p, '(&u) C ((u) —p."((u)(C '((u) —A. ')]
(«(«) «(~) (2 n 8]/h(u' 2 1

(u p2c3 exp(h(u/](T) —1 [C '((u) - ]& ']'+ C '((u)
1 Q 2

(26)

where C, '(&u) =(u'[~'((u) ]/, '(&u)-~" ((u) ]],"((u)], C, (&u) = (u'[e" (&u) p'(&u)+ ~'((u} p" ((u)] . (27)

The integral in Eq. (26) may be carried out to give

2' p, ((u)C2(&u)&2(f) 2(f)) =,
( ( / T) ] (

*) —&ff"(fl)f' (ll)), (26)

where C,'((u) = —,
'

C,'((u) f-1+[1+C,2((u)/C, 4((u)]"2] .
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When C, «C, '(&), we may expand the expression in powers of C, /C, '. In the lowest approximation we have

@(d(E(r) E(r)) =4p'((u) [e'((o)p, '((u)]'" (29)

Similarly, we will find

@(d3
(H(r) H(r)) =4e'(~)[e'(~) p, '(~)]"' (30)

Letting p, '=1 and using the expression for energy density, we find the energy spectrum to be

( ( ))
e ((d )d(QJ/6 )/d&

7l' C exp(@(u/~T) —1
'

This agrees with Ref. 2 [Eq. (89-2)] for an infinite medium.

III. FLUCTUATIONS IN A CUBICAL CAVITY

Finally, for the simple case of a cubical cavity, explicit calculations are carried out to show the devia-
tions from Stefan-Boltzmann law, and the relative contribution of the lowest modes to the total energy.

Let the length of each side of the cube be L. Then the characteristic frequencies are

=wc(n '+n '+n 'P'/La 1 2 3
(32)

where n„n„and n, are integers. The allowable modes are restricted by the equation div D = 0. Taking
into account the degeneracies, the integral of Eq. (20) over frequency, i. e. , the total energy density, is

m@c(n, '+ n, '+ n, ')"'/L
4V exp[abc(n, '+n '+n, ')' '/LKT] —1

By~ 82p Sg= +0

3 w Ac)n, )/L yT
4V exp(vlcin, I/L~T)- 1 2V

'

The second and third terms are due to the fact that there exists no mode where two or more n elements
are zero.

Using the Poisson summation formula and the formula

00 Q
sinaxdx 1 e +12'

1
4 a 2a

p e —1 e —1
(34)

Eq. (33) may be transformed to

|(g( ))
&'(&T)' @c g (&T)' 1 exp(2XLT [ vl) ~exp(ALT ( v [)

J
' »(«)'' (4 )'L Ivl AITiv) 2[exp{ALTivi) —1]

V~p V2p V3= —oo

fv)4 0

T' 3~ g . 1 (ZLT)'
16+2 2/1, 4 2p 2 2

V =-1

a+0

exp(ALT Iv, () ~T
[exp(ALT ) v, ) ) —1]' 2' (35)
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where ] v[ =(v, '+ v, '+ v,')"',
= 0. 549 (cm K) ' .Sc

(&6)

(&7)

the method described in Ref. 4. The ratios of the
last four terms and the first term of the right-
hand side of Eq. (40) are easily calculated. They
are

) v/IO

and =1.64,
v =11

we have

Note that the first term on the right-hand side of
Eq. (35) is the familiar Stefan-Boltzmann law.
All other terms are corrections. Also as T-0,
f (U(u&)) de - T instead of - T', as given by the
Stefan- Boltzmann law.

At high temperatures, the first term is the dom-
inant term. We expect that there exists some
temperature range in which the exponential terms
in the sums are still small, but the other correc-
tions become important. Using the approximations

', =15.7, (»)

2 2
second term 15 Sc 25
first term 47t LKT LT (41a)

third term
first term

tr
(

s~) (g0. 9)

4
fourth term+ fifth term 14.0

first term LT (41c)

Thus at LT & 20 cm 'K, these terms become im-
portant, while e ~L is still small. Hence, for
cavities of average length in the order of centi-
meters, we expect to find marked deviation from
T4 law for temperatures below about 10'K.

The ratio of the energy in the lowest mode and
v'(zT) 4/15(h c)' is also readily found. It is ap-
proximately

v'(~T)' v(~T)' ~T
15(h c)~ 4L'kc 2L'

1 45' 2 hc
exp(102/LT) —1 v LI&T

+ 15.7-( —,, —1.64, + 0 (e ) .kg 3K -ALT
(4o) 48. 5

exp(102/LT) -1 LT

We observe that there is no term depending on

1/L, which would be the surface-area-dependent
correction to the asymptotic form of the density of
states given by Eq. (21). Actually, the vanishing
of such a term can be proved in general, using

This begins to become a significant portion when
the other terms of Eq. (40) also become large.
Of course, when T is very low, the only significant
term is zT/2V, which is due to the forbidden mode
when all n's are zero. '
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