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Characteristic quantum features in atomic collisions are analyzed in the eikonal approxi-
mations. Numerical illustrations are given for the (He', He) system, using a set of model

potentials which provide a reasonable description of the interaction between the ground states
of He' and He in the quasiadiabatic (diabatic) limit.

I. INTRODUCTION

In paper I of this series, ' a method for studying
rearrangement collisions between atoms and
molecules was formulated. It was shown that the
use of the eikonal approximation permits the cou-
pled equations of collision theory to be reduced to
one-dimensional equations defined along classical
trajectories. In paper II of this series, this ap-
proach was further developed. Several practical
techniques for evaluating wave functions and
Green's functions were introduced. Numerical
illustrations of these techniques were carried out,
particularly for the (H; H) collision system, in
the classical limit of the eikonal approximation.
In this paper, we are concerned with the applica-
tion of the eikonal approximation to collisions
where a classical description fails. The problem
of nonadiabatic transitions will be considered in
paper IV of this series.

Before beginning the application to nonclassical
collisions, it is useful to review and compare the
criteria for the validity of the classical and ei-
konal description of collisions. We will again con-
sider cases where the potential energies of inter-
action have ranges of order ao(the Bohr radius)

[Eq. (II 1.Ba)] or from the propagation amplitude
A(R, R')[Eq. (II 6. 3)] of the Green's function (R[G I

R') [Eq. (II l. 12)] in the eikonal approximation.
This gives, except for certain singular regions in
the asymptotic domain, an error of order [Eq. (II
l. 14)]

q(eik)= he, /pa, -(9202.„Z') '", (1.2)

with M/m = 920',«

q(eik) «1 (1.4)

The error resulting from the classical descrip-
tion of the collisions, on the other hand, is of
order [Eqs. (II 5. 19) and (II 1.25)]

d2e de sp -s ( @ &/~

(9KL4,~~

where 5 is the impact parameter. The criterion,

where e, is the classical scattering angle, M is the
reduced mass of the colliding particles, and nz is
the mass of the electron. At energies e~—=p /2M,
much larger than the Rydberg energy, it is clear
that, for particles of atomic mass, we have

lim V(R) &0(1/R'")
R/ao- ~

Q)Q
q(class) «1,

and have strengths of order 1 Ry, recognizing that
V may be singular at R = 0.

The error resulting from the use of the eikonal
approximation may be estimated from the correc-
tion factor [Eq. (II A. 2)] for the amplitude A(R)
[Eq. (II 1.Bc)] of the eikonal wave function P(R)

gives, therefore, an upper bound to the c.m. en-
ergy for the validity of the classical description.

II. EIKONAL APPROXIMATION FOR SCATTERING
AMPLITUDE

The analysis of collisions is appreciably simpli-
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fied when the conditions are satisfied for the
eikonal approximation' [Eq. (1.4)]. In this case,
the collision may be described by the eikonal wave
function [Eqs. (I 4. 6) and (I 4. 35)]

V(Z) =-1 —[i —V(~)/z, ]", (2. 11)

with 4(z, b) = p—J' &-.'[O' —P'(z')]+ &(8)/dz ', (2. 1o)

4'(R) = (2m) A(R) e' ' ',

where S(R) is the eikonal

S(R) = J z(R')ds

(2. 1)

(2. 2)

where p(z) is the angle between the tangent vector
t(z) and the z axis, p=lim P(z), as z-~ is the
asymptotic angle, and cp is the azimuthal angle in
a cylindrical coordinate system with a volume
element

(2. 3)zz =P —2MV(R),

p»' 1ssdA(R) = — sxp —— —s —ds I. (S. S)
K 2 Q 8] (R2

Here ds is an element of path length, p is the
magnitude of the relative momentum of the colliding
particles, 6t~ and (Rz are the principal radii of
curvature of the surface of constant eikonal which
passes through R, and the path integrals are taken
along the classical trajectory.

%hen the eikonal wave function is utilized, the
T matrix for scattering from an asymptotic mo-
mentum p into an asymptotic momentum k may be
written to order q(elk} as

d B = pdpdzdy. (2. i2)

The T matrix then takes the approximate form

T =(2m) ' fpdpdzdy V(R)A, (R)

X e-iPbsin&cosy e ioQ, b) (2. iS)

8,pao«1, 8 pao«1, and 8~8, ~pao« I

It should be noted that this expression for T re-
mains valid when the classical limit is not valid.
This is because the following inequalities:

T = (2v) fd R V(R)A(R)

&& exp[i[S (R) -k R]) . (2. s)

are satisfied when the classical limit fails as
I 0, Ipao becomes comparable to unity.

To relative order t8, ) we may set, for the
amplitude A(R) for the eikonal wave function,

S(R) =S()+S,+S, +O(g, ), (2. 6)

This integral expression for T can be evaluated in
approximations which are consistent with the
eikonal approximation.

Following paper II, we write, for the eikonal,
the expression [Eq. (II 1.19)]

A(R) = 1

and take the following approximations:

pdpdz:—b db dF

V(R)dz--=-(p/M)de .

(2. 14)

(2. is)

(2. 16)

where qz —=pao
~
8, = [9202,f~/&'] (2. 7)

This then permits us to write

T= —[v/(2m) ] f bdbd4e' f dy e

[The approximation in which Sz is neglected in
Eq. (2. 6) for S(R), is called the straight-line ap-
proximation. z] If we suppose that in addition to

g~, the quantity

where v-=p/M is the asymptotic relative velocity.
We then obtain the expression [Eq. (II 5. 11)]

no -=Phoo 3 (2. 6)
T= —[v/i(2m) jJ bdbZO(pbsin8)(e' e) —1), (2. 17)

is also small, (S~ (R) -k R) in Eq. (2. 5) takes the
form [Eq. (II 5. 6)], in the classical limit,

where C (b) —= lim4(Z, b), as I-~ (2. iS)

S& (R) -k R = C (z, b) pb sin8 cos y, - (2. 9)

This is the expression we will use for the analysis
of the characteristic quantum features in atomic
collisions.
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III. APPLICATION TO NONCLASSICAL COLLISIONS 8= (e,(b,) (, (s. 3)

In this section, the approximate method de-
scribed in Secs. I and II is applied to a system
with the following set of interaction potentials (in
rydberg units):

where b, is the impact parameter at the point of
the stationary phase and e, is the classical scat-
tering angle. This then leads to the classical scat-
tering matrix [Eq. (II 5. 20)]

V (R) 1 -6yR n Rae 5gz

V~(R) = V„(R)+ n ~e
' s

(s. 1)

(3 2)

r=-(4m'M)-'/ '
(sin8 d8

x exp(i[@(b,) —e,(b,)Pb,8]]
where n, ='7. 9989, +2=1.219, @3=9.55531,
5, = 2. 1696, 52 = 1.56105, and 63 = 1.253921. This
set of potentials provides a reasonable description
for the interaction between the ground states of
He' and He in the quasiadiabatic (diabatic) limit.
A detailed investigation of these potentials is giv-
en in Appendix A where comparisons of the theo-
retical results (based on these potentials) with
experimental He'-on-He measurements are made
for differential scattering and electron-transfer
cross sections. In this section, we will treat the
system with the above set of potentials as a model
(He', He) system.

The differential scattering and electron-transfer
cross sections are given, respectively, by

de, de.xexp i4 e,(b,) —2+ (s. s)

where we have defined e,(b) = e,(b)/ [e,(b) [.
The ungexade potential V„(R) given by Eq. (3.1) is

not a simple monotomic attractive potential and is
capable of giving rise to several points of station-
ary phase. This then gives rise to interesting in-
terference patterns. As long as these points of
stationary phase are well separated, the scattering
observed at an angle 8 may be calculated from the
sum of the contributions coming from impact pa-
rameters at these points of stationary phase:

d+s dog dog do
dQ dQ dQ dQ

duvet

do g did„dG g

dA d dQ dQ

dO'„4 4M ~ 2

(s. 3)

(s. 5)

(s. 6)

where the sum over j sums over all the participat-
ing impact parameters.

The model potentials given by Eqs. (S.1) and
(3. 2) have the advantage of permitting the integrals
which appear in C (b), e,(b), de, /db, etc. , to be
evaluated analytically in the straight-line and an-
gle approximations for the trajectory. For exam-
ple, the classical scattering angle for the unge~ade
mode of interaction takes, to the order of O(8,),
the form

= Sv MRe(T~T„) (3. 7)
e «&(b)= 8'"'(b) =( (m/M)

x [n,b,K,(bp„) +nab'„Kq(bzb„) —n&Gab'„Ko(bzb„)] (3.11)

where do~/dQ, do,/dQ, and do&/dQ correspond to
the contributions to the cross sections from the

geode interaction (V~), the ungerade interaction
(V„) and their interference, respectively. In the
eikonal approximation the T matrix is given by
Eq. (2. 17) to the order of O(qz) [see Eq. .(2. 7)].
This integral expression for the 7." matrix is eval-
uated for the model potentials for several limiting
cases.

When the condition for the classical description
is satisfied, the integral may be evaluated by the
stationary-phase approximation

with ~ = (e/a, p)(M/m),

where $ is a dimensionless quantity and K„(z) is
the modified Bessel function of order p and argu-
ment g.

&1/2 v

1' @+z 2
(s. 12)

The results of the calculation is shown in Figs.
1-3 for three different c.m. energies. To assess
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FIG. 1. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings in the ab-
sence of the nuclear sym-
metry as functions of c.m.
angle in the WEB (solid
line); the stationary-
phase (dashed line) and

the eikonel (bold-face
solid line) approxima-
tions for a model (He,
He) system fzqs. (3.1)
and (3.2)] at an energy

of 15 eV in the c.m.
system. Calculations
for the latter two approx-
imations are reported
for both the straight-
line and angle approx-
imations for the clas-
sical trajectories.

the reliability of the classical approximation, we
have included in these figures the results of the
%KB approximation using these potentials by sum-
ming over all the significant partial-wave contri-
butions. It is seen that the classical approximation
gives a very reasonable description of the multi-
path interference on the bright side (8 & 8,) of the
rainbow angle 8„. On the dark side of the rainbow
angle (8& 8„), the agreement between the WEB and

the classical approximation is no longer as encour-
aging as for the bright side. The angle approxima-
tion for the trajectory, nevertheless, yields results
which are in better agreement with the WEB re-
sults. The inclusion of nuclear symmetry does
not change this observation as shown i.n Figs. 4-6.
The classical approximation, however, over ex-
aggerates the nuclear -symmetry oscillations.

The "angle" approximation which is described in
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FIG. 2. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings in the ab-
sence of the nuclear sym-
metry as functions of c.m.
angle in the WKB (solid
line); the stationary-
phase (dashed line) and

the eikonel (bold-face
solid line) approxima-
tions for a model (He',

He) system fzqs. (3.1)
and (3.2)] at an energy
of 50 eV in the c.m.
system. Calculations
for the latter two ap-
proximations are re-
ported for both the
straight-line and angle
approximations for the
classical trajectories.
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FIG. 3. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings in the ab-
sence of the nuclear
symmetry as functions of
c.m. angle in the WEB
(solid line), the stationary-
phase (dashed-line) and

the eikonel (bold face
solid line) approxima-
tions for a model (He',

He) system [Eqs. (3.1)
amd (3.2) ] at an energy
of 300 eV in the c.m.
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classical trajectories.
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approximation even at moderately large scattering
angles.

The classical scattering matrix provides no

information for rainbow scatterings and for the
forward and backward (glory) scatterings. This
is due to the vanishing of d8/df, and sin8, respec-
tively. For these cases, the integral expression
for the T matrix must be evaluated. Before car-
rying out the numerical evaluation, it is instruc-
tive to examine some approximate expressions ~

'
which may be derived from Eq. (2. 17) near the

paper II differs from the straight-line approxima-
tion only by the addition of the term 54 in the
phase C.

54 = $b V(d) tan(2 8,)

d =—b/cos(2 8,)

(3.13)

(3.14)with

5.0 FIG. 4. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings as functions
of c.m. angle in the %KB
(solid line), the stationary-
phase (dashed line) and

the eikonel (bold-face
solid line) approxima-
tions for a model (He',

He) system [Eqs. (3.1)
and (3.2) ] at an energy
of 15 eV in the c.m.
system. Calculations
for the latter two ap-
proximations are re-
ported for both the
straight-line and angle
approximations for the
classical traj ectories.
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where V is in rydbergs and 5 is in Bohr radii. It
is interesting that this simple modification provides
a significant improvement over the straight-line
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FIG. 5. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings as functions

of c.m. angle in the WEB
(solid line), the stationary-
phase (dashed line) and the
eikonel (bold-face solid
line) approximations for
a model (He', He) system
[Eqs. (3.1) and (3.2)] at
an energy of 50 eV in

the c.m. system. Cal-
culations for the latter
two approximations are
reported for both the
straight-line and angle

approximations for the
classical trajectories.

rainbow and the forward and backward scatterings.
Near a rainbow angle 8 the phase C (b) may be

expanded in terms of the Taylor's series near the
rainbow impact parameter b„which is defined by
the relation

Snbstitution of Eq. (3. i6) into Eg, (2 i 7) yields

e exp(i[y(b„) -e,(b„)-,'wP
4wa [2' sin8~]

8„= ~e,(b„) (3. is)
b' dbexp ip ec br

We have

e(b)=- e(b„)+Pe,(b„)(b b„) + ,' P(d'-8, /db„-)(b -b„)'.
(3. i6) with

1 dex(b b„)+——
d

P' (b —b„)

y(b„) =C(b„) -e,(b„)pb„8,

{3.iv)

(3. ia)
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FIG. 6. Comparison
of the differential cross
sections for the gerade-
and ungerade-potential
scatterings as functions
of c.m. angle in the WKB
(solid line), the stationary-
phase (dashed line) and

the eikonel (hold-face
solid line) approxima-
tions for a model (He',
He) system [Eqs. (3.1)
and (3.2)] at an energy
of 300 eV in the c.m.
system. Calculations
for the latter two ap-
proximations are re-
ported for both the
straight-line and angle
approximations for the
classical trajectories.
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Ai(g) =—I
23

exp(izt+ —,it )dt (S.19)

we have from Eq. (3.17)

where we have utilized the asymptotic form for the
Bessel function.

The integral in Eq. (S.17) may be expressed in
terms of the Airy integrals

For the forward glory, a similar expression with-
out the mpb, term (in the total phase) may be ob-
tained. From these expressions one expects, be-
cause of Zo(pb sin8), oscillations in the glory.

Having examined the qualitative features of a
rainbow and the forward and backward glories, we
now proceed with a more accurate numerical eval-
uation of the integral for the 7 matrix, Eq. (2. 17).
We divide the integral, for numerical accuracy,
into many small segments

4 M 2s'8 P db
J Jo(pb sin8)(e ' (~' —1)bdb

xAi(z„) exp(i[y(b„) —e,(b„)~7[]] (3. 20)
by +1

f Z,(pb sin8)(e""' —1)bdb
by

where

2d2e, -"'
e„=p —

db; [e,(b„) —e,(8)] .
r

(S. 21)

e(b)=-e(b, )+p~(b -b,)+-', p(de, /db, )(b -b, )'.
(S. 22)

Substitution of Eq. (3.22) into Eq. (2. 17) yields

T= iaexp(i[O-(b, ) -mpb, ]) bdb
4m 0

x exp [i[epp e-,'p(„)(p -p,}'}}Je(pe eiep}

(3.23)

Utilizing an integral representation for Jo(pb8),
Eq. (S.23) takes the approximate form~

d8, ~d8,xexp i C(b, ) —~pb, =,'m ' ' .(3. 24)

The expression for T given by Eq. (S. 20) has been
investigated by Airy for the corresponding prob-
lems in optics. It is found that the Airy integral,
on the bright side of the rainbow angle, has an os-
cillatory behavior and, on the dark side, it falls
off rapidly. This is the characteristic feature of
rainbow scattering.

For forward and backward scatterings, the inte-
gral for the T matrix may also be evaluated for
those values of the impact parameter which con-
tribute most to the glory. We consider, for defi-
niteness, a backward glory. The phase C (b) near
m may be approximated by the expression

= Q~ —
8

J',(pb/sin8) — 8' J, (pb/, isin8)
Jb/ . b, ,i

by +1
+ f Z,(pb sin8)e""'bdb~~

by

(3.25)

The last integral in Eq. (S. 25 is evaluated numer-
ically with O(b) approximated by the expansion

@(b)=C'(b/ 1/[e) +p8(p{b/ 1/2){b b/e 1/[[)

where

d.6, 2+ ,p (b--b/, i/3) + ~ ~ ~

yy 1/2

b/ i/}[= (({b/+b/e i) ~

{S.25)

Calculations have been carried out for both the
straight-line and "angle" approximations for the
trajectory. The results for the geode and un-
gemde contributions to the differential cross sec-
tions are shown in Figs. 1-6 for the rainbow and
forward glory. It is seen that the integral results
agree reasonably well with the WEB results. The
angle approximation again predicts results which
are in closer agreement with the WEB results.
At regions outside of the rainbow and glory, the
integral results become close to the results pre-
dicted by the classical approximation.

We have also compared the numerical results of
the integral with its limiting approximations given
by Eqs. (3. 20) and (S. 24) and found that these ap-
proximations are reasonable only in the immedi-
ate neighborhood of a rainbow and glory, respec-
tively.

Comparisons of the various approximations for
the differential scattering and electron-transfer
cross sections are displayed in Figs. 7-9. It is
seen that the classical approximation is reasonable
for small angles on the bright side of the rainbow.
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FIG. 7. Comparison of the scattering and electron-transfer differential cross sections in the absence of nuclear
symmetry as functions of c.m. angle in the WKB approximation (solid line), the stationary-phase approximation with
straight-line (dashed line) and angle (dot-dash line) approximations for the classical trajectory, and the eikonel ap-
proximation with straight-line (bold-face dashed line) and angle (bold-face dot-dash line) approximations for the clas-
ical trajectory for a model (He', He) system IEqs. (3.1) and (3.2)] at c.m. energy of 15 eV. The differential cross sec-
tions are given in the laboratory system.

On the dark side of the rainbow the classical ap-
proximation becomes less reliable in particular if
the straight-line approximation is adopted for the
trajectory. The angle approximation, on the other
hand, appears reasonable on the dark side of the
rainbow scattering. The agreement, however,
decreases with increasing angle. In the rainbow
scattering region, the angle approximation is again
more accurate than the straight-line approximation.
The quantitative features of these various approx-
imations remain the same when the nuclear sym-
metry is included in the calculation. This is shown
in Figs. 10 and 11.

A comparison of the electron-transfer probability
for the various approximations is given in Fig. 12.
The agreement of the WEB results with the integral
and classical result is again reasonably good with
the angle approximation for the trajectory.

Through this study, it becomes clear that the
analysis of scattering can be appreciably simplified
when the conditions are satisfied for a classical
and eikonal description.

APPENDIX A: INTERACTION POTENTIAL BETWEEN
THE GROUND STATES OF He+ AND He

For the interaction between the ground states of
He' and He we have, in the adiabatic approximation,
a geode and an ungexade potential energy of inter-
action corresponding to the He& lowest Z„' and

g~ adiabatic electronic states. Several calculations
tions for these states have been made. The He&

lowest Z„' state is in the (la~) (1o„)molecular con-
figuration and approaches in the united-atom limit
the Be' (1s) (2p) atomic state. The He2 lowest
Z~ state at large values of R is in the (lrr, )(lo„)2

molecular configuration and becomes degenerate,
in the neighborhood of R=—2 a. u. , with the (1o~)
(2o~) molecular configuration which is derived
from the He'(1s) and He (ls)(2s) atomic states.
This degeneracy is removed in the true adiabatic
representation through configuration interaction.
The Hea lowest Z~ state then follows the lower
curve and takes the (la~) (2o~) molecular configu-
ration at values of B smaller than 2 a. u. Finally,
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FIG. 8. Comparison of the scattering and electron-transfer differential cross sections in the absence of nuclear
symmetry as functions of c.m. angle in the WEB approximation (solid line), the stationary-phase approximation with

straight-line (dashed line) and angle (dot-dash line) approximations for the classical trajectory, and the eikonel ap-
proximation with straight-line (bold-face dashed line) and angle (bold-face dot-dash line) approximations for the clas-
sical trajectory for a model (He, He) system [Eqs. (3.1) and (3.2)] at c.m. energy of 50 eV. The differential cross
sections are given in the laboratory system.
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FIG. 9. Comparison of the scattering and electron-transfer differential cross sections in the absence of nuclear
symmetry as functions of c.m. angle in the WEB approximation (solid line), the stationary-phase approximation with

straight-line (dashed line) and angle (dot-dash line) approximations for the classical trajectory, and the eikonel ap-

proximation with straight-line (bold-face dashed line) and angle (bold-face dot-dash line) approximations for the clas-
sical trajectory for a model (He', He) system tEqs. (3.1) and (3.2)] at c.m. energy of 300 eV. The differential cross
sections are given in the laboratory system.
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FIG. 10. Comparison of the scattering and electron-transfer differential cross sections in functions of c.m. angle
in the WKB approximation (solid line), the stationary-phase approximation with straight-line (dashed line) and angle
(dot-dash line) approximations for the classical trajectory, and the eikonel approximation with straight-line (bold-face
dashed line) and angle (bold-face dot-dash line) approximations for the classical trajectory for a model (He, He) sys-
tem [Eqs. (3.1) and (3.2)] at a c.m. energy of 15 eV. The differential cross sections are given in the laboratory system
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FIG. 11. Comparison of the scattering and electron-transfer differential cross sections in functions of c.m. angle in
the WKB approximation (solid line), the stationary-phase approximation with straight-line (dashed line) and angle (dot-
dash line) approximations for the classical trajectory, and the eikonel approximation with straight-line (bold-face
dashed line) and angle (bold-face dot-dash line) approximations for the classical trajectory for a model (He', He) system
IEqs. (3.1) and (3.2)] at a c.m. energy of 50 eV. The differential cross sections are given in the laboratory system.
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FIG. 14. Comparison of the angle dependence of the

theoretical scattering differential cross sections (solid
line) as predicted by the model potential [Eqs. (3.1) and

(3.2)] with that measured (dot-dash line} by Lorents and

Aberth (Ref. 15) at a laboratory energy of 600 eV.

FIG. 15. Comparison of the differential cross sections
for the gerade- and ungerade-potential scatterings as
functions of c.m. angle predicted by the model potential

(solid line) [Eqs. (3.1) and (3.2) ] with that predicted by
the potential deduced semiempirically by Olson and

Mueller (dashed line) [Ref. 16].

forms for all internuclear distances [Eqs. (3.1)
and (3.2)]. The differential scattering and elec-
tron-transfer cross sections obtained with these
new potentials are compared with the experimental
results of Lorents and Aberth, ' and of Flelsch-
mann, Young, and Mcoowan'7 in Fig. 13 at a c.m.
energy of 50 eV. In Fig. 14 a similar comparison
is made for the differential scattering cross sec-
tion at a c.m. energy 300 eV. It is seen that the
agreement is very good at 50 eV but becomes
rather poor at 300 eV in the large scattering angle
region. This kind of agreement is consistent with
that obtained with the set of potentials constructed

by Marchi and Smith. ' Such a sensitive energy
dependence reflects, perhaps, the dynamical
nature of the diabatic states because a transition
is required in order for the Hem lowest E» state
to cross over to the upper state in the neighbor-
hood of 8™2 a. u. The recent work of Smith' on
the diabatic representation may provide a better
understanding of such diabatic states.

A comparison of the model potentials given by
Egs. (3.1) and (3.2) with that of Olson and Mueller
is provided in Fig. 15 in which the differential
cross sections for the gerade- and ungerade-po-
tential scatterings are compared.
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Fredholm Method. I. A Numerical Procedure for Elastic Scattering
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The Fredholm expansion of the determinant whose phase gives the elastic-scattering phase
shift is "summed" by use of numerical quadrature, reducing the calculation of the phase shift
to evaluation of a single finite-dimensional determinant. The method is essentially exact and
is applicable, without modification, to nonlocal potentials. Results for the low-energy static
and static-exchange scattering of electrons from hydrogen atoms are presented as a simple
illustration of the method.

I. INTRODUCTION

The theory developed by Fredholm' for the solu-
tion of certain types of linear integral equations
was first applied to problems in quantum scattering
theory by Jost and Pais in a discussion of the con-
vergence of the Born series. They show that the
Fredholm method allows the expansion of the par-
tial-wave scattering amplitude as the ratio of two
series, each of which converges absolutely for all
values of the coupling parameter X. The fact that
these series converge absolutely makes them of
great formal importance; however, Jost and Pais
mention the fact that the method does not seem to
lend itself to numerical computation, as the series
may converge very slowly, except in special cases.

A remark by Schwinger' and subsequent develop-
ment by Baker rekindled interest in the I'redholm
method: It may be shown that the phase of the par-
tial-wave Fredholm determinant is directly related
to the potential-scattering phase shift; as this result

depends only on density-of-states arguments' and
the use of free-particle wave functions, it is inde-
pendent of ordinary Schrodinger dynamics. This
latter fact suggested that the method might be use-
ful in high-energy physics where the dynamics are
largely unknown, but phenomenological potentials
might be found. Newton' and Blankenbecler' have
extended these potential-scattering results by
giving prescriptions whereby the whole multichan-
nel 8 matrix may be constructed from the Fr edholm
determinant. Sugar and Blankenbecler have ap-
plied the method to many-particle scattering and
suggested methods of attacking the three-body
problem.

Numerical applications of the Fredholm method
have been limited; attempts to obtain numerical
results by effectively keeping only a few terms in
the expansion of the Fredholm determinant have
been, at best, semiquantitative. For some po-
tentials, keeping only one or two powers of X in
the expansion seems to give good results at high


