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compared with E-'). This result is in accord with
the theoretical intuition on which the BK calculation
is based.

The relation of these results to experiment is
uncertain at the present time, and further experi-
ments on proton-hydrogen charge exchange are
urgently required. If one believes that the charge-
exchange cross sections determined from studies
of proton-hydrogen molecule interactions are ac-
curate and are representative of the cross section
in proton-hydrogen atom scattering, the present

results are unsatisfactorily large. '~ ' The si.tuation
is not better if Drisko's result based on higher
Born approximations is used; for in that case the
theoretical prediction is much too small at the
energies for which the observations were made.
%e intend to attempt further investigations of
higher-order terms in the Faddeev expansion for
the transition amplitude [Eq. (2. 3)] in order to
determine whether there are any further correc-
tions to a of significance in the high-energy limit.
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An atomic line profile is theoretically calculated for various relative densities at two tem-

peratures (666 and 800'K) under an adiabatic assumption, with a Lennard-Jones potential,

and is compared with the experimental profile of the shorter-wavelength component of the

resonance lines of cesium perturbed by xenon. The calculation predicts an appearance of one

red satellite and two violet satellites as experimentally observed. Further, the result shows

that the agreement between the pressure behavior of the theoretical line shape and that of the

observed one is only qualitative, because the calculated satellite intensities are too weak.

This disagreement is attributed to an inadequacy of the Lennard- Jones potential for calculat-

ing line-shapes under the present approximations.

INTRODUCTION

Recent experimental investigations on atomic
line shapes perturbed by foreign gases in absorp-
tion' have revealed a complex behavior under var-

ious densities. There are various theoretical ap-
proaches for treating the problem, ~

' but it is al-
most certain that the interatomic potential must
be included to higher orders in the treatment even
at low relative densities. The simplest and most
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commonly used approximation to the interatomic
potential is a Lennard- Jones 6-12 potential.

Higher-order terms of the interaction potential
must be included with the lowest one because of the
following reason. In the impact approximation,
strong collisions contribute to line broadening.
Strong collisions occur with certain small impact
parameters, where the phase shift is arbitrarily
large (&1). For a Cs-Xe pair, the van der Waals
constant is 8. 10 ' and 15. 10- erg cm, respec-
tively, when the Cs atom is inthe ground state and
the first excited P,&& state. ' For this interaction,
the imyact parameter must be about 10 A or less
for a collision to be strong. For such short dis-
tances, the higher-order terms may become im-
portant.

In many eases, the atomic lines are isolated, but
the energy levels associated with them are degen-
erate, and the adiabatic interatomic potential de-
pends on the magnetic quantum number tm t. The
repulsive part of the potential and its tnt t depen-
dence are hard to evaluate. In addition, it is un-
likely to be pairwise additive.

For the relative density (rd) range used in recent
experimental observations, ' the atomic mean dis-
tance is on the order of 10 or 20 A. Therefore,
many-body collisions are fairly common. Colli-
sions are isotropic and random. As a result, the
perturbation on the radiation process due to colli-
sion changes rather slowly in time and an adiabatic
condition holds to a good approximation. However,
this adiabaticity should not be confused with that in
the rotating coordinate system with an isolated
single colliding particle. In the present case, the
radiating atom finds nearby perturbers in almost
all directions simultaneously. Thus, not only two-
body forces but also exchange forces are nearly
isotropic. The adiabaticity allows the radiating
atom to remain in a definite state in a slowly fluc-
tuating coordinate system with the total perturba-
tion. Here, the total perturbation may be approx-
imated by the sum of the effective interatomic po-
tential per yerturber which is obtained by averaging
the tm t -dependent potential over m.

Thus, the line profile is calculated theoretically
at two different temperatures (666 and 800 'K), un-
der the adiabatic assumption, by introducing a
Lennard- Jones potential as an effective potential
for the pressure effect on the ~P,&, component of
the cesium resonance lines perturbed by xenon
[Cs(1)/Xe]. The difference in the upper and lower
effective interatomic potential curves is estimated,
in the form of a Lennard-Jones type, from Mahan's
value and the position of the red satellite. This

difference potential causes a smearing of the fre-
quency emitted by the radiating atom due to the
atomic relative motion. The path of the motion is
assumed to be classical and straight. For high
rd, this assumption is doubtful, but will not intro-
duce a large error in the result since, in this case,
the correlation function for small time is impor-
tant. Under these experimental conditions, Doppler
broadening can be ignored.

The result shows that there appear one red sat-
ellite and two violet satellites as the experimental
observation, but the calculated intensities are
much too weak, suggesting that the effective
Lennard-Jones potential is inadequate to account
for the observed line shape.

It is noted that satellites discussed here are a
yart of the whole line, produced by the same mech-
anism as that for line broadening. Therefore,
satellites lose their meaning if they overlap with
the line unless they can be separated somehow un-
der a definite rule.

We note that the logarithm of the autocorrelation
function can always be separated into two parts,
depending on large or smalltime, like Eqs. (6)and
(7), analogous to the separation of the impact and
the quasistatic approximation. The behavior of the
effect of the two parts on the line shape at various
pressures and temperatures is very different, as
illustrated in Fig. 2. In this sense, the separation
of the total intensity into the line and satellites is
meaningful.

Now, Eq. (7), if its validity is extended to zero
time, leads to the Anderson-Talman intensity pro-
file. Therefore, in the following we define the
satellite as the difference between this profile and
the total intensity contour. This definition of a
satellite can also be applied to experimental ob-
servation by taking the Fourier transform of the
total line contour, i.e. , the autocorrelation func-
tion, and from this, finding the Anderson-Talman
profile from the asymptote of the logarithm of this
transform at large time.

THEORY

According to the correlation function approach,
the line shape is given by the Fourier transform of
the autocorr elation function,

y(~) = (M(r)M(0)), (1)

where M(r) is the electric dipole moment of the en-
tire absorbing system. The brackets indicate an
averaging of the initial ensemble. Here the
Boltzmann factor is ignored, because the mean in-
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teraction energy is usually far less than the ther-
mal energy.

If the adiabatic assumption holds, the correlation
function can be written ~

~ (&)
- Ãs(v) (2)

where N is the number density of the perturbers.
If the interatomic potential difference, AV(B), is
pairwise additive and the path of approach is clas-
sical and straight, we find that

g(r)=2m f pdp J dy
0 w 00

X[I —exp( i f—V(IP'+ (y+vt)']'I'dt)] . (3)
0

The integral of Eq. (3) represents the average of

Eq. (1) over the initial positions of perturbers.
The velocity distribution is ignored for simplicity,
and v is the mean relative velocity.

By performing an integration of Eq. (3), g(r) can
be found. But, for the purpose of relating the
present calculation to the impact approximation, a
large cut-off distance ap of the potential may be
introduced. Then, Eq. (3) can be separated into
two parts. Defining g = v7',

u=y+vt, 5= [ao —(('/4)]"', and c=(ao —p')'",

for $ &2ao

one obtains

(4)

ith

g, (&)=2m& f pdp[1 —exp(-if V [p~+u ]")du/v)]+4vf 'pep J dy[1+exp( f' V(-[p'+u ]"')du/v)
b 0 C

—exp(-i f V([p'+u']"')du/v) —exp(-i f V([p'+u']"')du/v)],

g»(g)= 2vf pdp( f dy[1 —exp(-i f V([p'+u ]' )du/v)]

+ f 'dy[1-exp(-if V((p +u )' du/v)]+ f dy[l —exp(-if V([p +u ] )du/v)]]
-C -E+ c

For $ &2ao, one obtains

4(k)= »m 0 (5)
b 0

(7)

Thus, for large g, g($) is of the form of that of the

impact approximation, C+o$. This is a straight
line and its slope can easily be computed to better
than 1/o as long as Eq. (7) is integrable. For
small $, g„($) is predominant in P($) and gives the
correlation function of the quasistatic approxima-
tion. In the present calculation, where rd is
intermediate in magnitude, the values of g($) in the
intermediate region of $ are important, and both

gq($) and g«($) must be calculated.
As a procedure of the calculation, the slope cr

for the linear region of P(g) is first found from
Eq. (7) for ao- ~. The calculation of the constant
term of Eq. (7) is time consuming, so that the con-
stant is found by evaluating g(g) of Eq. (3) from

small $ up to the value of $, where dP(g)/d$ is equal
to cr within a few percent, and then extrapolating
the slope at the end to ( = 0. Here, the fact that
P($) oscillates for small g should not be overlooked.
A rough estimate of the point where g($) for small
$ is made to continue to P($) for large $ is made
from the relation g -2ao, assuming ao to be a so-
called optical collision diameter. This procedure
of continuation is, in practice, required since the
integration of Eq. (3) takes too much computer
time for large $.

The difference potential, assumed here, is

IV(R) = 0 )g 6
n P

where n and P are estimated [from Mahan's cal-
culated values' of the van der Waals's constants
and the position of the red satellite, 32 cm-',
Cs(l)/Xe('Pal, )'] as:
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@=1.4864&&10-7 cm' sec

p=6. 896x10 3' cm sec '
+ (0.228 —0. 156i)x 10 Br

and for X=800'K,

in angular units. In a similar calculation with a
square-well potential, the position of the red sat-
ellite shifts toward the unshifted position of the
line with temperature, so that the depth of the po-
tential minimum of Eq. (8) is adjusted to be 25%
larger than the observed position of the satellite.
The value of P is less than Mahan's value by 14%.
The reason is that the observed half-width of the
'P„,, component of Cs(1) perturbed by Xe at a low.u seems to be slightly smaller than expected
from Mahan's value. The reason for the small
value is not clearly known.

In performing the integration of Eq. (3), it is re-
written

Introducing Eq. (8) into Eq. (10), the integrand is
expanded for large 8 and small 8 compared with $

and integrated. The exponential function in Eq.
(10) is an oscillating function with g and slowly
changes with x except for x- —1, where the expo-
nent diverges. However, this divergence difficulty
can be eliminated by the fact that when such diver-
gence takes place the oscillation is very rapid and
the oscillating part of the integrand has no contri-
bution to the integral.

For the intermediate region of R, a numerical
integration of Eq. (10) is performed on a computer.
The increment of B in the integration is adjusted
such that the argument of the exponential function
in Eq. (10) increases by about 0.3 for every A in-
crement. The argument of the exponential function
is expanded and integrated (over q) for large and
small t/R compared with 1. For the intermediate
region of $/R it is formally integrated and simpli-
fied before the numerical integration in order to
minimize any error involved in subtracting, on a
computer, two numbers of nearly equal magnitude,
except for the case when x- —1.

[j[(r) = (0. 186 —0.258i) x 10-"

+ (0.241 —0. 176i)x 10 'r (12)

-g2
6~K

2
I

0lib

(a)

' „0
QQXfo

8IC

p(r) for small r is depicted in Fig. 1. The contin-
uation of the calculated slopes of g(r) for large and
small 7 is made at around 7=2&10 ' sec. Within
the accuracy of Fig. 1, g(r) is the same for the two
different temperatures for 3&10 ' sec &v' &4&&10 '
sec (the largest difference in this region is about
3%%uo). For r &4x10 ' sec, the discrepancy in [j[(r)
for the two temperatures becomes more obvious,
and the red (and the violet) satellite is more intense
for the higher temperature, as seen in Fig. 2. In
Fig. 1, a correlation function for a square-well
difference yotential of radius 6 A and of depth 5
x10'3 sec ' (angular frequency) when the relative
velocity is 4. 5x10 cm/sec, corresponding to T
= 666 'K of the present case, is given for compari-
son. A definite large oscillation extends to a large
v in the square-well potential case, giving aresolved
strong red satellite at —23 cm-' away from the un-

shifted line.
Figure 2 shows the calculated line profiles at

RESULTS AND DISCUSSION
8OC

-l2
5XlO

The calculated result of ((r) for large r' is, in
units of cm, for T=666 K, expressing 7 in sec,

[j[(r) = (0. 155 —0.296i) x 10-"

FIG. 1. tt)(7) for T=666 and 800'K. (a) for v' from
0 to 0.03&&10 sec, and (b) for v from 0.03&&10 to
3&&10 sec. In either case, the sign of g,.(v) has been
changed.
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FIG. 2. Comparison of an experimentally observed
total line profile (rd=11.4, T=418'K) (Ref. 7) and the-
oretical total line profiles at rd =10 (T= 666 and 800 K)
and at rd = 16 (666 'K) . For rd = 10, separated satellites
are also given.

rd = 10 for T = 666 and 800 'K, and at rd = 16 for T
= 666 'K. For comparison, an experimentally ob-
served line shape obtained at rd= 11.4 and T = 418

K is given. Since the temperatures are quite
different, these profiles cannot be compared ex-
actly, but it is interesting to note that the calculated
profile at rd= 10 agrees very well with the observed
one at the violet shoulder, within the experimental
error, justifying partly the assumptions made at
the beginning. Following the definition of a satellite,
the separation of the satellite is made from the cal-
culated total line shapes at rd= 10 and they are de-
picted in the same figure. It can be seen that the
red satellites are too weak to let the total line shape
agree with the observed one at the red shoulder.
%hen rd= 16, the calculated profile agrees fairly
well with the observed one at the red shoulder, ex-
cept for the exact position of the red satellite peak,
but then totally disagrees in other regions. The ob-
served peak intensity of the violet satellites is
about 4. 4% of the total line peak intensity at rd
= 11.4, while the calculated one is about 0.7/o of the
total line peak intensity at rd= 10. This discrep-

ancy may be considered to be due to the fact that in
the calculated line shape the red satellite, because
it is weak, has not developed enough at the expense
of the line intensity, so that the line is unreason-
ably strong, thus making the peak intensity ratio
smaller compared with the observed one. However,
this is not the case. In fact, at rd=40, when the
red satellite has developed strongly, either in the
observation or in the calculation (the line intensity
in the sense of the definition of a satellite becomes
very small), the observed ratio of the violet sat-
ellite peak intensity to the total line peak intensity
is about 0.33, 7 while the calculated one is 0.06.
Even though the calculated ratio increases with
rd a little faster than the observed one, the dis-
crepancy is still large at a high rd. Thus, this cal-
culation shows clearly that the violet satellites are
much too weak compared with the observed one.

The artificial choice of the values o. and p and
temperature might have caused the above discrep-
ancy, but this is not likely. The larger line broad-
ening due to higher temperature does not lead to the
agreement of the calculated line profiles and the ob-
served one at the red shoulder. In addition, it is
confirmed that, even though the value of P is not
artificially modified so that e = 2.0V&&10 cm'
sec ' and P= V. 86&&10- ' cm sec-' and at T=887 'K,
the correlation function is very similar to that of
Fig. 1 even for very small 7, hardly giving the sat-
ellites of observed intensity. Further, the differ-
ence potential for the P3/3 component of Rb (1)/Xe
has a similar value for o. a;&d P givin in Eq. (9), if
it is approximated by a Lennard-Jones potential,
but the observed red satellite intensity is much
higher than the calculated one. This indicates that
the Lennard-Jones potential is inadequate for a line
shape calculation under the present approximation.
Assuming that the theoretical van der %aals's con-
stants used are fairly accurate, it might require
that the potential includes at least the 8- term to
make the well wide. The well in the difference po-
tential should not be so deep because the red sat-
ellite is rather close to the unshifted line. This
requires the repulsive part to start to be effective
at a larger B. However, a calculation has not been
made by introducing the additional terms to the dif-
fer ence potential.

Figure 3 shows the total line profiles and satellites
at rd = 10, 20, and 40 calculated with the values of
n and p of Eg. (9) for T = 800 'K. The red satellite
grows with rd and the total line shape at rd = 40 is
predominantly the shape of the satellite at the rd.
The slight hump seen on the violet shoulder at rd
= 40 is due to the pressure modification of the two
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sharp peaks seen for rd= 10. In order to show that
this hump is a real one, an experimental line pro-
file obtained at rd= 34. 5 and T= 444 'K is also given.
The discrepancy between the experimentally ob-
served and calculated line profile at the red shoulder
is probably due to the appearance of the second sat-
ellite (strong in the experiment but weak in the cal-
culation) expected at such a high rd. In addition to
the calculated two sharp peaks, there are two violet
satellites at rd= 10, which make a shift toward the
unshifted line with rd rather slowly compared with
the red shift of the total line peak. Two violet sat-
ellites are experimentally observed and their rd
behavior agree very well with the observation.

Figure 4 shows the shift, half-width, and asym-
metry of the P,„component of Cs (1)/Xe as a func-
tion of the rd of Xe. The discrepancy of their rd
behavior from those observed may be simply due to
the too-small intensity of the calculated red satellite.
For comparison, Fig. 5 shows the shift, half-width,

and asymmetry of a line broadened when the differ-
ence potential is of a square-well type of depth 5
x10 sec and radius 6 A, and the relative velocity
is 10' cm/sec. In this case, the line carries an un-
resolved red satellite. All the qualitative features
of the experimental line shape behavior are seen in
the figure, including small oscillations about the
average behavior of the half-width. Such oscillations
have been in magnitude within experimental
errors. '

Thus, the over-all behavior of the calculated line
profile agrees qualitatively with the observed one,
but the agreement is only in the sense of trend. The
main discrepancy in the quantitative behaviors
seems to be due to the satellites which are too weak
in the calculated line profile because of the inad-
equacy of the Lennard-Jones potential

The author wishes to express his gratitude to
Professor S.Y. Ch'en for his constant encourage-
ment and financial support.
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FIG. 4. Shift, half-width, and asymmetry as a func-
tion of rd. Experimental curves are obtained at T=310
to 440'K (Ref. 7). For the dotted part of the theoretical
curves, the assumptions used are doubtful.

FIG. 5. Shift, half-width, and asymmetry as a func-
tion of rd for a square-well potential of depth 5 && 10
sec and radius 6 A and a relative velocity of 10 cm/
sec. 0 is in units of 8.4 cm, and h is the average
number of perturbers in the well.
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