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The Born cross sections for several important discrete excitations of Li from its ground'.

state have been calculated with correlated wave functions. By extrapolation, cross sections
for higher excitations have also been determined. Subtraction of the sum a~ of these excita-
tion cross sections from the total inelastic-scattering cross section o tot obtained through a sum

rule for the Bethe cross sections yields a reliable "counting" ionization cross section 0;. The

cross sections thus obtained are

c'&,t=(z/p) (0.596{ln[p /(1 —p )]—p )+5.216+0.002) x10 cm

c,„=(z/p) (0. 265{ln[p /(1 —p )) —p )+2.295+0. 002) x10 cm

and o;=(z/p) (0.271{in(p/(1 —p)l —p )+2.921+0.004) x10 cm

where ge is the charge of the incident particle and P is its velocity divided by that of light.
The ionization cross section is in excellent agreement with experimental data in the asymp-
totic region (incident electron energy ~ 5 keV).

I. INTRODUCTION

The first Born cross sections for the inelastic
scattering of fast charged particles can convenient-
ly be expressed in terms of a few parameters, all
of which are uniquely determined from the wave
functions of the states involved. ' Furthermore,
these parameters obey sum rules and lead to the
total inelastic -scattering cross section at„. The
sum rules actually enable one to evaluate o„,
from the knowledge of the ground-state wave func-
tion and the optical oscillator-strength distribution.

Very accurate wave functions for the ground
state, as well as for some important discrete ex-
cited states of Li', have been calculated by Weiss'
and Perkins, and from these wave functions one
can evaluate accurate Born cross sections. Cross
sections for other discrete excitations can be ob-
tained by extrapolation utilizing their dependence
on effective quantum numbers.

With the ground-state wave function by Weiss
and the optical oscillator -strength distribution a-
vailable in the literature, ~

' one can determine
Ot„ to high precision. Then, by subtracting the
sum cr,„ofdiscrete-excitation cross sections from
at, t, one can obtain a reliable "counting" ionization
cross section o;, without using any continuum wave
function explicitly. This method, which depends
on the discrete-state wave functions only, has a

definite advantage over a more conventional meth-
od of calculating o; by direct use of continuum wave
functions in that discrete-state wave functions can
usually be determined with far better precision
than continuum wave functions. Previously, our
method has been applied successfully to obtain o,
of He. '

II. DISCRETE-EXCITATION CROSS SECTIONS

The Born cross section for a discrete excitation
from the ground state to the state n is given by

0„= ~ IM„1n ( ~)

~ C..' ea(Z '/T')I.
when the transition is (optically) allowed, and

when it is forbidden, where: ao is the Bohr radius;
ze the charge of the incident particle; T = ~mv,
with m the electron mass and v the velocity of the
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incident particle; R the Rydberg energy; P=e/c
with c the speed of light, and E„the excitation en-
ergy. The parameters M~, C~ b„, and y„are
characteristic of the transition as described be-
low. In particular, M„ is related to the optical
oscillator strength f„:

M'„=f„ft/Z„.

For all practical purposes, the terms O(E'„/7')
in Eqs. (1) and (2) can be neglected for the range
of v such that the Born approximation is valid.
The leading terms in o„, up to and including the
terms of order 1/T in Eqs. (1) and (2), are known
as the Bethe cross section.

For the actual evaluation of the parameters M„,
C„, 5 and y one needs the generalized oscillator
strengths f„(K) where KI is the momentum trans-
fer. '» We have evaluated f„(K), and thence these
parameters for the excitations from the ground
state to the 2'S, 2'P, 3'S, 3'P, and O'D states
from the correlated wave functions computed by
%eiss, ' and to the 4'S, 5 S, O'S, and 7'S states
from those computed by Perkins. The gneiss
wave functions all contain over 50 terms, and the
Perkins wave functions contain 40 terms each.
The gneiss wave functions compare very favorably
with the more elaborate Pekeris wave functions
in terms of total energies and some other expecta-
tion values. The total energies and other expecta-
tion values are given in Table I.

Furthermore, we find that the values of f„(K)

where M,„=Q„M„=O.1415 (5)

and C,„=Z„(C„+b„) = l. 225 + 0. 001 (6)

computed from the length and velocity formulas
agree within 1% or better for the values of K for
which the magnitudes of f„(K) are significant. The
large volume of the numerical data on f„(K) of Li'
prevents us from presenting them here. ' Quali-
tatively, the f„(K) of Li' are very similar to those
of He. The values of I„, C Q„, and y„computed
from the gneiss and Perkins wave functions are
given in Tables II and III.

The dependence of these parameters for the
higher excited states on the effective quantum
numbers has been determined by extrapolation
from those calculated with the gneiss, Perkins,
and hydrogenic (n = 4, 5, and 6) wave functions.
Actually, we have used the effective quantum num-
ber v* = e+ 5, where z is the principal quantum
number and 5 is deduced from available theoretical
and spectroscopic data. ~~ '

~
' The formulas for

the extrapolated values of the parameters are
given in Table IV.

From the parameters in Tables II—IV, we get the
sum of the Bethe cross sections for the discrete
excitations

TABLE I. Expectation values for some discrete states of Li in a.u.

State Source —(Total energy) 2
i2

1is
1S
2is
2S
2P
2iP
3'S
3'P
3D
4's
5S
6 S
7 S

Weiss
Pekeris'
Weiss
Pekeris
Weiss
Schiff
Weiss
Weiss
Weiss
Perkins
Perkins
Perkins
Perkins

7.279913
7. 2799134
5. 040873
5.0408767
4. 993348
4. 9933511
4. 733732
4. 720181
4.722377
4. 629778
4. 582424
4. 556951
4. 541692

0.572774
0.572774
1.64415
1.64420
1.52190
1.52193
3.46040
3, 40580
2. 87243
6.0311
9.3507

13.418
18.258

0.862316
0.862315
2. 84435
2. 84445

2. 59241
2. 59247
6.44606
6.33457
5.27268

ll. 576
18.210
26. 341
36.021

0.446279
0.446279
4. 69439

4. 69510
4.04113
4. 04163

23. 5741
23. 1011
15.8868
75.372

185.71
387.57
723.48

0. 927065
0. 927065
9.43577
9.43710
8.07321
8.07421

47. 1716
46. 2104
31.7985

150.76
371.42

775. 15
1447.0

Reference 5.
Reference 7.
B. Sehiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz,

Phys. Rev. 140, A1104 (1965).
Reference 6.
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TABLE II. Parameters for the Born cross sections of
Li' t.see Eq. (1) of the text]. Optically allowed
excitation s.

TABLE IV. Extrapolated cross-section parameters
and their sums (see Sec. 2).

For excitations to the n P (n —4) states
Excited state

2P
3P

(e)
n

0.0998 0.835 0.0391 0.267 0.4565
0.0216 0.182 0.0486 —0.0068 0. 1107

f„=2.58(n') '+3.70(n*) -'+2. 95(n*) -'
M„=0.465(n*) +1.00(n ) +1.25(n*), and

C„=3.97(n*) + 7.75(n*) + 12.5(n*)
where n =n+0. 0136.

For the allowed excitations, the values of y„depend on

the reduced mass of the incident andtarget particles; y „(e)

is for the incident electrons, and y„ for the case of a{oo)

reduced mass infinite compared to that of the electron,
a good approximation for protons and heavier incident

particles.

For excitations to the n S(n ~ 4) states

b„=0.104(n*) + 0.173(n*)

where n* =n —0.074.

For excitations to the n D(n~4) states

Note that M,„is determined only by optically allow-
ed transitions, whereas C,„contains contributions
from forbidden transitions as well. The uncer-
tainty in Eq. (6) comes mainly from the n'P ex-
citations with n &4.

b„=0.0760 (n*) —0.148(n*) —0.375 (n*)
where n* = n —0.0012.

Sum of the parameters

Cn b(n'S) b(n'D)
III. TOTAL INELASTIC-SCATTERING CROSS SECTION

We have shown earlier' that the sum o„, of the
Bethe cross sections for all inelastic scattering
is given by the same analytical form as Eil. (4)
with the parameters M,„and C,„replaced by M„,
and C«„ respectively.

The value of M«, is determined from the ground-
state wave function alone. To evaluate C„„how-
ever, the value of the sum

0 109 0.0201

n=2
0.676 0.1415

3
0. 567 0. 1214

n —2

l.017

0.171

1.188

0.0274 0.0020
(n =3)

0.0320 0.0048

o.0046 0.0028

The sum of b„ for the n I' and other excitations is es-
timated at about 1 9o of gb(n D) and is neglected in evalu-
ating C~.

TABLE III. Parameters for the Born cross sections
of Li' [see Eq. (2) of the text]. Optically forbidden
excitations.

Excited state

2S
31S

3D
4S
5 S
6 S
7S

0.0224
0.0050
0.0020
0.0019
0.00093
0.00052
0 ' 00032

—0.0447
—0.0099
—0.0095
—0.0037
—0.0018
—0.0010
—0.00063

over all discrete and continuum states is needed in
addition to the values of integrals I& and I& in the
notations of Ref. 3, both of which can be computed
from the ground-state wave function.

Mt, t.
——0. 2860 (6)

For discrete excitations, the values of f, are
given in Tables II and IV. Our discrete oscillator
strengths, though independently determined, are
very similar to those of Dalgarno and Parkinson. '
We have adopted the continuum oscillator strengths
from those calculated by Stewart and Webb, after
adjusting their Hartree-Fock length results to
match the discrete f„at the ionization threshold,
and also to be consistent with various sum-rule
values of the oscillator strengths (see Tables V
and VI). Our adopted continuum oscillator strengths
only partially account for double excitations and
ionizations through the sum rule, but the resulting
error in L(- I) is expected to be insignificant.

From the Weiss wave function for the ground
state, we get
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TABLE V. Moments of oscillator strengths
of Li+. S(p) = gg„(E„/It)'.

+ 2. 285+ 0. 002) x10- cm',

Accurate
total Discrete

Present work
continuum Total

o; = (z'/P')(0. 271(ln[P /(1 —Pz)] —Pz]

688. 837
20. 1837

2

0.286017
0.0481

15.6
3.24

0.676
0.1415
0.0298

& 424. 3
&16.78

1.324
0.1445
0.0183

&439. 9
& 20. 02

2. 000
0. 2860
0.0481

Ig ——0. 6549

and I& = 0. 0269 (10)

From Eqs. (8)-(10) and Tables V and Vt, we also
get [see Eqs. (21) and (23) of Ref. 3]

C„„=—2L (-1)+I, Iz+M„„x1-1.2268

= 2. 784+0. 001

The uncertainty in Eq. (11) is mainly due to that
in the value of L, (-1).

IV. IONIZATION CROSS SECTION

We can now obtain the parameters [to be used
with Eq. (4)] for the ionization cross section o,
by subtracting 0,„from v„, ,

Ig jlf )ot llfex 0 1445 p (12)

and from Eqs. (6) and (11),

C C ~0~ Cex 1 559 + 0 002 (13)

~Accurate values of S(2), S(1), and S(-1) can be evalu-
ated from the expectation values in Ref. 7, S(0) from the
Thomas-Kuhn-Reiche sum rule, and S(- 2) from the di-
pole polarizability computed by M. N. Grasso, K. T.
Chung, and R. P. Hurst, Phys. Rev. 167, 1 (1968).

y 2. 921+ 0. 004)x 1- "cm' (16)

Since 0„, includes double ionization, 0; given by
Eq. (16) is the "counting" ionization cross section,
a simple sum over all ionization events.

There seem to be no experimental data either
for discrete excitations or for the total inelastic
scattering by Li'. There are, however, some ex-
perimental data on the single- as well as double-
ionization cross sections of Li' by electron impact
measured by the crossed-beam method. '

It is appropriate to compare our 0; with the sum
of the experimental cross sections for the single
and double ionization. The data of Peart, Martin,
and Dolder, ' however, show that the cross section
for the double ionization is about 2 orders of mag-
nitude smaller than that for the single ionization,
and it is not essential to include the experimental
data on the double ionization. In Fig. 1, we com-
pare 0, with the single-ionization data only. In

consequence, our e; becomes an upper limit to the
cross section for the single ionization.

In Fig. 1, we plot various cross sections multi-
plied by p/z as a function of ln[p/(1 —p )] —p .
As can be seen from Eqs. (14)—(16), the Bethe
cross sections are represented by straight lines in
such a plot. It is clear from the figure that the

experimental data are in excellent agreement
with theory for the incident electron energies & 5 keV.
The experimental data below 3-keV incident en-
ergyss-&8 also show a, nearly "straight-ling" be-
havior but with a steeper slope, a phenomenon
which could lead to misinterpretation when high-
energy data were not available. It is interesting
to note that the asymptotic behavior of the ioniza-
tion cross section is achieved when the incident
energy is -60 times the threshold energy. A sim-
ilar situation was also observed for the ionization

With these values of the parameters, we get
from Eqs. (4)-(6), (8), and (11)-(13)

TABLE VI. The values of L(p) —=PQ„(E„/B)~in(E„/B)
of Li .

. = ( '/P')(o 536(ln[P'/(1 —P')] P')—
+ 5. 216+ 0. 002)x 10 cm

o,„=(z /p )(0. 265(in[ p /(1 —pz)] —p$

(14) Discrete

5.09
1.058
0.2209

Continuum

&47. 19
3.090
0.3068

Total

& 52. 28

4. 148

0.5277
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FIG. 1. Cross sections for the excitation of Li+(1 S) by

incident particles of charge ze and velocity Pc. Note that

the ordinate is the cross section multiplied by (P/z) . The

straight lines represent the Bethe (asymptotic) cross sec-
tions for total inelastic scattering (TOTAL), for ionization

(IONIZATION), for the sum of discrete excitations (DIS-

CRETE), and for the excitation to the 2 P state of Li

(2 P). The long broken line curve and dashed line curve

represent the ionization cross sections calculated by

Economides and McDowell (Ref. 20) using the length and

velocity forms, respectively. The closed circles (~} are
the ionization cross section by electron impact measured

by Lineberger, Hooper and McDani. el (Ref. 15), and the

open triangles (6) are those by Peart, Martin, and Dolder

(Ref. 18). Typical error limits are given for the experi-
mental data. The error limits for the theoretical cross
sections in this plot are independent of incident energy.

0 -6
I

-5
I

-4 -3

cross sections"~ ' of He and H .
Also we have shown in Fig. 1 the single-ioniza-

tion cross sections calculated by Economides and
McDowell. From a two-parameter ground state20

and the Hartree-Fock continuum wave functions,
they computed the cross section both in the length
and velocity formulas. Their length result is in
good agreement with our o; in the asymptotic re-
gion.
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Using Nutt's expression for the two-particle off-shell Coulomb T matrix, and neglecting
multiple-scattering terms in Faddeev's expansion for the transition matrix, an expression for
the charge-exchange amplitude in proton-hydrogen scattering is derived. The results of nu-
merical calculations are compared with the corresponding results of Brinkman and Kramers,
of Jackson and Schiff, and of Drisko. An analytical expression for the total cross section at
high energies is obtained from our formalism. In the high-energy limit, our results approach
the Brinkman-Kramers formula.

I. INTRODUCTION

The problem of three particles interacting with
each other through the Coulomb potential has fun-
damental importance in atomic scattering, and a
very considerable amount of work has been done in
this connection. There are two principal difficul-
ties: First, the mathematical complexity present
in solving the three-particle Schrodinger equation;
second, special problems arise from the long-
range nature of the Coulomb potential and require
the scattering amplitude to be defined with respect
to the Coulomb-distorted asymptotic states rather
than plane-wave states. However, the work of
Faddeev' on the expansion of three-body T matrix
in terms of two-body T matrices has revived hopes
of obtaining reasonable approximations to the
three-body problem. For example, if we have the
expression for the two-body off-shell Coulomb T
matrix, Faddeev's procedure enables us, in prin-
ciple, to obtain the corresponding three-body
Coulomb T matrix. Schwinger' obtained a set of
integral representations for the two-particle Cou-
lomb Green's function and subsequently, Nutt' de-
rived expression for the Coulomb T matrix and in-
vestigated its analytic structure. In addition,
Nutt's work indicates how the problem of describing
the scattering of a particle from a bound system
of two particles may be treated using the Coulomb
T matrix in Faddeev's expansion. Most of the dif-
ficulties associated with the Coulomb-distorted
asymptotic states appear to be resolved in the for-
mulations of Schwinger and Nutt. These results
encourage us to reinvestigate the old problem of
proton-hydrogen (p-H) charge exchange at high en-

ergies within the framework of Faddeev's theory.
In order to appreciate the present approach, a

brief summary of the status of the p-H charge-ex-
change problem is desirable. Our discussion is
restricted to the high-energy limit. Extensive re-
views have been given by Bransden. 4~ ' The prob-
lem can be stated: Does the first Born approxima-
tion describe the process correctly in the high-en-
ergy limit, and if so, what is the correct potential
to use in the Born formula? Brinkman and
Kramers' (BK) first evaluated the Born amplitude
for charge exchange neglecting the internuclear
potential V». It was argued that at high energies
the internucleon potential should not affect the
charge- exchange cross section. Later, Jackson
and Schiff' (JS) evaluated the Born approximation
including V», and found that the cross section w~s
reduced by a factor of 0. 66 at high energies in
comparison with that of BK. This result presents
a serious problem. Subsequently, Drisko' eval-
uated the cross section in the high-energy limit,
taking into account the first three terms of the
Born series, and found the cross section to be
given by

g &'& = g (0. 31S+5vv/2' )

where OBK is the BK cross section, and p is the
velocity of incident proton in a. u. in the laboratory
system. The result appears to indicate that, no
matter how high the energy is, the Born series does
not converge to its first term.

It is not known whether the Born series for the
transition amplitude for rearrangement collisions


