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We show how to interpret the Ford-Wheeler semiclassical expression for the scattering am-
plitude as a integral, over both positive and negative impact parameters, of a quantity depend-

ing on the action. This formulation clarifies the relationship between the action and the phase
of the semiclassical expression for the scattering amplitude. Using this formulation, we

show that interference processes in both one- and two-channel elastic scattering are analogous

to those occurring in the two-slit diffraction of light.

I. INTRODUCTION

In quantum-mechanical treatments of scattering,
the impact parameter cannot be known because of
the uncertainty principle (the transverse momen-
tum before the collision is fixed by the incident
angle and momentum). If the de Broglie wave-
length

)t. =h/p =h(2mE) "'
is much smaller than the scale of variation of the
potential, however, the impact pa.rameter b be-
comes physically significant. One can imagine
that each portion of the incident wave can be fol-
lowed through the collision; its deflection being de-
termined only by the impact parameter b (and the
reduced potential).

This idea forms the basis of this paper. In Sec.
II, we show how the semiclassical scattering am-
plitude may be expressed as an integral over all
impact parameters, and in Sec. III, we show the
close relationship between the action and the phase
of various contributions to the scattering amplitude.
In Sec. IV, we give a simple interpretation of in-
terference phenomena in single-channel (one-po-
tential) scattering, which is extended to two-chan-
nel interference phenomena (e. g. , resonant ex-
change) in Sec. V.

II. SCATTERING AMPLITUDE INTEGRAL

Ford and Wheeler' have shown that a considerable
mathematical simplification in the usual partial-
wave treatment of scattering results when the de
Broglie wavelength is smaller than the scale of
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f (8) = —X(2 v sin8) "' f (f + 2 )'"

(' + — ' )df,

where 4 =2@(f)+(f+-,')8+-,' p,

(2)

(3)

variation of the potential. By making a related set
of approximations, collectively called the semi-
classical approximation, they show that the scat-
tering amplitude may be written

ter can contribute to the scattering at positive an-
gles. This fact is accounted for by the two terms
in Eq. (5): the term C contributes for repulsive
scattering, the 4+ for attractive scattering.

A more meaningful expression may be obtained
by changing the variable of integration for the 4+
term from b to —b, since then the attractive scat-
tering will occur with a negative impact parameter,
as it should. We accomplish this by making the
substitution b'= be», so that the integral with 4+
in Eq. (5) becomes

and the phase shift ri(l) is to be considered a con-
tinuous function of l (and may be found consistently
from the JWKB approximation).

We introduce the impact parameter by means of
the usual correspondence relationship

(4)

f db b exp1i[2q(b) + b8/X + —.'v])

= f db'(e b') exp[i[2q(- b') —b' /8a+4m]j

0
= f db'b' exp(i[2&(- b') —b'8/X —4m]}

The angular momentum L can have either sign,
but l (and also b) is restricted to positive values.
We rewrite Eqs. (2) and (3) using the impact pa-
rameter

f(8)= —(2awsin8) '~' f" b (e' +-e' -)db

(5)

where

The function q(b) equals q(f) when b equals lk.
[This follows naturally from the JWKB expression
for q(l) ] q(b) is also closely related to the clas-
sical phase. '

The expression in Eq. (5) is physically mis-
leading because only regions with b & 0 contribute
to the scattering amplitude, while it is clear (see
Fig 1) that .processes with either a net repulsive
interaction and positive impact parameter or a net
attractive interaction and negative impact parame-

Note that q(- b) =q(b), so that the exponent in this
expression is the same as the exponent in the 4

integral in Eq. (5). We can now write the scat-
tering amplitude as an integral containing 4 over
the whole range of b:

f (8 ) = y (2p s in 8 ) ~ &2 f
x exp (ie[2ri(b) —8b/X ——,'m])

III. ACTION AND PHASE

This expression is simpler and more natural than
Eq. (5), since all impact parameters now can con-
tribute to the scattering amplitude. An additional
simplification results because the exponent is
closely related to the action. Smith' has defined
the collision action A (hereafter called simply the
action) to be the difference between the total action
with the potential V "on" and with it "off" (in which
case the path is straight):

A(8 b)=fp &q —f p ~q ),

b)0

b(O

where the total energy is fixed. He shows that
each term may be broken into radial and tangential
components, the radial component being twice the
JWKB phase shift, and the tangential component
being proportional to the angular momentum and
to the scattering angle:

FIG. 1. Trajectories for a collision with attractive
interaction (and negative impact parameter) and a col-
lision with dominantly repulsive interaction (and positive
impact parameter), which both result in the same de-
flection

A. (8, b) = 2h7i(b) —b b8/X (10)

The radial component is independent of the sign of
b [that is, q( b) =rj(b)], wh-ile the angular term
shows more action for collisions with b & 0, since
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this corresponds to the "outside track. "
Our expression for the scattering amplitude [Eq.

(8)] is simply expressed in terms of the action

(8) (
. )- 1/2 —im/4 J~ 1/2 iA(e, b)/h

This expression is similar to the formulation of
quantum mechanics that is due to Feynman, ' which
was extended by Motz' and Pechukas' (who consid-
ered semiclassical scattering theory}, in which the
amplitude for a particle to move from one place to
another is expressed as an integral over all pos-
sible trajectories of exp(iS/5), where S is the ac-
tion. (In our analogy, the b"' weights the trajec-
tories with larger b more heavily because there
are more of them. )

Our expression for the scattering amplitude may
be integrated by the stationary phase technique,
since the action is a rapidly changing function of b

except at a, few impact parameters b2, where

discrete values of the impact parameter. The
magnitude of each contribution is determined by
the angle, the impact parameter, and the second
derivative of the phase. The phase of each con-
tribution is determined solely by the action (apart
from a possible constant). This makes our anal-
ysis especially enlightening when applied to scat-
tering processes that are sensitive to the phase of
the scattering amplitude (or its components).

IV. SINGLE-CHANNEL INTERFERENCE

Let us now consider the application of these re-
sults to elastic scattering by a single potential.
Since the preceding results are most helpful in
simplifying the discussion of scattering when more
than one impact parameter contributes to the scat-
tering, we consider a potential that, like most in-
teratomic potentials, is attractive at long distances
and repulsive at short distances. The phase func-
tion q(b) for this potential is shown in Fig. 2. We
also show the classical deflection function

—, A(8, b) =0,
2

(12)
X(b) =2Xq'(b},

which occurs where

2q'(b. )=e/~ . (13)

[g '(bi) is used for dq/db I b .. ] In the neighborhood
of these stationary points the action may be ex-
pressed

A(8, b) =A(8, b.)+—
2 I

(b —b.)'
2

=A(8, b.) + hq "(b.)(b —b.)' (14)

The stationary phase integration must be per-
formed at each impact parameter where the action
is stationary, so the scattering amplitude becomes
a sum over all impact parameters b; that satisfy
Eq. (13),

f(e)= Q Ib. I[2b.x. sine' (b.)] '&'8 ' i
b. (8)

'

[This expression fails if 8 =0, or w (glory scat-
tering), or q "(b;)= 0 (rainbow scattering). ] All
quantities must be treated as complex numbers,
so that a factor e»/ will result if either bi or
q' '(bi) is negative. [If b & 0 in Eq. (11), b'~2 must
be interpreted as e—i~/2lb)'", because of the
transformation used in Eq. (7). ]

Equation (15) shows that contributions to the scat-
tering amplitude come from (the neighborhood of)

which is the locus of points where the action is
stationary [that is, where Eqs. (12}and (13) hold].
The lower half of the deflection function is shown
dashed to emphasize that only impact parameters
for which y(b) = 8 contribute to f(6) in Eq. (15) (8
is the angle of observation, and is always posi-
tive). ' Thus, at angle 8, (in Fig. 2), three impact
parameters contribute to the scattering amplitude,

5 2& and b „b, and b, are both negative and
correspond to predominantly attractive scattering,
while b is positive and corresponds to predomi-
nantly repulsive scattering.

When two (or more) impact parameters contrib-
ute to the scattering amplitude in Eq. (15) the dif-
ferential cross section will contain interference
terms whose phase difference varies as (A[8, b, (8)]
-A[8, b, (8)]j/h. The angular spacing of the re-
sulting maxima and minima in the cross section
depends on the total ra,te of change of the action
with 6I. This is

BA 9A
db.—A[e, b (8)]=—

I
+—

I
'=-~b./~ (17)d8 '

2 90 b. Bb b. d8 2
2 2

from Eq. (10) [the second term is zero from Eq.
(13)]. If b, and b, both contribute to scattering at
some angle, the angular spacing of successive
maxima and minima in that neighborhood is given
by

&ede [A(6, b, ) -A(8, b, )]= 2mB,
d

27th
so that ae

b, ( ) —b, (8)
'



INTERPRETATION OF INTERFERENCE STRUCTURE

of 0 0127 rad which implies that b j b 3 —10 2 A
These distances are quite compatible with the size
of the potentials which they determined by partial-
wave analysis.

V. TWO-CHANNEL INTERFERENCE

Let us now consider a typical exchange cross
section

(20)

X (b)

b3

where f and f are two independent scattering
amplitudes. Such expressions arise in spin ex-
change and in resonant charge exchange; in both
processes the expected oscillatory structure has
been observed. As in single-channel scattering,
the oscillatory behavior is due to interference be-
tween the two scattering amplitudes whose phase
difference varies as the difference between the
two actions times 1/h. The local change of action
with 8 depends only upon b [and not on the potential,
see Eq. (17)], so we find the angular spacing of
successive maxima and minima in the exchange
cross section to be

FIG. 2. Phase function g(b) and deflection function
y(b); each shown for both positive and negative values of
impact parameter b.

Thus, the local spacing of maxima and minima
is determined solely by distance between b, and b„.
the potential plays no role; once b, and b, have
been determined. '

Equation (19) also governs the spacing of inten-
sity maxima in the two-slit diffraction of light
(Young's experiment), in which case Eq. (19) can
be derived simply by considering the difference
in path length caused by changing the angle. ' This
simple derivation works for scattering because
the action is stationary so that the variations in
b, —b, (analogous to changing the slit separation in
Young's experiment) with angle do not affect the
phase. These changes of b, —b, with angle ac-
count for the fact that the spacing of successive
maxima and minima in the scattering section is
not constant, as it is in Young's experiment (at
small angles where sin8-8).

Equation (10) may be used to determine the dis-
tance between the impact parameters that contrib-
ute to the scattering amplitude. As an example
we consider Hundhausen and Pauly's' data for Na-
Hg scattering at vrel = 1.475 x10' cm/sec (X is
0.0208 A at this velocity). They observe interfer-
ence between b, and b, (supernumerary rainbows)
with a period of 0.09 rad, which implies that b,

0—b, = 1.5 A; and they observe interference be-
tween b, and b, (rapid oscillations) with a period

68=2mX/[b (8) —b (8)] (21)

in the neighborhood of 6I. "
Frequently, it is possible to infer the phase dif-

ference between the two scattering amplitudes ex-.
actly, in which case we can measure the relative
phase

5(8) = [A (8, b )-A (8, b )]/K. (22)

5(8) =[A (8, b)-A (8, b)]/A=2@ (b) —2q (b),

(23)

where b = ,'(b +b )—; the second line follows from
Eq. (10). Use of the first term of the impact ap-
proximation' for p+(b) yields the familiar result

5(8)-— V dl —— V dl =-—1 1 1
kv + Sv — @v

&Udl, (24)

where ~V is the difference potential V+ —t/' and v
is the relative velocity of the collision.

The argument frequently used' to derive Eq. (24),

[We assume that the potentials have similar shapes,
so the additional ef~/4 terms in Eq. (15) cancel
out. ] Although the impact parameters in the plus
and minus states are different, the action is sta-
tionary for small variations of b, so if b+ and b

are approximately equal (as they will be if the po-
tentials for the two states are nearly equal), we

can approximate
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under the assumption that the impact parameter
is the same for collisions in both states, is incor-
rect; the "particle" in the state with weaker poten-
tial must travel closer to the target in order to sus-
tain the deflection 8. In so doing, it travels in a
region of deeper potential and picks up some extra
phase (q). The phase of the scattering amplitude
is governed, however, by the action, which is also
affected by the decrease in path length caused by
passing closer to the target. These two effects can-

cel exactly, since the action is stationary, so Eq.
(24) is correct. A similar argument also applies
for dominantly repulsive potentials.
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