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We have applied the stabilization method of calculating resonance energies to the elastic
scattering from a one-dimensional model potential containing a barrier. For sufficiently large
basis sets, the stabilization method yields good approximations to the inner part of the exact
scattering wave functions at energies equal to the eigenvalues of the truncated matrix of the
Harxdftonian in both the resonant and nonresonant energy regions. We have calculated good
approximations to the exact phase shifts from the square-integrable wave functions produced
by the stabilization method. We have derived a simple model to explain the behavior of the
eigenvalues as a function of the size of the basis. The degree of stability of the eigenvalues
approximating the resonance energy is proportional to the width of the resonance. Both the en-
ergy and the width of the resonance can be calculated from the change in the stable eigenvalue
as the size of the basis increases.

r. INTRODUCTION

The resonant scattering of electrons from atoms
and molecules has attracted considerable attention
from both experimentalists and theoreticians.
The recent literature has been critically reviewed
by Burke' and by Taylor. The resonant scatter-
ing process is well understood qualitatively, and
elegant mathematical formulations have been de-
veloped independently by Feshbach' and by Fano.
Qualitatively, resonant scattering involves the
formation of a metastable, quasidiscrete state,
which, because of its nonstationary character, de-
cays after a short time into one of the open chan-
nels. The scattering cross section is a rapidly
varying function of the incident energy in the res-
onant region and can be characterized by the Breit-
Wigner expression containing two parameters: the
resonance energy Ez and the width F. The res-
onance energy can be interpreted as the energy of
the metastable state, whereas the width is related
to its lifetime through the uncertainty relationship
r =h/I'. From the practical point of view, one
needs to know only the energy and the width of a
resonance to calculate, from the Breit-Wigner ex-
pression, its contribution to the cross section.

In recent years, a number of methods have been
proposed to calculate the energies and widths of
resonances. In the close-coupling approximation'
used by Burke and co-workers, the scattering
wave function is expanded in a truncated set of
product functions. Each of the product functions
consists of the wave function of a target state mul-

tiplied by a function representing the scattered
electron. The latter function is a continuum func-
tion satisfying the appropriate boundary conditions
in the asymptotic region for an open channel. The
phase shifts, as a function of energy, are extracted
from the approximate open-channel functions, and
then fitted to a Breit-Wigner formula to yield in-
directly the energy and the width of the resonance.

In the truncated orthogonalization procedure of
Holgien and Midtdal, ' the truncated diagonalization
method of Lipsky and Russek, ' and the stabilization
method of Eliezer et al. ,

' one takes a conceptually
different approach in that one attempts to calculate
the energy of a resonance directly. These meth-
ods, which are closely related but differ in their
emphasis, are based on the fact that the inner part
of the scattering function, at an energy in the res-
onant region, very much looks like the wave func-
tion of a bound state. The amplitude of the scat-
tering wavefunction in the asymptotic region is
much smaller (depending on the magnitude of I')
than the amplitude of its inner part. In these meth-
ods, therefore, the wave function is expanded in a
set of discrete exponentially decaying functions,
and then the Hamiltonian is diagonalized to yield
the approximate resonance energies directly. The
width of the resonances cannot be directly extract-
ed from such bound approximations to the scatter-
ing functions. However, Miller' has suggested
that the width be calculated as an off-diagonal ma-
trix element of II between the bound-function and
a zeroth-order continuum function at the resonance
energy.
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Recently, Perkins' introduced a variational bound
method to calculate the energies of autoionizing
states in two-electron systems. He showed that in
Holgien's procedure appropriately chosen roots are
true upper bounds to the eigenvalues of QHQ intro-
duced by Feshbach. '

Although the stabilization method has produced
accurate resonance energies for real systems such
as e + H„' a number of fundamental questions re-
main unanswered. For example, what is the basic
reason for stability, i.e. , why do certain eigen-
values of the truncated Hamiltonian matrix remain
essentially unchanged as the size of the basis set
varies? One intuitively feels that with the proper
choice of basis set one is expanding thebound-state-
like inner part of the scattering function (Q( in the
languag. of the projection operator formalism), '
and, of course, the expansion of the wave function
of a bound state in terms of square-integrable basis
functions converges. But, one would still like to
know whether the stable eigenvalues will eventually
diverge as the size of the basis set further in-
creases; after all, the expansion of a continuum
function in terms of square-integrable functions
certainly diverges. In other words, what difficul-
ties, if any, arise from the use of incorrect bound-
ary conditions? In a similar problem, the Stark
effect, "it is well known that the perturbation ex-
pansion for the energy of the metastable (autoion-
izing or resonant) level embedded in the continuum
is only an asymptotic series and eventually diverges
even for small field strengths. Unfortunately, this
conclusion cannot be directly applied to a scattering
problem because in the Stark effect the potential
goes to —~ instead of zero at large distances from
the origin. One would like to know also the signif-
icance, if any, of the nonstable eigenvalues and
the corresponding eigenfunctions. Can these func-
tions be approximations to scattering functions rep-
resenting potential scattering at energies far from
the resonance energy? Finally, are there conve-
nient ways of extracting the width from the square-
integrable approximations to the scattering func-
tions in order to complete the description of res-
onances?

In order to attempt to answer some of these ques-
tions, we have studied the elastic scattering exhib-
iting resonance phenomenon from a simple one-
dimensional model potential. We have compared
the exact scattering solutions to those obtained by
the stabilization method. In addition, we have care-
fully analyzed the behavior of the eigenvalues of the
truncated Hamiltonian matrix as a function of the
size of the basis set. Our results show that with
adequate basis sets the stabilization method yields
good approximations, apart from a normalization
constant, to the exact scattering wave functions at
energies in the resonant as nell as the nonresonant
regions. We have calculated good approximations

to the exact phase shifts, including both the res-
onant and potential scattering contributions, from
square-integrable wave functions through the use
of an amplitude independent integral formula.
This result, of course, implies that one can ob-
tain both the energy and the zvidth of resonances
from square-integrable wave functions. The eigen-
values obtained in the stabilization method clearly
demonstrate stability at energies near the res-
onance energy. We have developed a simple model
to study the criteria that determine the eigenvalues
for any expansion length and to demonstrate that
the degree of stability is related to the width of the
resonance and the region of space spanned by the
basis set.

In Sec. II, we briefly describe the model poten-
tial and the procedure of the stabilization method.
In Sec. III, we present the results of our numeri-
cal calculations including the approximate phase
shifts extracted from square-integrable approxi-
mations to the scattering functions. Finally, in
Sec. IV, we analyze the stabilization method in
terms of a simple model.

II. MODEL POTENTIAL AND METHODS OF
SOLUTION

We have chosen to study a one-dimensional po-
tential with a barrier, which is continuous in the
range —~ &x& ~, and which immediately suggests
a natural basis of square-integrable functions to be
used in the stabilization method. The model po-
tential is given by

V(x) = —.
' x', x&0 (la)

—XxV(x)=-.' x'e ", x&0 (lb)

( (x) =(2 n! p'~2) '~2H (x)exp(- —'x') n=0, 1 ~ ~ ~ (2)

as our basis functions. In Eq. (2), H„(x) denotes
the nth Hermite polynomial. The parameter X de-
termines the width and the height of the potential
barrier (Vm~= 1/5. 4 X). Increasing X decreases
the size of the barrier and therefore increases
the width of the resonances. Of course, for X=0,
V(x) has an infinite barrier and only bound states
(with zero width) exist. We have studied both nar-
row and broad resonances by varying X between
0. 1 and 0.26.

with X &0. Both V(x) and its first derivative are
continuous at x =0. The potential, which is shown
in Fig. 1 for X =0. 225, has the desirable feature
that V(x)-0 as x-~. Since, as X-O, V(x) ap-
proaches the harmonic oscillator potential, we have
chosen the eigenfunctions of the harmonic oscilla-
tor
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tjal for the present analysis. For a given V(x),
we compute the matrix of the exact Hamiltonian
II(x) in a finite basis set consisting of the first N
functions given in Eq. (2). For a given N, the
matrix elements of IIN are given by

v(x) a =&q (x), a(x)q (x)), (6a)

1.0— with
6 =&( (x},( (x}),n, m=1, . . ., N . (6b)

0.5—

-2.0 -0.0 2.0

In the present work we have used up to 50 functions.
%e diagonalize the matrix HN to yield a set of N
eigenenergies &zN, and the corresponding eigen-
functions CP (x):

FIG. I. Model potential V(x) for ~=0.255 [see Eq. (1)]. e. 6.. =&4. (),~(x)C. (x)) .
U l ' j (7)

The scattering problem is defined by the differ-
ential equation

The eigenfunctions are linear combinations of the
first N functions in Eq. (2):

d'@E(x)
+[0' —2V(x)]4' (x) =0 (3)

N
+. (x)= Q C. q (x), eachf

4
1

sB 8 (s)

e (x)-0, (4a)

and the boundary conditions on O'E(x). The poten-
tial V(x) is given in Eq. (I), and the energy E is
equal to &k'. In order to obtain the exact scat-
tering wave function as a function of E, we have
numerically integrated Eq. (3) subject to the
boundary conditions:

I ike the basis functions pn(x}, the eigenfunctions
are square integrable and can be normalized such
that

(9)

%e repeat the procedure for increasing values of
N, changing N by unity if necessary, and carefully
observing the behavior of efN and Cp(x) as a func-
tion of ¹

and @ (x)-sin(kx+q), x- (4b)
III. RESULTS

where the phase shift g is a function of E. For a
scattering process in which only isolated reso-
nances occur, the phase shift, at energies near a
resonance energy, is assumed to have the form

q(E) =q, (E)+tan-' li2
pot y'

In Sec. IIIA, we discuss the qualitative features
of the numerical results and give a precise inter-
pretation to the eigenvalues and eigenfunctions pro-
duced in the stabilization method. In Sec. III B, we
present a simple method for the calculation of
scattering information (e.g. , the phase shift) from
the square-integrable eigenfunctions.

where Ez and I' are the energy and the width of
the resonance, respectively. The contribution of
the potential scattering to the phase shift spot(E)
is assumed to be a slowly varying function of E
near Ez, and is usually fitted to a polynomial in E.
Once we have calculated the exact q(E) from the
numerical solutions to Eq. (3), we fitted q(E) to
the form given in Eq. (6) to obtain the exact res-
onance parameters E~ and I', as well as @pot(E).

The procedure used in the stabilization method
has been discussed in detail elsewhere. ' Here,
we discuss only those features, which are essen-

A. Interpretation of the Eigenfunctions

For a given expansion length X the stabilization
method yields a set of N eigenvalues and the corre-
sponding eigenfunctions [see Eqs. (7)-(9)]. In the
case of a Hamiltonian containing a potential with a
barrier, such as our model potential, we find that
certain of the eigenenergies change very little
compared to the other eigenvalues as N changes
over a relatively large range, e.g. , Ml-20. Fur-
thermore, the "stable" eigenenergy is very close
to the exact resonance energy E~. Table I illus-



1112 A. U. HAZI AND H. S. TAYLOR

TABLE I. "Stable" eigenenergy and the expansion coefficients as a function of ¹ & = 0.19, E~= 0.453536,
I = 0.002805.

15
20
25

30
35
40
45

0.452846
0.449656
0.456984
0.454416
0.453508
0.452659
0.451045

n:1

0.9827
0.9527
0.9738
0.9845
0.9830
0.9784
0.9597

0.1046
0.1112
0.0906
0.0998
0.1026
0.1048
0.1078

0.0845
0.0945
0.0670
0.0782
0.0818
0.0849
0.0897

N
cz&

10

0.0280
0.0776

—0.0383
0,0026
0.0172
0.0309
0.0560

0.0063
0.0575

-0.0611
-0.0201
—0.0052

0.0088
0.0350

20

0.0132
—0.0444
—0.0257
—0.0186
—0.0119

0.0010

30

—0.0040
—0.0133
—0.0221
—0.0382

trates the behavior of a "stable" eigenenergy ej
for ) =0.19. At this point, we must emphasize
that the "stable" eigenenergy is not necessarily the
lowest eigenvalue of the matrix IIN. Indeed, at
certain values of N, the "stable" eigenenergy be-
comes the next higher eigenvalue, that is, as N
increases, a "nonstable" eigenvalue sometimes
passes by the "stable" eigenenergy from above.
This feature, which is indicated by the increase of
j from 1 to 2 in Table I, and its significance will
be discussed in detail in Sec. IV. The behavior of
the eigenfunction 4jN as a function of N is de-
scribed by the expansion coefficients Cj„N. Table I
shows some of the C&P belonging to the "stable"
eigenenergy. An inspection of Table I shows, as
expected, that the eigenfunction 4»N corresponding
to a "stable" eigenenergy also changes relatively
little with ¹

The behavior of the "stable" eigenenergies, as a
function of N, is similar to the behavior of the ap-
proximate eigenvalues in the truncated diagonal-
ization of a Hamiltonian with true bound states. In
the case of such a Hamiltonian, as the expansion
length increases, the jth approximate eigenvalue
converges to the jth eigenvalue of the Hamiltonian
from above. This convergence is a consequence
of the Hylleraas-Undheim theorem. " The apparent
convergence of the "stable" eigenenergy to a value
near the exact resonance energy E~ suggests that
the "stable" eigenenergy and the corresponding
eigenfunction are associated in some way with the
resonant state. A qualitative inspection of the
eigenfunctions produced by the diagonalization pro-
cedure supports this suggestion. Table I shows
that the 4jN associated with the "stable" eigenen-
ergy ejN has significant contributions from only the
basis functions with small n, i.e. , only those ba-
sis functions that have large amplitudes inside the
potential barrier near x=0. As a result, CjN it-
self has a large amplitude inside the barrier, a
behavior also exhibited by the exact scattering
wave function at energies near E~. In contrast,
the eigenfunctions associated with the other eigen-
values have significant contributions from basis

functions that have large amplitudes outside the po-
tential barrier. Therefore, the 4~N corresponding
to "nonstable" eigenvalues apparently are not as-
sociated with the resonant sta, te.

The behavior of the "stable" eigenenergies and
eigenfunctions as a function of X provides additional
qualitative evidence. We already noted that as X

increases the size of the potential barrier decreases,
and the resonance becomes broader and broader.
We find that for larger X the "stable" eigenenergy
changes more significantly as the expansion length
increases, i.e. , it becomes less "stable. " Also,
the basis functions with large v and large amplitude
outside the barrier contribute more and more to the
expansion of 4 N associated with the "stable" eigen-
energy. Accordingly, as X increases, the ampli-
tude of 4 N outside the barrier increases relative
to the amplitude near x = 0. The resonant scattering
wave function again exhibits a similar behavior.
It is well known that as the width of a resonance
increases (X increases)' the ratio of outer to inner
amplitudes of the exact wave function near E~ in-
creases indicating a greater probability of decay
through the barrier. All of these qualitative argu-
ments indicate that the "stable" eigenenergy e ~
and the corresponding square-integrable eigen-
function 4jN are associated with the metastable
resonant sta,te.

In order to give a more precise interpretation of
~jN and 4jN, we made a detailed study of the wave
functions produced by the diagonalization procedure.
We evaluated the 4 + as a function of x and com-
pared them with the exact scattering wave functions
at various energies.

First, we compare the eigenfunction belonging to
a "stable" e N with the exact scattering function
+E at E =E& and at E = ejN. The difference be-
tween O'Ez and 4& depends on the difference &E =Ey
—ejN, which is clearly a function of both N and X.
It is important to realize that 4E~ and 4q can dif-
fer significantly even for a relatively small ~,
because the phase shift is a rapidly varying func-
tion of E near Ez Isee Eq. (5}and the discussion
of Fig. 2]. Figure 2 compares the C~P associated
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FIG. 2. Comparison of the exact and approximate

wave functions in the resonant region for 'A=0.255.
(dashed line) 4 +with K=35, j=2, and e +=0.439463;
(dotted line) 4E for E=E&=0.441333; (solid line) CE for

~ N

FIG. 3. Comparison of the exact and approximate
wave functions in the resonant region for &=0.225.
(dashed line) C . with %=50, j=3, and ej =0.450892;
(solid line) 0E for E=e .

with a "stable" eigenenergy to the exact scattering
wave functions for X = 0. 225. Each scattering wave
function is arbitrarily normalized so that its am-
p].itude corresponds to the amplitude of 4»N at the
first maximum or minimum. The selected c&N for
N=35 differs from the exact Ez by 0.00187 a. u.
As a result, the phase shifts of 4E& and +q differ
by 0. 39. Figure 2 clearly shows that, apart from
the arbitrary normalization factor, the 4»N asso-
iated with the "stable" e»N accurately reproduces
4q out to x =9. At that point 4»N quickly drops to
zero, as it must, because it is a linear combina-
tion of exponentially decaying basis functions I see
Eq. (8)]. The eigenfunction CP differs significant-
ly from 4E~, however, even for x & 9. Our results
conclusively show that for the range of X considered
and for reasonable expansion lengths (N& 20) the
square- integrable eigenfunction 4»N associated
with a "stable" eigenenergy e»N is a good approxi-
mation, apart from a normalization factor, to the
inner part of the exact scattering wave function at
E = e»N. For small X, where e&N is very close to
the exact resonance energy Ez, 4»N also approx-
imates the inner part of the exact wave function at
E=E~. Furthermore, when the basis set is large
enough so that it spans the range of x beyond the
range of V(x), the square-integrable function 4p
properly describes even the asymptotic part of the
scattering wave function at E = ~»N. Of course, for
any expansion length, there is a value of x at which
4»N quickly decays to zero, and therefore 4~ N is
never a true scattering wave function. Figure 3
compares 4&N to 4'q for X=O. 225 and N=50, the
largest expansion length used in the present work.
In the range of 7 &g & 10, the exact wave function
4'q almost completely settled down to its asymptotic
form but it is still closely approximated by 4»N.
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FIG. 4. Comparison of the exact and approximate
wave functions in the nonresonant region for ~ = 0.225.
(solid line) C with %=50, j=4, and E =0.788675;
(dashed line) CE for E= e

At x= 10, however, CP(x) rapidly decreases to
zero.

Encouraged by the results obtained for the "sta-
ble" eigenvalues, we next compare the C&N belong-
ing to "nonstable" eigenvalues eP (which are far
from the resonance energy E~) with the exact scat-
tering functions at E=&zN. Figure 4 shows repre-
sentative results for X = 0. 225. Again, the scat-
tering wave function is arbitrarily normalized so
that its amplitude agrees with that of the eigen-
fucntion 4»N at the first maximum or minimum.
The graph clearly indicates that the CzN belonging
to "nonstable" eigenvalues &zN as given by the di-
agonalization procedure, closely approximate,
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apart from a normalization constant, the inner
part of the exact scattering functions +E at E = fi+,
even though these 4E represent nonresonant scat-
tering. " This is a somewhat surprising result be-
cause the functions 4i& are linear combinations
of exponentially decaying basis functions, i.e. ,
functions which exhibit incorrect behavior a,symp-
totic ally.

Originally, the use of square-integrable functions
to approximate the inner part of resonant scatter-
ing functions was justified by the argument that at
energies near E~ the amplitude of 4E inside the
potential barrier is much larger than that in the
asymptotic region. ' Therefore, if one neglects the
relatively small (dependent on the width I') ampli-
tude of 'kg~ outside the range of V(x), the function

ATE& looks like the wave function of a true bound
state. But now we can make the much stronger
statement that provided the basis of square-inte-
grable functions spans the physicaQy interesting
region of x [defined by the range of V(x)], the sta-
bilization or truncated diagonalization procedure
yields good approximations, apart from a normal-
ization factor, to the exact scattering functions at
energies equal to the eigenvalues, both in the res-
onant and nonxesonant regions,

In order to judge the adequacy of a given basis set,
one must use intuition and all the physical infor-
mation available about the problem. In this regard,
a calculation of scattering states is no different
from a variational calculation of true bound states.
We note, however, that the expansion lengths re-
quired to produce a good approximation of the in-
ner part of the scattering wave function near E~
are usually smaller than those required for the
wave functions at energies far from E~. This is
simply a consequence of the fact that, apart from
a relatively small asymptotic tail, the exact 4E

near the resonance energy is much more localized
in space than the potential scattering wave functions
at energies far from Ez. For example, a compar-
ison of Figs. 3 and 4 shows that for X=0.225 a
basis set spanning the range —4& x& 4 is required
to reproduce the most important inner pa.rt of the
resonant wave function. On the other hand, a basis
set that spans at least the range —4 & x & 8 is need-
ed to approximate the nonresonant scattering wave
function (at E = 0. 7887) out to the third node.

B. Evaluation of Phase Shifts from the
Eigenfunctions

In Sec. IIIA, we showed that for sufficiently
large basis sets, the diagonalization procedure
yields good approximations to the exact scattering
functions even outside the range of the potential.
In view of this fact, we conclude that the square-
integrable eigenfunction must contain the desired
scattering information, such as the phase shift.
The problem therefore becomes how to extract the
phase shift from the exponentially decaying eigen-
functions. Immediately, two possible difficulties
are apparent. The eigenfunctions are not properly
normalized for a. scattering problem and have in-
correct asymptotic behavior for large enough x.
Of course, in a one-dimensional problem, we can
always determine the phase shift from the logarith-
mic derivative of the approximate wave function at
a value of x beyond the range of the potential but
before the point where the function decays to zero.
However, we are looking for a more general meth-
od that can be possibly applied to many-dimension. -
al many-particle problems.

One possible procedure is to use the stationary
expression for tang originally developed by
Schwinger":

[5 e(x)V(x) sinkx dx] '
tanq =—

1,
'"

+(x)V(x)+(x)dx- f, J' e(x)V(x)G(x, x')V(x')e(x') dxdx'
(10)

G(x, x') =—sinkx'coskx, x &xI (11a)

G(x» x ) =—sin kx coskx,p 1 I (11b}

where G(x, x') is the free-particle Green's function the complexities involved in the evaluation of the
double integral over the Green's function. An al-
ternative expression, incorporating the above men-
tioned advantages, is desirable.

It can be easily shown that for an exact scattering
wave function satisfying the equation

The expression in (10) has the advantage that tang
is independent of the amplitude of the trial function
4(x}. It is also independent of the asymptotic be-
havior of 1»(x} since the boundary condition is in-
corporated into G(x, x ). However, it is difficult
to use Eq. (10) in an actual calculation because of

[Z-a(x)]+ (x)

1 2 1'= -k2+- —V(x) e (x)=O,
2 2dx2

tang can be calculated from the expression"

(12)
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1"~*[E H—(x)]f (x) sinuxdx
tang =—

f e + [E —H(x)]f (x) coskx dx

The function f (x) must satisfy the conditions:

f (x)-1, x--

j(O) =0,

(14a)

(14b)

and —
~

=0d
dx x=0 (14c)

f, @*(x)[~. —.H(x)] S(x)dx
tang =—

/ C.*(x)[~.—H(x)] C(x)dx
(16)

Recently, Nesbet has shown" that Eq. (16) yields
the same phase shifts at the eigenvalues 6j as the
Hulthe'n variational method" would with a trial func-
tion of the form given in Eq. (15). Since our pro-
cedure, described in the previous paragraph, re-
duces Eq. (13) to Eq. (16), it is operationally iden-
tical to the Harris method and yields approxima-
tions to tang, which are stationary with respect to
first-order corrections in the trial function. How-
ever, our interpretation is conceptually different,

but it is otherwise arbitrary. For example, we
have used the function f (x) =1 —exp( —Xx')X & 0 in
our calculations. The purpose of introducing this
function is explained below. The expression in
(13) has the two desired features. The value of
tang is independent of the amplitude of 4'(x). Also,
no particular asymptotic behavior of 4(x) is re-
quired because the kinetic energy operator does
not act on +(x)." However, the value of tang ob-
tained from (13) is stationary only under certain
conditions (see the discussion below). We have
approximated the exact phase shifts at energies
equal to the eigenvalues EjN, by substituting the
square-integrable eigenfunctions Cp(x) for O'E(x)
in Eq. (13).

Before presenting our results, we wish to com-
ment on the relationship of Eq. (13)to the varia-
tional method recently proposed by Harris. " In
his method, the exact scattering function +E(x) is
approximated by

N
+ (x)= Q n.C.(x)+S(x)+tanqC(x), (15)

x=1 ' '
where the C~f(x) are eigenfunctions of H in an N-
dimensional truncated basis set. The functions
S (x) and C(x) are zero at the origin and behave like
sinkx and coskx, respectively, at large x. The
approximate phase shifts at E = cj, the eigenvalues,
are given by

TABLE II. Comparison of exact and approximate
phase shifts: A =0.15, E&=0.466105, I =0.0003210.

0.1986012
0.2432740
0.3067471
0.4659006
0.4660346
0.4661222
0.4662023
0.4662291
0.4662616
0.4663029
0.4663590
0.4664427
0.4665855
0.4668 974
0.5614866
0.6479890
0.7570471

Exact q

0.25441
—0.01298
—0.33681
—0.29226

0.19811
0.71752
1.15593
1.26965
1.38428
1.50066
1.61860
1.73842
1.85945
1.98113
1.90252
1.69428
1.48282

Approximate g

0 ~ 25448
—0.01301
-0.33661
—0.29216

0.19845
0.71749
1.15614
1.26985
1.38455
1.50062
1.61896
1.73S24
1.86032
1.98177
1.90244
1.69448
1.48295

45
40
35
50
45
40
36
35
34
33
32
31
30
29
50
45
40

All quantities are in a.u. unless stated otherwise.

in that we find for large enough basis sets the
eigenfunction 4j by itself is a good approximation
to 4& even beyond the range of the potential.
Therefore, the explicit inclusion of the other
eigenfunctions 4 f(i 4j ) and the asymptotic functions
S(x) and C(x) is not necessary. In fact, a careful
examination of the Hulthdn method shows that at
E =ej, the coefficient o. of the function C»(x) is in-
finite, i.e., the best approximation to 4 &. in the
framework of the Hulthen variational principle is
just the square-integrable eigenfunction Cj(x).

In our calculations, we included the function f (x)
= 1 —exp( —Xx') in Eq. (13)to ensure the equivalence
of tang as given by Eq. (13) to that given by the
Hulthen method for a problem defined over the
range of-~&x&~.

Tables II and III compare the exact phase shifts
to those obtained from the square-integrable eigen-
functions through the use of Eq. (13) for X =0.15
and X = 0. 225, respectively. The column labeled
N gives the size of the basis set which yielded the
particular eigenvalue and the approximate phase
shift at that energy. The agreement between exact
and approximate phase shifts is excellent in both
the resonant and the nonresonant energy regions.
We obtained the approximate resonance energies
and widths by fitting the approximate phase shifts
to the form given in Eq. (5). Table IV compares
the exact and approximate resonance parameters
for several values of X. As expected, excellent
agreement is obtained for both narrow and broad
resonances. It is interesting to note that the differ-
ence between the exact and approximate resonance
energies increases as the width of the resonance
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TABLE III. Comparison of exact and approximate
phase shifts: g= 0.225, E~=0.441333, I"=0.008996.

l.2-

0.1829543
0.3903266

0.4242980
0.4356381
0.4388743
0.4394626
0.4400106
0.4405336
0.4410453
0.4415584
0.4426438
0.4508920
0.4737665
0.5338320
0.6209181
0.7886753

Exact 'g

1.16758
0.52853
0.61987
1.00578
1.40092
1.50580
1.61273
1.72162
1.83248
1.94521
2.17635
3.00670
3.26400
3.25045
3.16135
3.07880

Approximate g

1.16719
0.52853
0.61968
1.00573
1.40078
1.50623
1.61291
1.72117
1.83225
1.94572
2.17595
3.00662
3.26393
3.25056
3.16143
3.07890

35
50
45
40
36
35
34
33
32
31
29
50
45
40
35
50

J.O-

,6-

l0 20 30 50

Reference a, Table II.

increases. Presumably, this is a consequence of
the fact that for broader resonances potential scat-
tering is relatively more important. As we have
already noted at the end of Sec. IIIA, it is more
difficult to obtain good approximations to the scat-
tering function off resonance because larger basis
sets are required to span the physically important
region of x.

IV. MODEL FOR BEHAVIOR OF EIGENVALUES
IN STABILIZATION PROCEDURE

The results presented in Sec. IIIA reinforce the
qualitative idea previously used to justify the sta-

FIG. 5. Behavior of the four lowest eigenvalues as a
function of the expansion length N for X = 0.225.

bilization method as an efficient way of approxi-
mating the resonance energy E~. Figure 2 clearly
shows that at energies near Ez the amplitude of the
exact scattering wave function inside the range of
the potential is much larger than its amplitude in
the asymptotic region. However, so far we have
not discussed in detail the behavior of the eigen-
values e~N as a function of N.

Figure 5 shows the behavior of the few lowest
e~N as a function of N for ) = 0. 225. " The "stable"
behavior of the eigenvalues at energies near E~
is very clear. Accepting for the moment the as-

TABLE IV. Comparison of the exact and approximate resonance parameters. The values in column 3 were determined
from the approximate phaseshifts given by Eq. (13). The values in column 4 were determined by fitting the calculated
Dc/~to Eq. (31) [see Sec. IV].

0.125

0.15

0.19

0.225

0.26

Exact

0.472940
0.3607 x 10

0.466105
0.3210 x 10

0.453536
0.002805

0.441333
0.008996

0.429033
0.01976

Approximate

0.472940
0.3604 x 10

0.466106
0.3225 x 10

0.453540
0.002820

0.441326
0.009032

0.428985
0.01979

Model

0.472940
0.3595 x 10

0.466106
0.3176 x 10

0.453534
0.002776

0.441347
0.008945

0.429056
0.01978
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sumption that the stable &jN approximates Ez, it is
obvious that we can easily estimate Ez with good
accuracy from such graphs. In order to show that
the "stable" &jN indeed approximates Ey we now

show that when one of the eigenvalues is near E~,
its slope, &ef'N/&N is very small compared to the
slopes of the other "nonstable" E'EN. Indeed, when
eiN =Eche /AN (treated as a continuous function
of N) is proportional to the exact width of the res-
onance to a very good approximation. Before pro-
ceeding with the argument, one should remember
that the Hylleraas-Undheim theorem requires that
heiN/6¹ 0 for each i." This behavior is clearly
seen in Fig. 5. Now let us consider the discrete
energy spectrum obtained by solving H( =EP in the
region —L & x& L subject to the condition ((L)
=g(- I)=0. Since the true spectrum of H in —~
& x& is continuous for E&0, we assume that for
a very large L, the discrete spectrum is densely
packed for E &0. Indeed, one can always find a
finite L so that the m lowest eigenvalues are below

E~ regardless how large m is. As the basis set
becomes complete for —L & x & L, L finite, each
ejN approaches the corresponding exact discrete
eigenvalue (of the box problem) from above.
Therefore, if we treat N as a continuous variable,
each e&N must "cross" the line E =E~ for some
value of N. More precisely, for some integer value
of N there is an eigenvalue near E~.

To proceed, we must find the conditions which

determine the ezN for a given expansion length ¹

In a problem involving true bound states, the dis-
crete eigenvalues are determined by the boundary
condition 4~i(x}-0 as x-~. In a scattering prob-
lem, different boundary conditions apply and a con-
tinuous energy spectrum results. However, in the
stabilization method, we diagonalize the Hamilto-
nian in a truncated set of exponentially decaying
functions. Therefore, pr esumably the eigenvalues
are determined by the condition that Ci(x) = 0 at
some value of x yet unknown. If the basis functions

(~(x}are properly ordered so that each (~(x}de-
cays to zero at approximately xm, which is an in-
creasing function of m, then the eigenfunction
C~jN(x), which is a linear combination of (I
[see Eq. (8)] must certainly be zero for x & xN.
Thus, we have

4. (x )= 0, i=1, ~ ~ ~, N
N

i N

If the point xN is beyond the range of the poten-
tial, all the solutions of (H-E)4'=0 must behave
like

4 .(x)- sin[0.x +q(k. )] (18)

for x near xN. The eigenvalue &AN equals I/2''.
The boundary condition in Eq. (17) requires that

k.x +ri(k. ) =jr, j =1, ~ ~, N. (19)

N
Z (21)

where 1/2k~'=E~. In addition, let us assume that
r is small enough so that no other eigenvalue is
near Ez within I' and

If the potential under consideration has a finite
number of bound states for E & 0, then the lowest
allowed value of j in Eq. (19) is NH+ I, where Np
is the number of bound states. This implies that
for N& NI3, the NI3 lowest eigenvalues obtained
in the diagonalization would approximate the NJ3
true discrete eigenvalues of II.

In order to obtain a result which is independent
of the particular basis set used, we first consider
the behavior of c N as a function of the boundary
at xN. We can differentiate Eq. (19) with respect
to xN provided we know the functional form of the
phase shift q. For a problem exhibiting an iso-
lated resonance, we can assume that g has the
form given in Eq. (5). Differentiating Eq. (19) we
obtain

8&.
N 2'.

= —26. x +".= ." -„, , -',.„.)
y

where we have assumed that Sripot/aE= 0. This is
a good approximation provided we use Eq. (20) in
a narrow energy region where @pot(E) is a slowly
varying function of E. Equation (20) is the desired
result because it relates the behavior of ejN as a
function of xN (and N) to the resonance parameters.
Also, it demonstrates the "stability" of an eigen-
value at energies very near Ez.

Let us assume that for a given xN one of the
eigenvalues &~N equals Ez. %e obtain

The discussion of the eigenfunctions presented in
Sec. IIIA shows that indeed the basis set gl. . .gN
spans the region x & xN, but not beyond. 'Equa-
tion (17) ca.n be taken as the boundary condition that
determines the &~N for a given N. Of course, this
procedure is equivalent to placing an infinite poten-
tial (wall) at x =xN, and then solving (H -E)4'= 0
within this wall.

Using Eq. (22), we get
N

2
N

xN xN

(22)



1118 A. U. HAZI AND H. S. TAYLOR

But if I' is small enough so that

x «2k /r,r

Eqs. (21) and (23) reduce to

(24)

eigenvalues was indeed observed.
Equations (21) and (23) also describe the behavior

of the eigenvalues for very large expansion lengths.
For large enough N, we have

N
2 1= —pk I'

ex r (26)

xr
2kr

(26)

Equation (24} implies that

j~ f, . (27)

%e now have the result that, provided the assump-
tion in Eq. (24) is valid, the slope of the "stable"
eigenvalue &2& is much smaller than those of the
other eigenvalues. In addition, Eqs. (25) and (26)
imply that the narrower is the resonance the more
pronounced is the "stability. "

Now let us examine the assumption in Eq. (24}
in more detail. Since we originally assumed that
the point xN was beyond the range of the potential,
say x„, we can rewrite Eq. (24) in the form

2k
x r

v
(28}

The above restriction is certainly not too severe
in the case of electron scattering off neutral
atoms or molecules. For example, in the case of
the well-known 19.3-eV resonance of He with an
estimated width of 0. 006 eV in the elastic channel'
one has the requirement that xv «10' a.u. In the
case of a broader low-lying resonance, say with
E~- 2. 'I eV and I'- 0. 3 eV, Eq. (28) requires that
xv «90 a.u. Because of the asymptotic form as-
sumed in Eq. (18), the present analysis does not
directly apply to scattering from the long-range
Coulomb potential. However, if one repeats the
analysis using an asymptotic form appropriate for
Coulomb functions one again reaches the conclusion

stability" of some eigenvalues will occur for
narrow enough resonances. In this case, the width
must satisfy Eq. (28), where now x„denotes the
range of the non-Coulomb (short-range) part of
V(x}. This conclusion is in agreement with previ-
ous computational studies of the systems e+He+'
and e+H, +, "~"in which "stabilization " of certain

x»2k /I'
N r (28)

even in the case of very narrow resonances. Un-

der this condition the slope of every eigenvalue is
described by Eq. (23); i.e. , there is no longer a
unique so-called "stable" root. As N and xN in-
crease, no divergence results, but one is no longer
able to select a particular c N for special consid-
eration. This result agrees with the previous pre-
diction that as N increases the density of eigen-
values becomes so large that one loses track of
the particula, r e.N that was "stable" for smaQer
N 2

The analysis also illustrates why the selection of
an appropriate basis set for a given problem is so
important:

(a) In deriving the expression for the slope of
the eigenvalues, Eq. (20), we had to assume that
the basis set spans the range of the potential.

(b) "Stability" occurs when there is an eigen-
value near Er. This condition can occur only when
the basis set is adequate to describe the inner part
of the resonant scattering function, because it is
this part which determines the value of Er.

(c) If initially one chooses an inadequate basis
set, one needs to add many other functions to ob-
tain an &~N near Er. In such a case, the condition
in Eq. (24} may not be satisfied by the time "sta-
bility" of an ep results. Once the inequality xN
«2k&/r does not hold, no unique eigenvalue exists.

If one knows the explicit dependence of xN on the
expansion length N, one can use Eq. (20) to extract
the resonance parameters Er and I from the com-
puted slopes of the sta,ble ' eigenvalue. For the
harmonic oscillator functions, we obtain (in a.u. )

=2N-1
N (30)

Using Eq. (30) and assuming that N is a continuous
variable, we can transform Eq. (20) into

N

&N

2rk. (2N - I)'~2
x 2N- 1+

4(z —e. )'+r'r
(31)

Table IV shows the resonance parameters obtained
by fitting the computed slopes of the "stable" eigen-
values to Eq. (31). The good agreement obtained
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between the exact and approximate values of both
Ez and 1" gives us confidence in our model as a
valid explanation of the behavior of the eigenvalues
as a function of N. The slightly increasing discrep-
ancy between the exact and approximate resonance
energies for increasing X is probably due to the
assumption &depot/&E =0. For broader resonances,
E&N is less 'stable" so that one needs to use Eq.
(20) over a larger energy range, over which

Teapot

may not be constant. For added computational ac-
curacy, one could introduce Sexpot/&E into Eq. (20)
as an additional parameter, but this is not our
purpose here.

Finally, we wish to comment on an interesting
and perhaps puzzling feature of Fig. 5 illustrating
the behavior of e&N as a function of N. At certain
values of N there are avoided crossings of two neigh-
boring eigenvalues. Holffien and Midtdal5 found a
similar behavior when they plotted the eigenroots ob-
tained in the truncated orthogonalization method
as a function of the variable screening parameter
in the basis functions. The peculiar behavior of
e&N at certain values of Nis a consequence of the
Hylleraas-Undheim theorem" and Eq. (26). Let
us consider an isolated "stable" eigenvalue c&N.
Since the next higher eigenvalue, denoted by ej+1N,
decreases much more rapidly with N than the "sta-
ble" e + [see Eq. (26)], e&+1 —ep must decrease
until the two eigenvalues are nearly degenerate.
As E&N is pushed away from Er by e~+ &N approach-
ing from above, it becomes less "stable. " On the
other hand, e& +1N is approaching Ez and thus
becomes "stable. " The behavior of the correspond-
ing eigenfunction provides additional insight into
the nature of the crossing region. The eigenfunc-
tion 4& +1 belonging to the "stable" &&+1 right of
the crossing is almost identical to the C& belonging
to the "stable" ~& left of the avoided crossing, ex-
cept the former has one additional node. There-
fore, the unstable region represented by the
"avoided crossing" is associated with the addition
of a new node to the eigenfunction that approximates
the resonant scattering function. As N and x& in-
crease a new node is introduced for each half wave-
length. In a problem for which the boundary con-
dition in Eq. (18) is applicable, the wavelength is
approximately 2~/k~ and is independent of x~(N).
As a result, the avoided crossings do not come
closer as xN increases and do not lead to any dif-
ficulty for large expansion lengths.

Our major conclusions are zs follows: When the

exact Hamiltonian is diagonalized in a large enough
basis of exponentially decaying functions, the re-
sulting eigenfunctions closely approximate, apart
from an arbitrary normalization factor, the inner
part of the exact scattering functions at energies
equal to the corresponding eigenvalues in both the
resonant and nonresonant energy regions. How-
ever, in general, larger basis sets are required
to obtain a good representation of the scattering
wave functions at energies far from E~. Using ap-
propriate amplitude independent formulas one can
extract scattering information from the exponen-
tially decaying approximations to the scattering
wave function. We have analyzed a model which
explains the behavior of the eigenvalues as a func-
tion of the expansion length. The analysis shows
that for adequate basis sets the slope of an eigen-
value at Ez is proportional to the width and is
much smaller, in magnitude, than the slopes of
the other eigenvalues. This phenomenon is called
"stability, " and it occurs provided xU & x&«2k~/I",
where xN defines the range spanned by the basis
set and xz is the range of the potential. In the case
of very-large basis sets, for which the above con-
dition does not hold, the diagonalization no longer
yields a unique stable eigenvalue. For increasing
expansion lengths, the stabilization procedure be-
comes useless as the consequence of the incorrect
boundary condition employed in the scattering prob-
lem.

We are presently investigating the extension of
our method to many-dimensional problems in
which both shape resonances and compound state
resonances occur in the elastic as well as the in-
elastic channels. The results of this study will be
reported in the future.
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We show how to interpret the Ford-Wheeler semiclassical expression for the scattering am-
plitude as a integral, over both positive and negative impact parameters, of a quantity depend-

ing on the action. This formulation clarifies the relationship between the action and the phase
of the semiclassical expression for the scattering amplitude. Using this formulation, we

show that interference processes in both one- and two-channel elastic scattering are analogous

to those occurring in the two-slit diffraction of light.

I. INTRODUCTION

In quantum-mechanical treatments of scattering,
the impact parameter cannot be known because of
the uncertainty principle (the transverse momen-
tum before the collision is fixed by the incident
angle and momentum). If the de Broglie wave-
length

)t. =h/p =h(2mE) "'
is much smaller than the scale of variation of the
potential, however, the impact pa.rameter b be-
comes physically significant. One can imagine
that each portion of the incident wave can be fol-
lowed through the collision; its deflection being de-
termined only by the impact parameter b (and the
reduced potential).

This idea forms the basis of this paper. In Sec.
II, we show how the semiclassical scattering am-
plitude may be expressed as an integral over all
impact parameters, and in Sec. III, we show the
close relationship between the action and the phase
of various contributions to the scattering amplitude.
In Sec. IV, we give a simple interpretation of in-
terference phenomena in single-channel (one-po-
tential) scattering, which is extended to two-chan-
nel interference phenomena (e. g. , resonant ex-
change) in Sec. V.

II. SCATTERING AMPLITUDE INTEGRAL

Ford and Wheeler' have shown that a considerable
mathematical simplification in the usual partial-
wave treatment of scattering results when the de
Broglie wavelength is smaller than the scale of


