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A theory for the structure of one-positron many-electron atoms and molecules in bound

states is presented. The purpose of the theory is to permit the accurate calculation of posi-
tron lifetimes, angular correlation for two-photon annihilation, and accurate positron binding

energies, but not necessarily quantities which depend upon purely electronic correlation. We

therefore use a modified orbital approximation for the electrons, the modification consisting
of the introduction of explicit electron-positron correlation into each electronic orbital. The
kinetic energies of the electrons and positron are treated on the same footing, and the Born-
Oppenheimer approximation is applied to the nuclei. No spin-dependent or relativistic terms
are included in the Hamiltonian. In this paper we treat only those systems for which the
electrons constitute a closed shell, and we do not consider the spatial symmetry of the atom
or molecule.

I. INTRODUCTION

There is ample experimental evidence indicating
that bound positron-atom and positron-molecule
complexes play an important role in annihilation in
gases and in molecular liquids and solids. ' Un-
fortunately, it is presently impossible to quanti-
tatively interpret experimental results in terms
of the structure of such complexes, owing to the
lack of a suitable theory. Of equal importance is
the converse: Experimental results cannot now be
used to deduce structural features of the parent
complexes. The purpose of this paper is to pro-
vide the necessary theory, at least for a certain
class of systems.

Our approach is, first, to calculate a wave func-
tion for the complex of interest using ordinary
Schrodinger nonrelativistic wave mechanics, and
second, to use the wave function so obtained to
calculate the annihilation parameters. This pro-
cedure originated with Shirokov and Chang Lee'
and corresponds to using first-order perturbation
theory to estimate the coupling between photon and
matter fields.

The method for calculating wave functions ac-
counts accurately for those effects which are crit-
ical in estimating annihilation parameters, and
makes suitable approximations for those which
are not. Specifically, if there are n electrons, we
assume that the n —1 nonannihilating electrons are
merely inert spectators during the annihilation
event and do not begin to relax into eigenstates of
the residual system until after annihilation is com-
plete. Chang Lee and others have shown that this

is a good approximation, under which the annihila-
tion rate and two-photon angular correlation are
one-electron properties. Such properties are
usually accounted for within 2-5/o accuracy by
Hartree-Fock wave functions. Expressions for
evaluating the annihilation parameters in terms of
such wave functions have been given for systems in
which the electrons constitute a closed shell by
Ferrell and Chang Lee. 3 In the present work we
consider only such systems and such wave functions.
We so limit ourselves in order to focus our atten-
tion on the practical problem: how to get sufficiently
accurate annihilation parameters from the sim-
plest possible approximate wave functions. A
treatment of a more general class of systems
(i.e. , open electronic shell) will be given later.
Many important positron complexes have closed
electronic shells: positronium chloride, positron-
water, positron-chlorobenzene, positronium
hydride, etc.

In Chang Lee's approximation, annihilation de-
pends upon the coalescence of annihilating parti-
cles, and hence, in order to yield an accurate
annihilation rate, an approximate wave function of
a complex must be accurate in regions of space
where the positron is close to an electron. Further-
more, since the Hamiltonian heavily weights re-
gions of space near coalescence of annihilating
particles, wave-function accuracy there is important
also for energies —specifically, positron and
positronium binding energies of atoms and mole-
cules. Theoretical work on solids by many work-
ers suggests that calculated angular correlation
curves may not depend critically on positron-
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electron correlation, as does the annihilation rate.
Making an approximate wave function reflect

short-range two-particle correlation accurately
can be viewed as building the proper interyarticle
cusp into the wave function. In the main, there
are two methods for accomplishing this: a direct
method in which one explicitly puts into the wave
function the interyarticle radial coordinate
|r, —r, I for the two particles a and b in whose rela-
tive motion one is interested; and an indirect meth-
od in which a reference point c (usually a third
particle) is chosen and the coordinates ir, —r, t,

I r ~
—r, l, and ~ acb are included in the wave func-

tion and given a special interdependence to approxi-
mate the cusp. In the direct method one can ac-
curately satisfy the cusp condition in a simple way,
whereas in the indirect method a lengthy expansion
of the wave function in a basis set is required even
to approximate the correct coalescence behavior.
Despite the large exyansion, the indirect method
always requires less labor.

For example, a large number of studies of elec-
tronic correlation in the helium atom show that
in an exyansion of the wave function in a basis set
the correct short-range interelectronic behavior
is established with far fewer terms by the direct
method (using the Hylleraas coordinates s, f, and

u) than by the indirect method (configuration inter-
action). In this case, extension of the direct meth-
od, even to atoms with only three and four elec-
trons, has led to very complicated integrals, where-
as the indirect method while less accurate is easily
extended to much more complicated atoms. A
related observation can be made concerning mol-
ecules by comparing a wave function comprised of
one-center configurations (indirect method) with
a wave function built up from orbitals centered at
each nucleus (direct method). In this case, the
two particles, whose short-range correlation we
consider, are an electron and a nucleus other than
the one which serves as the origin of the one-center
wave function. For wave functions of comparable
compactness (a compact wave function has a short
expansion in a basis), the direct method gives a
much more accurate wave function near such
nuclei, but requires much more labor.

The relevance of these remarks for the present
study is that we may choose either method for rep-
resenting short-range electron-positron correla-
tion in systems of interest, and our choice will be
guided by the conflict between convenience of cal-
culations and accuracy of the results. Except for
very simple systems, allyrevious work onyositron-
atom and positron-molecule complexes has been
done using the indirect method. The purpose of
the present work is to show how the direct method
can be applied to the positron-electron correlation

II. PRELIMINARY DEFINITIONS

For systems in which the electrons form closed
shells we take as our approximate wave function

@=(p(x~)AD„(~(x~, r~), (2. I)

where A is the electronic antisymmetrizer and
normalizer, and P denotes spin-orbitals of the
particles designated by the subscripts (p means
positron and p means electron). The argument
x denotes spin (o) and space (r) variables of the
particle indicated by the subscript. We call (~ an
electronic spin-orbital even though it depends also
on the position of the positron. We choose the
g's to be eigenfunctions of the one-particle spin
operators:

(2.2)

problem in many-electron systems.
Our approach is simple and direct: To make up

the over-all wave function for the complex we
multiply a one-positron spin-and-space function
times a Slater determinant of one-electron syin-
and-space functions. Each of the electronic spin
orbitals is generalized. by making it depend also on
the position of the positron. In this way the crucial
electron-positron correlation is accounted for sat-
isfactorily, thus presumably leading to acceptable
accuracy in calculated annihilation parameters.
The purpose of the positronic orbital is to ensure
that the correct positronic charge density is given
by the wave function, and to provide a convenient
means to properly account for the symmetry of the
point group of the molecule.

In Sec. II we set up the necessary symbolism,
and in Sec. III the self-consistent-field (SCF) equa-
tions are derived and presented as differential
equations. Section IV is adiscussionof how to solve
the equations, including the Roothaan expansion
method and perturbation approaches. Section V
reviews previous work on positron-atom and posi-
tron-molecule complexes with reference to the
approach presented here.

All previous calculations of one-positron, many-
electron systems (more than two) have suffered
from at least one of the following deficiencies:
Positron-electron correlation has been ignored;
the Pauli exclusion principle for the electrons has
been violated; symmetry considerations involving
spin angular momentum or electron interchange
have been incorrectly treated. The present ap-
proach correctly accounts for all of these, and may
have significant implications for calculations on
scattering systems and solids as well as the class
of systems we consider here, bound finite systems.
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q,(x„r,) = y, (r„r, ) o'(p) = P;'n„, integrations alone are indicated by parentheses:

for p, =21 —1

g,(x„r ) = y, (r„r )P(p, ) = (f&,'P„
(2.6)

for p, =2i .

Thus, each electronic orbital P; is doubly oc-
cupied, the electron spins are paired, and 4 satis"
fies the Pauli principle for the electrons.

This form for 4 is, aside from the r~ dependence
of the electronic orbitals, precisely that of Hartree-
Fock theory as far as the electrons are concerned,
and it is very general from the point of view of t:tie

positron. Indeed, it is not unique since„ for ex-
ample, P~ can be included as a, factor in any of the

Therefore, we still have considerable freedom
to incorporate desired features into the wave func-
tion. In particular, the r& dependence of each
electronic orbital Q; can be exploited to insert
electron-positron correlation directly into the wave
function through the coordinate x»= tr~ —r~ l. In
this way + can be made to satisfy all the electron-
positron cusp conditions exactly by requiring each
P; to satisfy'

(2.4)

Without loss of generality,
to obey

The Hamiltonian which we
familiar atomic units,

we require the orbitals

(2.Va)

(2. 7b)

consider here is, in

0=p.a„++gal.„+a„+p,g „,

(2. 8)

(2.9)

Using this notation the annihilation rate for two-
photon production, vz', is given by Chang Lee (in
atomic units)

This may be a convenient way to cultivate accu-
racy in a trial wave function in regions of many-
particle space which correspond to coalescence of
annihilating pairs.

If we thus use the r~ dependence of P; to express only
the short-range correlation of the motions of the
annihilating particles, then the gross distribution
of positronic charge in the molecule is manifested
through the positronic orbital P~. In this case
each P, can be made to belong to an irreducible
representation of the symmetry group of the com-
plex. Then A.II„(~ is totally symmetrical, and
the symmetry of 4 is just the symmetry of if'&

In the summations that appear below, a Greek
running index (not o.) indicates an n-fold sum over
electrons or spin orbitals, a Roman running index
indicates an &n-fold sum over orbitals, and a sum
n means a sum over nuclei.

Integrations over space and sums over spin are
indicated by angular brackets:

where a is the fine-structure constant and the units
of 7'z„are atomic units of time (2.4189 &&10 '~ sec).
Likewise, the amplitude for 2y a.nnihilation with the
photons having total momentum k is

r(k) = [o"/(2&)'j ~; I fdr e.(F)e;(r r)'"'I ', (2 10)

and the quantity usually observed in the measure-
ment of 2-photon angular correlation is

(2.11)

The rate and amplitude are related by

(2.12)

Clearly the rate and amplitude can be expressed
as expectation values of one-electron operators:

(Pp~ 8
~
(q)= Z(o~)fdr~ gq(xq)8(p(xq), r~„'= (4 ~b, , ~4'), 6, = gn'+„5(r~ —r~), (2.13)

where 8 and 8' are arbitrary operators. Spatial r(i)=(e (2.14a)
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Q 1

2 227r2

x( -'I: 2(P +8 )g( )l (2.14b) F(F„.r„,F) = y,.(F„F)fdr„
(s. 4)

where the parentheses in Eq. (2. 14b) imply inte-
gration over r ~ and r~. We emphasize that Eqs.
(2. 13)-(2.14b) are valid only for systems for
which the wave function has the form (2. 1).

III. SCF EQUATIONS

A. Variational Expression

P,*(F„,r~)E(r„, r „F~)
Jr ~

—F„ l

where Il is an arbitrary scalar function of the in-
dicated variables. Continuing,

&~ IZ.~., lq& =(~, (2Z, (y, la., le;) I e.) ~ (3»
The expectation values of the various terms in

the Hamiltonian are easily seen to be
(& I Z.„' I &&

= (~, I
&.„"

I ~,); (s.o)

&el&, h„le& =(y, i~,.(~,. la, l y,.) (y,}, (3.1)

~ i y,(r„,r, )}'

=Z,(r„r ), (3 3)

&el ggg. „l e& = (y, (p,.p,.(y,. l
2z,.- Icj l y,.) (y,),

p &v

(3 2)
where we have slightly generalized a familiar set
of definitions:

and finally,

&q I
--'vol~& = &e. l &d «.c.l

--.'v,' n„qg l q, &.

(3.V)

We have separately expressed the results for the
two parts of h& since one part is very simple but
the other requires a little more treatment. The
positronic Laplacian in Eq. (3.7) is understood to
operate on the (n+1)-fold product g~'Q~g„. In
detail,

V;(y,n„s.)=(V,'y, )(rr,y„).&,ZgV,'q, ) rr &..2(V,&,) Z, (V, q, ) rr ~. 2&, ZZ(V, &.) ~ (V,q„) n y„
vA p, XAg P Cv t, gp, , v

(s. 8)

where now and hereafter the differential operators
are understood to operate only on the single func-
tion immediately following. For example, V~ lg;)
x i/~) means p~(V~~p, .), not V~~(p;p~); and V~ lp;) lQ~)
means Q~(V~/, ), not V~(Q, P~)

The rather large collection of terms in (3.8)
arises of course because of the r~ dependence of
each electronic spin orbital. This dependence is
a major source of difficulty in working out numeri-
cal solutions in our approach, but only by accurate-
ly accounting for positron-induced distortions in
the electronic spin orbitals can we hope to achieve
acceptable accuracy in calculating lifetimes and
positron and positronium affinities of complex
atoms and molecules.

The kinetic energy of the positron is now seen to
be

-&;I v, e;)le,), (s.9)

where A; = —(P s I v, I g, ) = Ag(~p) (3.1o)

B, F(r„r„r~)=-[V~y, (r„r~)] J' dr. „
(3.11)

x P,*. (r„, r&) F (r„,r, r& ),

where F is an arbitrary vector function of the in-
dicated variables.

For an important class of orbitals the A; quanti-
ties are zero. The condition for A; being zero is
deduced by differentiating Eq. (2. Va) with respect
to rp.'

+2K,A; v, +Z;Z.(y;l2A; (3.12)
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P;Vpp;*= Q ~&p (3. iS)

Setting i =j, we have A; = —A;*. But A; and A,*are
identical if their respective integrands are equal,

is easily seen to be

(Hp -Z)gp= 0 (S. ie)

Therefore, whenever Eq. (3.13) holds, A; is iden-
tically zero. Equation (3.13) holds if P, is real,
and for much less restrictive conditions also. For
example, if all the rp dependence of P;(r~, rp) can
be expressed as a real factor of P;,

where we have identified the Lagrange multiplier
Xp as the total energy E [Eq. (3.15)] and where Hp,

the effective Hamiltonian for the positron, is

H, =h, +Z, (y, I2(h, +g»--,'v,')

Q;(r~, rp)= U;(r~)x(r~, rp), X real (3.14)
+Z; (2d'; —K; —B vp) I g;) (3.19)

then Eq. (3.13) holds. In the remainder, we as-
sume that Eq. (S.13) holds.

The total energy E = (O' IH I@) which we now vary
is thus the sum of the right hand sides of Eqs. (S.l),
(3.2), (3.5), (3.6), and (S.9):

z=(yplh, +2K, (y, Ih.+g„--,'vp ly,.)

H~ may be partitioned into a purely positronic part
k~, a purely electronic part

V,(rp) =Z;(y; I
2h +Z;(2Z; —If'y)

I y;), (3.20)

and a mixed part

x(rp)=Z, . (y,. l2(g„--',vp2) -Z,.B, vply, ) . (3.2i)

.Z,Z,. (y,. l2J,. -ff,.-B,. V, ly, )lp, ) .
(S.iS)

The variation in E is achieved by allowing P&* and

p,
*to take on constrained variations independently

of Pp and P, . The constraints, which we now im-
pose with Lagrange multipliers, are those which
ensure orthonormality among the electronic func-
tions and the normality of Pp: We want Eqs. (2.7)
to be obeyed throughout the variation. The second
constraint (2. 7b) is imposed simply by adding to
the expression —Xp[(Pp l Pp) —1], where Ap is a
Lagrange multiplier. The first constraint (2. 7a)
we impose by adding

(S.16)

The Lagrange multipliers A,;,. are necessarily func-
tions of r~, since we are applying a constraint on a
function of r~ everywhere in positron-space. We
assume that the X;J are independent of pp*.

The variational functional Jwe now exhibit in full:

V, and X enter Eq. (3.18) as contributions to the
effective potential seen by the positron, and X
may be viewed as an interaction between the pos-
itron and the electrons. In addition to the obvious
Coulomb interaction 2Z; (Q; Ig» IP;), X also con-
tains

v = 2+; (Q; I

——,'v,' ——,'~;B ' v (S.22)

20 (y; I

—-'vl
I y;), (3.23)

there is also an interelectronic kinetic coupling
through the indirect part

This term together with —zVpin k~ embodies the
effects of the positron kinetic energy operator,
which enters in a complicated way because we have
made each electronic orbital depend on the position
of the positron. r~ itself is associated with the
kinetic effect on the positronic orbital of the dis-
tortion of each electronic orbital in two-particle
(electron, positron) space. In addition to the direct
(i.e. , one-electron) part of 7p,

-6,, ] lp, ).(y, lh, .2Z,. (y,. Ih..g., --,'v,' Ip,.)

+Z,.ZJ(y,. I 2J, -KJ -BJ vp I y,.) I y, ) . (3.17)

B. Positronic Equation

We now vary Pp" in the above and set the result
equal to zero in accordance with the variational
principle. The resulting Euler-Lagrange equation

(S.24)

This is a genuine two-electron interaction which
arises from the last term on the right of Eq. (3.8)
and is the effect of correlating the motions of elec-
tron pairs through the positron. Since the effect
involves three light bodies, we expect it to be un-
important compared to other terms in H~. It is
probably a small but significant part of the total
electron correlation energy. A similar term
arises also in the treatment of purely electronic
molecules when effects of nuclear motion on elec-
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(s.26)

is itself small, and indeed vanishes upon integration
with a weighting factor of Ig~ I'. Thus we may
write Eq. (3.18) as

(& -& )y (s. 26)

where &~ is the positronic binding energy and E~
is the positronic analog of the electronic Hartree-
Fock operator to be derived in Sec. III. E& is

(3.2'7)

The first two terms above, the bare-nucleus
Hamiltonian plus the electronic attraction terms,
are just what one would expect to appear in a sim-
ple orbital theory. One might not have guessed the
kinetic coupling term v~ or the last term ~~, the
physical significance of which is not as apparent.
Both v'~ and &~ arise from electron-positron corre-
lation, as can be seen by observing that they dis-
appear if the electronic orbitals are made inde-
pendent of r~. In any case, 4~ does not contribute
directly to the binding energy of the positron.

E& may also be written as the small difference
between two large calculated quantities,

(3.28)

In actual computation one will obtain a numerical
value for e~ as the eigenvalue in Eq. (3.26), rather
than by directly evaluating the right of Eq. (3.28).
On the basis of extensive experience of many work-
ers with purely electronic systems, we expect the
value of E~ determined in this way to be more ac-
curate than either quantity on the right side of Eq.
(s.28).

C. Electronic Equations

We now vary p,* in the functional J' [Eq. (3.17)].
The variation is straightforward if we remember
that Q,*appears there not only explicitly but also

tronic behavior are considered.
We note that the diagonal term in the double sum

in (3.24), being IA; I, vanishes.
It is instructive to cast Eq. (3.18) in a form such

that the eigenvalue is the binding energy of the pos-
itron. E itself is a large (negative) number of
which the positron binding energy is a small frac-
tion. The major part of E is the energy of the elec-
trons, which can be written as (Q~ IV, Ig~). V, it-
self is probably a slowly varying function in most
important regions of positron-space, but the dif-
ference between these two large quantities

implicitly in Z;, E;, and B;, and that the variation
takes place in two-body i, p space. The result is

[k +g q
——'V +Z;(2Z;-K,. —B, V )]P;=Z;&;;Q;

(s.as)

where we have divided through by the positronic
density lg~ I . Thus the P, are strictly not defined
on the nodes of P~. Since these regions of ambiguity
have lower dimensionality than the 6-space in which
each p, is defined, we render p; continuous and
differentiable everywhere simply by defining it to
satisfy Eq. (3.29) when Iy~ I'= 0.

That the off-diagonal Lagrange multiplier s may
be set equal to zero without loss of generality fol-
lows from the Hermiticity of the operator in brack-
ets on the left-hand side. The proof is practically
identical to the analogous proof for purely electronic
systems given by Roothaan so we do not repeat it
here. The only differences are that here the ef-
fective electronic operator is more complicated,
and the unitary transformation matrix Uwhich di-
agonalizes X has elements which are functions of
r&.

We may therefore write

(z. -e, )y,.=o,
(s. so)

E,=h„+g~~ ——,'V~++, (2JJ Kq —B V-~)

where we have made the substitution e, = A, ,
This is a two-particle equation containing (first

three terms) the Laplacians for the ith electron as
well as the positron, and the terms for the Cou-
lomb interactions between the electron-nucleus and
electron-positron pairs. The positron-nucleus in-
teraction term does not appear in the equation. The
summand consists of the familiar electronic repul-
sion term in the Hartree-Fock approximation and
the term for the indirect kinetic coupling of elec-
tron pairs, which we discussed in Sec. III B.

The eigenvalue &; depends upon r~. The situation
is reminiscent of the Born-Oppenheimer approxi-
mation for purely electronic molecules in which
the electronic eigenvalues depend upon the nuclear
conformation. We emphasize that the similarity is
coincidental, and that in our approach, only the nu-
clei are clamped.

The binding energy of the ith electron is

(s. sl)

IU. DISCUSSION

A. Solving the SCF Equations

Once the electronic equations [Eq. (3.30)j are
solved, the positronic equation (3.26) is easy to
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solve, since the latter is "nearly" linear. If it
were not for the term 4~, no iterations for self-
consistency would be required. Since h~ is small,
one might reasonably expect rapid convergence.
Perturbation schemes suggest themselves and are
discussed below.

In contrast, the electronic equations have large
nonlinear terms. However, the positronic orbital

g~ does not appear in Eg. (3.30), whereas ailthe P;
occur in Ecj. (3.26). Therefore, one should first
solve for the self-consistent set(&f&;'f without refer-
ence to p~, and then calculate p~. There is no

need to iterate between (P;] and g~.
In principle one can solve Eq. (3.30) by iteration

among (P;j in spite of the functional dependence of
the eigenvalue. However, in practice this approach
is unattractive owing to the complexity of some of
the terms in Eq. (3.30). Even for the simplest
systems —an atom with a positron —the Jj term is
formally the same as a three-center, one-electron
nuclear attraction integral. K,.P; also gives rise to
such an integral. Evaluation of these terms by
transforming to ellipsoidal coordinates and inte-
grating' leads to a function of r ~ and r~ which is
given as an infinite expansion in Legendre functions
of the coordinates (r~ ex»)/x~

On the other hand, the expansion method appears
to offer a practical alternative for atomic systems,
for which the matrix elements of Jj and Kj are two-
center electronic repulsion integrals of the ex-
change type, integrated over the "internuclear" dis-
tance. Let us expand the orbitals P~ and P,. as fol-
lows:

y, (r„r~)=Z„X„(r„,F~)c„;,

(4.1)

(4 2)

fdr.
l n.(r,) I'= (n. ln. ) =I

fdr. lx.(r., r, )I' (x.lx.)==1

(4.3)

Regarding the sets (nj, (XQ, (b»], and (c„;$as
column vectors,

X1

ns X2

where (n~(r») and (X„(r~,r~)J are two linearly inde-
pendent basis sets. The number of basis functions
of each symmetry type in (X ) is taken large enough

to provide the desired number of each type of elec-
tronic orbitals. We assume that the sets are nor-
malized in the sense

bip

be C2i

bI, =

bkP

and c ~ =

Cmi

(4. 6)

we have (T means transpose and j' means adjoint
—= complex transpose)

4~=n'4 (4.6)

TQ;=g c; . (4.7)

[M']~i ™ai= (n~ I M'nl nr) ~ (4.8)

Then

(4.9)
=b pM~bp .

Normalization is indicated as

(e, I t, )=~@„~,b»(n„I«) = b's'b =I . (4. 10)

Forming the J functional [Eg. (3. 17)] in terms of
the variational parameters b@, is a straightforward
matter of substituting with Eg. (4.6).

Variation leads to

(g' —ES~)b q 0, —— (4. 11)

which is the matrix representation of Eq. (3.18).
Here

g'=A~+X+ V, , (4.12)

where:

[&,]» = (n, I &, In, ),
[x].i=(n. l»;(@;Iz» l~l '~;&—; ~~le;)lni)

[v ] = (n lg,.(y,. I
2@ +py(2g. —f'f.)l y,.)ln ) . (4.13)

We define matrix elements of a one-electron op-
erator M,'~ as

We define the matrix elements of a positronic op-
erator M~~ as

X

~k Xm

(4.4) [M']-.=(~I(x IMl, lx.) I)

= f d&s~*(&n)(x IM'~l x.) (4.14)
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where w(r~) is a weighting factor which will be
chosen later for convenience in performing inte-
grations. Orthonormalization of the set fp;] is as-
sured by requiring

Application of familiar procedures yields the ana-
log of Eq. (3.30):

(s" -~,s')c, =o,

(~ I(e; I 0;) I)=~.c *;~.c.;(~ I (x.l x.) I)
=c;S'c;=5;; . (4.15)

[&']..=(~l(x II.+z.& —lv& (4.16)

Examination of the matrix elements indicated in Eqs. (4. 13) and (4. 16) shows that for atom-plus-positron

systems, all the integrals are familiar. For example, the electronic repulsion integrals (n„l (p; IZ&l p, ) ln, ),

(n, l(y, lz, ly,.)ln, )i, (u l(x„lz, lx„)l), and (col(x„le, lx„)l) are, for zo= ly, l', linear combinations of

(4.17)

Onepossible choice of basis set is to take each X; to be a product of a nuclear-centered Slater-type orbital,

a positron-centered Slater s-type orbital, and a normalization factor N, (r~). Then (4. 17) is a two-center

exchange integral which is integrated over the "internuclear distance" r~ with a weighting factor of n~ (r~)n, (r~)

N„(r~)N„, (r~)N„(x~)N„.(r ) Simi. larly, the integrals involving the operator Bz' v~ are linear combinations

of

(nial(x. lv, lx.).(x. Iv, lx. )Ini)=-.'(n, l(x~. Iv;(x~. ))

—(x.lx.)(x. Ivllx. ) —(x. Ix. )(x.lvllx. )ln, ) . (4.18)

B. Simplifications from Perturbation Theory

In solving Eq. (3.26), one might sensibly omit
the correlation potential term ~~ since it contrib-
utes only indirectly to c~ and p~. One might also
solve Eqs. (3.26) and (3.30) without the small
three-body terms, and calculate a correction
term to the orbitals with perturbation theory.
That is, let us expand

(F, —e,)y,. = O,

(Sp —e~)yp = 0, (4.22)

and then calculate corrections by solving

ifications of Eqs. (3.20), (3.3), and (3.4). Rather
than solve Eqs. (3.26) and (3.30) directly, we
might find it simpler to solve first the system

F,=F,+F'+"
Fp=Fp+ Fp + ~ ~ ~,

gi+f + ~ ~ s1

0 =0+4 +I

and so forth, where

&,'=-Z;&, v, ,

and

By= - v~AA4;I

(4.19)

(4.2o)

(4.21)

(4.23)

Other perturbative approaches easily come to
mind. For inner shells which are not very much
influenced by the presence of a positron, a pertur-
bation scheme would seem to offer a reasonable
alternative to the solution of the full SCF equations
(3.30) and (3.26), especially for large molecules
for which semiempirical methods must be used in
any case. Such an approach has been often sug-
gested in the literature to deal with low-energy
positron-atom scattering. We defer further dis-
cussion to a future communication.

V. PREVIOUS BOUND-STATE CALCULATIONS

where the definition of V,(r~) involves obvious mod-
In subsequent papers we mill apply the equations

derived here [Eqs. (3. 26) and (3. 30)] to various
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systems. We now conclude the present paper by
relating our equations to previous work on one-
positron, many-electron systems. Lebeda and
Schrader have recently reviewed calculations on
bound systems with one or two electrons, and we

here emphasize more complicated systems. Our
main interest is in atoms and molecules, but we
will comment on a portion of the work on solids
and scattering systems as well.

If one assurhes that the electrons see a fixed
positron, and that the positron interacts with the
time-averaged electrons, one arrives at the fol-
lowing equations:

[&p+2~& (Q& I g»l Q')+ vs+ +a &~]$&=0 . (5. 1b)

These equations embody the "adiabatic approxima-
tion. "' Equation (5. la) is Eq. (3. 30) with the
terms —2 V ~ and -Q~ B, ~ V~ removed from the
effective one -electron Hamiltonian. Equation
(5. 1b) is identical to Eq. (3. 26). If the term ~~ is
removed from Eq. (5. 1b) we obtain the 'Born-
Oppenheimer approximation. " In the "adiabatic
approximation" the r~ dependence of P; is paramet-
ric in Eq. (5. la) and functional in (5. lb); in the
' Born-Oppenheimer approximation" the dependence
is parametric in both equations. Here we use the
terms "adiabatic approximation" and "Born-
Oppenheimer approximation" to describe the treat-
ment of the motion of the positron. In either case
the nuclei are considered only as fi"ed point
charges.

In the Hartree-Pock approximation one treats the
motions of all the light part&cles an an equal foot-
ing, and averages all Coulomb interactions between
them. The Ha.rtree-Fock equations are

of the positron on the electrons is ignored com-
pletely. The advantage of this approach is that
one desiring to do a calculation may often find the
required electronic orbitals in the literature.
Simons devised an approximate positronic orbital
Q~ for PsC1 and then calculated the error in the
energy resulting from errors in P&, using first-
order perturbation theory.

In calculations on metallic solids, many authors
have used unpolarized Hartree-Fock orbitals for
the core electrons and a constant for the electron-
ic density from the valence electrons. In the first
such calculation, DeBenedetti et al . ,

"used a con-
stant also for the positron distribution. Other-
wise, an equation of the form of (5. 2b) results,
which Donovan and Ma.rch, ' and Berko and
Plaskett" solved using the cell model. This meth-
od, which is the solid-state equivalent of the un-
polarized Hartree -Fock approximation employed
by Simmons, has been applied to a variety of solid
systems. ' Brandt, Eder, and Lundqvist" use a
related method for solid LiH. These authors add
potential terms to the effective Hamiltonian to cor-
rect for interelectronic correlations and the
Madelung energy.

In a calculation on solid argon, Woll and Rose'
employ unpolarized Hartree-Fock atomic orbitals
for the electrons and the adiabatic approximation
for the positron. In addition, the &~ term is ig-
nored and the v& term is approximated with first-
order perturbation theory using the unpolarized
Hartree-Fock electronic orbitals for the zeroth-
order approximation. The resulting sums are
evaluated by using the Unsold' approximation fol-
lowed by closure. The resulting v'~ is

(5. 3)

(5.2a)

(5. 2b)

which were first given by Chang Lee' and have been
solved for PsH by Goldanskii, et al." Equation
(5. 2a) may be obtained from (5. la) by replacing

g» byitsaverage, (Q~lg»lg~); then P,. is indepen-
dent of r~, and the terms r~ and b~ in (5. lb) are
identically zero, giving (5. 2b).

In the earliest calculation on a many-electron
system, PsCl, Simons" omitted the term
(P~ ~g»~ P~) in Eq. (5. 2a). We will refer to this
approximation as the 'unpolarized Hartree-Fock
approximation. " In this approximation the effect

where hE istheexcitation energyof the lowest ex-
cited state of the argon atom. Contributions from
neighboring cells are ignored, and core electrons
are accounted for simply by reducing the nuclear
charge to that of the ion core. Sums in (5. 1b) and
(5. 3) are thus taken over valence electrons only.
The resulting equation for P~ was solved using the
cell model.

In a large number of calculations on positron-
atom and -molecule complexes in which the atom
or molecule is electrically neutral and the positron
is unbound, various authors have adopted the un-
polarized Hartree-Fock approximation for the
electrons and have used for g~ the asymptotic form
ce'~'"u, where c is a constant. Then the posi-
tronic charge density is a constant, Eq. (2. 9) re-
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duces to r,„'= wn'n
~

c
~

', and Eq. (2. 10) is simply
the electronic momentum distribution of the neu-
tral atom or molecule in the Hartree-Pock approx-
imation. An adaptation of this approach was first
applied to molecules by Columbino, et al. Re-
cently Hogg and co-workers" have generalized
their approach by solving a simple modified form
of Eq. (5. 2b) for the positronic orbital.

Besides a constant for the positronic charge
density, a variety of other functions have been
used, including even the 2 function. '

None of the methods described so far in this
section correctly treat the crucial short-range
electron-positron correlation. It is easy to see
that the electron-positron cusp value is -1 for the

adiabatic and Born-Oppenheimer approximations,
and zero for the Hartree-Fock and related approx-
imations. Experience with other systems by our-
selves, ~ and by many other authors, suggests
that the annihilation rate calculated in the adiabat-
ic and Born-Oppenheimer approximations will be
considerably too large, while that calculated in the
Hartree-Fock and unpolarized Hartree-Fock ap-
proximations will be much too small. It should be
noted here that the Hartree-Fock and unpolarized
Hartree-Fock approaches require by far the least
labor, and may yield reasonably accurate angular
correlation curves.

The work of Dinh Van Hoang on e'-alkali atoms
is not easily described in terms of the foregoing
equations in this section. His calculation on 8' Li
is typical. He writes for the wave function of the

system,

e= g,~, (r„ra)4vai(ra~ rp) ~

where p„„is the simple screened hydrogenic
function,

-(z 5 )(

and f„„is

2 -p(r +y )
%van=& &g 8 3~

~

z is the nuclear charge, N and N' are normalizing
factors, and P is a variational parameter. We do
not discuss his results but simply point out that, in
this approach, spin is incorrectly treated, the wave
function is not anti-symmetric under electron in-
tercharge, the orbital for the valence electron is
strongly nonorthogonal to that of the core elec-
trons, and no choice of the parameter P will si-
multaneously satisfy the cusp conditions between
attractive pairs of particles. Somewhat similar
comments apply to calculations by Majumdar and
coworkers.

Schmelev" uses the term "Born-Oppenheimer
approximation" to describe his calculation on the
system e 'H. However, it appears to us that
Schmelev's method is much like our own, em-
bodied in Eqs. (S.26) and (S. SO).
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