Atomic Hyperfine Structure. IV Positive and Negative First-Row Ions

Henry F. Schaefer III* Department of Chemistry, University of California, Berkeley, California 94720

and

Richard A. Klemm[†]

Department of Chemistry, Stanford University, Stanford, California 94305 (Received 19 November 1969)

Using restricted Hartree-Fock (RHF) wave functions and two previously defined types of configuration interaction (CI) wave functions, the polarization wave function and the first-order wave function, we have made *ab initio* calculations of the hyperfine structure (hfs) of: ${}^{2}P C^{+}$; ${}^{3}P$ and ${}^{1}D N^{+}$; ${}^{4}S$, ${}^{2}D$, and ${}^{2}P O^{+}$; ${}^{3}P$ and ${}^{1}D F^{+}$; ${}^{2}P Ne^{+}$; ${}^{3}P$ and ${}^{1}D B^{-}$; ${}^{4}S$, ${}^{2}D$, and ${}^{2}P C^{-}$; ${}^{3}P$ and ${}^{1}D N^{-}$; ${}^{2}P O^{-}$. For the polarization wave functions, the calculated parameters $\langle r_{l}^{-3} \rangle$, $\langle r_{s}^{-3} \rangle$, and $\langle r_{q}^{-3} \rangle$ are expected to be within 2% of the exact values, and the calculated spin densities are expected to be between 55% and 80% of the exact values. All calculated spin densities except that for ${}^{3}P B^{-}$ are positive, and the polarization spin density is usually slightly larger than the first-order value. For all positive ions and neutral atoms, the relationship $\langle r_{q}^{-3} \rangle < \langle r_{l}^{-3} \rangle < \langle r_{s}^{-3} \rangle$ holds. Calculated diamagnetic susceptibilities and nuclear magnetic shielding constants are reported for both the ions and the corresponding neutral atoms, using the present CI wave functions. Finally, we tabulate the angular integration coefficients needed to compute $\langle r_{s}^{-3} \rangle$ and $\langle r_{q}^{-3} \rangle$, and discuss a procedure used in this work to compact the form of a CI wave function.

INTRODUCTION

This is the last of a series of papers, ¹, ² the purpose of which is to predict atomic hyperfine structure (hfs) from *ab initio* configuration interaction (CI) wave functions, the polarization wave function (Ref. 1a), and the first-order wave function (Ref. 1b). The polarization wave function includes the restricted Hartree-Fock (RHF) configuration plus all singly-excited configurations $X_i - Y_i$, where X_i is a RHF occupied orbital and Y_i is an orbital not occupied in the RHF approximation. The first-order wave function includes all the configurations in the polarization function plus double excitations of the type $X_i X_j - X_k X_l$ and $X_i X_j - X_k Y_l$.

In the previous papers in this series, it was shown that, in general, the polarization wave function yields hfs parameters in better agreement with experiment than does the more accurate (in an energy sense) first-order wave function. To be specific, it was found (Ref. 1a) that polarization function values of the hfs parameters $\langle r_l^{-3} \rangle$ and $\langle r_s^{-3} \rangle$ were within 2% of experiment³ for both ³P O and ²P F. Spin densities $|\Psi(0)|^2$ calculated from polarization wave functions were between 54 and 75% of experiment.

Since the publication of the first two¹ papers in this series, measurements of the hfs constants A_2 and A_1 have been made⁴ for ³P C¹³. Although a rigorous determination of the three magnetic hfs parameters awaits the determination of a third constant, a preliminary analysis⁵ indicates that $\langle r_l^{-3} \rangle$ and $\langle r_S^{-3} \rangle$ differ by 2% from the polarization function values (Ref. 1a), and that the experimental spin density is 120% of the polarization function spin density. These measurements⁴ give further evidence that polarization wave functions provide a powerful theoretical tool for the analysis of atomic hfs.

Since the previous papers¹, ² contain detailed comparisons of the different theoretical approaches used in the study of hfs, we only note here that the only other method which yields hfs parameters as accurately as the polarization wave function is the Brueckner-Goldstone many-body perturbation theory⁶ (MBPT). Kelly's results⁶ indicate that effective values of $\langle r^{-3} \rangle$ from MBPT are in about the same agreement with experiment as are polarization function values, but that spin densities can be more accurately predicted using MBPT. However, computation of a polarization wave function and hfs parameters requires about 1 h of card punching time and less than 10 min of IBM 360/65 computer time. An MBPT hfs study⁷ of the same atom, however, can require 2 years of work by a competent graduate student.

Although no experiments have yet been carried out to determine the hfs parameters of positive and negative first-row atomic ions, it now appears likely⁸ that for at least one system, O^+ , paramagnetic-resonance experiments can soon be undertaken. It is hoped that the present calculations

1

1063

will stimulate further experimental studies. The field of hfs is one that provides considerable opportunity for interaction between theory and experiment, in order both to understand the applicability of certain models of electronic structure and to predict nuclear moments.

In addition to the hfs parameters reported here, diamagnetic susceptibilities and nuclear magnetic shielding constants were also calculated. These quantities are reported for both the ions and the neutral atoms of the first row.

During this study, a procedure was developed to substantially simplify the form of a CI wave function after said wave function has been determined. This procedure is discussed, and also reported are the angular integration coefficients required to compute $\langle r_s^{-3} \rangle$ and $\langle r_a^{-3} \rangle$.

COMPACTING OF CONFIGURATION INTERACTION WAVE FUNCTIONS

The problem of obtaining as accurate as possible a wave function using as few configurations as possible has long been of interest in atomic and molecular physics. In particular, considerable advances⁹ have been made using Löwdin's idea of natural orbitals.¹⁰ However, there is a further simple concept which can be used to greatly simplify the form of a complicated CI wave function. When one makes a serious effort to obtain a large percentage of the correlation energy of an atom,

$$C_{\alpha 1} \sum_{j=1}^{n_{\alpha}} b_{\alpha 1j} D_{\alpha 1j} + C_{\alpha 2} \sum_{j=1}^{n_{\alpha}} b_{\alpha 2j} D_{\alpha j} + \cdots + C_{\alpha m_{\alpha}}$$

If we let

$$S_{\alpha} = \left(\sum_{j=1}^{n} \sum_{k=1}^{m} C_{\alpha k} C_{\alpha k j}\right)^{2}$$

the final wave function can be written in the simplified form

$$\Psi = \sum_{\alpha} S_{\alpha}^{1/2} \Phi_{\alpha} , \qquad (4)$$

,

where

$$\Phi_{\alpha} = \sum_{j=1}^{n} t_{\alpha j} D_{\alpha j} , \qquad (5)$$

in which

$$t_{\alpha j} = S_{\alpha}^{-1/2} \sum_{k=1}^{m_{\alpha}} C_{\alpha k} b_{\alpha k j} .$$
 (6)

there are many orbital occupancies which give rise to more than one L-S eigenfunction of the proper symmetry.¹¹ Here we point out that the wave function can be expressed in a form in which the total number of configurations is just the number of orbital occupancies. This can be a drastic simplification, since for as simple an atom as oxygen, the important $1s^22s 2p^3d_1f_1$ orbital occupancy gives rise to 18 linearly independent ³P configurations.

A CI wave function can be written

$$\Psi = \sum_{\alpha,i} C_{\alpha i} \Phi_{\alpha i}, \qquad (1)$$

where $\Phi_{\alpha i}$ is the *i*th configuration corresponding to orbital occupancy α . $\Phi_{\alpha i}$ has the form

$$\Phi_{\alpha i} = \sum_{j}^{n} b_{\alpha i j} D_{\alpha j}, \qquad (2)$$

where $D_{\alpha j}$ is the *j*th determinant arising from the α th orbital occupancy. So if there are m_{α} configurations $\Phi_{\alpha 1}, \Phi_{\alpha 2}, \ldots, \Phi_{\alpha m_{\alpha}}$ corresponding to orbital occupancy α , then all m_{α} of these configurations are expressed in terms of the same Slater determinants $D_{\alpha 1}, D_{\alpha 2}, \ldots, D_{\alpha n_{\alpha}}$. Given the coefficients $C_{\alpha i}$ in Eq. (1), it is possible to compact these m_{α} configurations $\Phi_{\alpha i}$ into a single configuration Φ_{α} .

The contribution of these m_{α} configurations to the final wave function is, from Eqs. (1) and (2),

$$\sum_{j=1}^{n} b_{\alpha m} {}_{\alpha}{}^{j} {}^{D} {}_{\alpha j} = \sum_{j=1}^{n} \sum_{k=1}^{m} C_{\alpha k} {}^{b} {}_{\alpha k j} {}^{D} {}_{\alpha j} \quad .$$
(3)

The compacted wave function of Eq. (4) is identical to that of Eq. (1), but the compact wave function has only one configuration for each orbital occupancy. In our computer programs, ¹² the compact wave function is used to compute expectation values. For the ²D state of C^- , for example, the 195-configuration wave function of Eq. (1) becomes a 65-configuration wave function in Eq. (4).

ANGULAR INTEGRALS FOR HYPERFINE STRUCTURE

In order to evaluate the orbital and spin-dipolar terms of the hfs Hamiltonian, it is necessary to compute the integrals

$$E(l_i m_i; l_j m_j) = \int_0^{2\pi} \int_0^{\pi} Y_{l_i m_i}(\theta, \phi) (3\cos^2\theta - 1)$$

$$\times Y_{\substack{l,m\\j j}j}(\theta,\phi)\sin\theta\,d\theta\,d\phi \quad . \tag{7}$$

Since the values of these angular integration coefficients do not appear in the literature, it should be useful to tabulate them here. Using

 $(3\cos^2\theta - 1) = (\frac{16}{5}\pi)^{1/2} Y_{20}(\theta, \phi)$

and the standard formula¹³ for the integral of the product of three spherical harmonics, we find

$$E(l_i m_i; l_j m_j) = 2[(2l_j + 1)/(2l_i + 1)]^{1/2} \times C(l_j 2l_i; m_j 0m_i)C(l_j 2l_i; 000) , \quad (8)$$

where the $C(l_1 l_2 l_3; m_1 m_2 m_2)$ are the Clebsch-Gordan coefficients as defined by Rose.¹³ Using tabulated values¹⁴ of the Clebsch-Gordan coefficients, we have evaluated all possible E coefficients for s, p, d, and f electrons. The nonvanishing angular integrals are given in Table I.

WAVE FUNCTIONS AND ENERGIES

The first-order wave functions used here were reported previously in a study¹⁵ of the electron affinities of first-row atoms. Polarization functions were calculated in the present work from the previously reported basis sets.¹⁵ Energies of RHF, 16 polarization, and first-order wave functions are given in Table II.

TABLE II. Calculated energies in hartrees, for RHF, polarization, and first-order wave functions. RHF energies are those of Clementi (Ref. 16).

State	RHF	Polarization	First-order
${}^{2}P$ C ⁺	-37.292 21	-37.318 34	-37.363 87
${}^{3}P$ N ⁺	- 53.887 97	-53.933 77	-53.959 27
${}^{1}D$ N ⁺	- 53.807 35	-53.854 78	-53.881 07
^{1}S N ⁺	- 53.690 08	-53.690 92	-53.776 22
⁴ S O ⁺	-74.37255	-74.428 90	-74.433 67
^{2}D · O ⁺	-74.233 29	-74.293 25	-74.298 11
${}^{2}P$ O ⁺	-74.142 04	$-74.171 \ 61$	-74.218 22
${}^{3}P$ F ⁺	- 98.831 61	 98.881 75	- 9 8.884 82
^{1}D F^{+}	- 98.728 46	-98.778 43	-98.781 67
${}^{1}S$ F ⁺	- 98.575 57	-98.576 44	- 98.645 33
^{2}P Ne ⁺	- 127.817 65	-127.848 43	-127.849 98
³ P B ⁻	-24.519 19	-24.545 40	-24.564 93
¹ D В	-24.490 48	-24.515 79	-24.535 48
¹ S B ⁻	-24.439 50	-24.453 36	-24.494 87
⁴ S C ⁻	-37.708 78	-37.748 44	-37.754 82
^{2}D C ⁻	-37.642 52	-37.684 26	-37.691 75
^{2}P C ⁻	-37.600 84	-37.62474	-37.653 55
${}^{3}P$ N ⁻	-54.321 89	-54.362 87	-54.366 50
^{1}D N ⁻	- 54.266 87	-54.304 89	-54.309 22
¹ S N ⁻	-54.186 82	-54.187 74	- 54.233 90
${}^{2}P$ O ⁻	-74.789 48	-74.816 05	-74.817 78

TABLE I. Nonvanishing values of the coefficients $E(l_i m_i; l_j m_j) = \int_0^{2\pi} \int_0^{\pi} Y_{l_i m_i}(\theta, \phi) (3\cos^2\theta - 1) Y_{l_j m_j}(\theta, \phi) \sin\theta \, d\theta \, d\phi$.

Туре	l_{i}	m_{i}	l _{j.}	m_{j}	$E(im_i;jm_j)$
$p_{-1} p_{-1}$	1	-1	1	-1	$-\frac{2}{5}$
$p_0 p_0$	1	0	1	0	4/5
$p_{+1} p_{+1}$	1	+1	1	+1	$-\frac{2}{5}$
$d_{-2} d_{-2}$	2	-2	2	-2	$-\frac{4}{7}$
$d_{-1} d_{-1}$	2	-1	2	-1	27
$d_0 d_0$	2	0	2	0	47
$d_{+1} d_{+1}$	2	+ 1	2	+1	<u>2</u> 7
d_{+2} d_{+2}	2	+2	2	+2	$-\frac{4}{7}$
f_{-3} f_{-3}	3	-3	3	-3	$-\frac{2}{3}$
$f_{-2} f_{-2}$	3	-2	3	-2	0
$f_{-1} f_{-1}$	3	-1	3	-1	$\frac{1}{5}\sqrt{2}$
f_0 f_0	3	0	3	0	$\frac{4}{15}\sqrt{2}$
$f_{+1} f_{+1}$	3	+1	3	+1	$\frac{1}{5}\sqrt{2}$
f_{+2} f_{+2}	3	+2	3	+2	0
f_{+3} f_{+3}	3	+3	3	+3	$-\frac{2}{3}$
$s_0 d_0$	0	0	2	0	$2/\sqrt{5}$
$p_{-1} f_{-1}$	1	-1	3	-1	$2\sqrt{6}/5\sqrt{7}$
$p_{+1} f_{+1}$	1	+1	3	+1	$2\sqrt{6}/5\sqrt{7}$
$p_0 f_0$	1	0	3	0	6/5√7

TABLE III.	Calculated hfs parameters for positive and negative first-row ions. Three values of each parameter
are given - th	top entry is the RHF value, the middle entry is the polarization wave-function value, and the bottom
entry the first	t-order wave-function value.

State	$\langle r_l^{-3} \rangle$	$\langle r_s^{-3} \rangle$	$\langle r_q^{-3} \rangle$	$ \Psi(0) ^2$
${}^{2}P C^{+}$	2.220 92	2,220 92	2.220 92	0.0
	2.196 28	2.33163	2.137 79	0.017 3
	2.181 60	2.31165	2.018 00	0.011 68
^{3}P N ⁺	3.831 67	3,831 67	3.831 67	0.0
	3.804 95	3,998 35	3.61353	0.047 3
	3.78687	3.981 92	3.54574	0.040 0
^{1}D N ⁺	$3.743\ 38$	NA	$3.743\ 38$	0.0
	3.698 25	NA	3.460 66	0.0
	3.685 79	NA	3.296 78	0.0
⁴ S O ⁺	NA	NA	NA	0.0
	NA	NA	NA	0.0805
	NA	NA	NA	0.073 2
${}^{2}D$ O ⁺	5,95965	5,959 65	NA ^a	0.0
	5.856 16	6.245 79	NA a	0.034 7
	5.842 98	6.231 96	NA ^a	0.033 6
² P O ⁺	5 883 83	5 883 83	NA a	0.0
1 0	5 864 73	6 274 35	NA a	0.033.0
	5.84643	6.245 59	NA a	0.028 4
³ D T ⁺	0 060 59	9 960 59	0.000 50	0.0
ГГ	8.000 55	0.000 55 0.117 77	8,000 55	0.0
	8.397 34	9,103 60	8.014 65	0.093 3
lp ==+	0.500.00		0.500.00	
^{-}D F	8.790 28	NA	8.790 28	0.0
	8.758 07 8 774 32	NA	8,363,33	0.0
2+	0.11402		0,002 02	0.0
"P Ne'	12.493 23	12.493 23	12.493 23	0.0
	12.172 16	13.109 34	11.609 07	0.063 0
	12.156 22	13.090 71	11.618 29	0.063 7
³ Р В ⁻	0.466 08	0.466 08	0.466 08	0.0
	0.47584	0.514 68	0.463 59	-0.011 9
	0.45873	0.497 31	0.404 99	-0.013 5
¹ D В ⁻	0.420 34	NA	0.420 34	0.0
	0.432 61	NA	0.421 99	0.0
	0.415 16	NA	0.364 43	0.0
4s c-	NA	NA	NA	0.0
	NA	NA	NA	0.011 4
	NA	NA	NA	0.009 04
² <i>D</i> C ⁻	1.178 57	1.178 57	NA ^a	0.0
	$1.136\ 47$	1.294 51	NA ^a	0.005 50
	1.114 16	1.27272	NA ^a	0.004 48
² P C ⁻	1.14263	1.14263	NA ^a	0.0
	1.114 39	1.31874	NA a	0.009 6'
	1.114 73	1.298 99	NA a	0.008 4
³ <i>P</i> N ⁻	2 367 46	2 367 46	2 367 46	0.0
T TN	1.942.90	2,357 60	1.744 16	0.041 1
	1.012.00		2.1 41 20	0.011 1

State	$\langle r_l^{-3} \rangle$	$\langle r_s^{-3} \rangle$	$\langle r_q^{-3} \rangle$	\P (0) ²
¹ <i>D</i> N ⁻	2.331 85	NA	2.33185	0.0
	2.35846	NA	2.07785	0.0
	2.41349	NA	2.15152	0.0
^{2}P O	4.05508	4.055 08	4,055.08	0.0
	3.735 35	4.33058	3.42004	0.04533
	3.711 93	4.302 35	3.45305	0.04719

TABLE III. (continued).

^aFor ²D and ²P seven electron systems, an $\langle r_q^{-3} \rangle$ analysis is not applicable, but there is a small electric-quadrupole hyperfine interaction. For these states we give the calculated values of the expectation value $\langle J=L+S, M_J=J|\sum_i (3\cos^2\theta_i - 1)/r_i^3|J=L+S, M_J=J\rangle$.

	${}^{2}D \text{ O}^{+}$	$^{2}P \text{ O}^{+}$	^{2}D C ⁻	^{2}P C ⁻
$\mathbf{R}\mathbf{H}\mathbf{F}$	0.0	0.0	0.0	0.0
Polarization	0.12339	-0.14408	0.09173	-0.13164
First-order	0.12406	-0.05063	0.093 88	-0.06952

hfs Results

Reference 1(a) contains a complete discussion of the formulas needed to predict atomic hyperfine structure. The previous papers^{1, 2} of this series presented calculated expectation values, reduced matrix elements, hfs parameters, and hfs constants A and B. For the sake of brevity, we report here only the hfs parameters $\langle r_l^{-3} \rangle$, $\langle r_s^{-3} \rangle$, $\langle r_q^{-3} \rangle$, and $|\Psi(0)|^2$. Using previously discussed relationships,^{1, 2} all other hfs information can be derived from these four hfs parameters.

Table III contains values of $\langle r_l^{-3} \rangle$, $\langle r_s^{-3} \rangle$, $\langle r_q^{-3} \rangle$, and $|\Psi(0)|^2$ obtained from RHF, polarization and first-order wave functions.

It is interesting to note that all the calculated spin densities are positive except for ${}^{3}P \, B^{-}$, where both polarization and first-order spin densities are negative. The polarization-wave-function spin density $|\Psi(0)|^2$ is usually slightly larger than the first-order spin density.

Several interesting relationships can be seen in Table III between the calculated parameters $\langle r_I^{-3} \rangle$, $\langle r_S^{-3} \rangle$, and $\langle r_q^{-3} \rangle$. For both polarization and first-order wave functions, the calculated positive ion parameters obey

$$\langle r_q^{-3} \rangle < \langle r_l^{-3} \rangle < \langle r^{-3} \rangle_{\rm RHF} < \langle r_s^{-3} \rangle . \tag{9}$$

It was pointed out in Paper I that this relationship also holds for the ground states of the neutral firstrow atoms. The only states for which Eq. (9) does not hold are some of the negative ions, which can have very irregular electron distributions. In paper III it was pointed out that the hfs parameters are not, in general, transferable between different states of the same atom (e.g., ${}^{4}S$, ${}^{2}D$, and ${}^{2}P$ N). This is confirmed for ions in Table III. However, there do seem to be certain consistencies in hfs parameters computed for isoelectronic systems of the same symmetry. For example, for ${}^{2}DO^{+}$, ${}^{2}DN$, and ${}^{2}DC^{-}$, polarization and first-order wave functions yield nearly identical calculated electric field gradients. However, for ${}^{2}PO^{+}$, ${}^{2}PN$, and ${}^{2}PC^{-}$, the polarization and first-order values of $\langle (3\cos^{2}\theta - 1)/r^{3} \rangle$ differ by more than a factor of 2.

DIAMAGNETIC SUSCEPTIBILITIES AND NUCLEAR MAGNETIC SHIELDING CONSTANTS

In the course of this work we routinely computed two additional properties. The molar diamagnetic susceptibility $\chi^{(d)}$ in cm³/mole is given by¹⁷

$$\chi^{(d)} = -\frac{1}{6} N \alpha^2 a_0^3 \langle \Psi | \sum_i r_i^2 | \Psi \rangle, \qquad (10)$$

where N is Avogadro's number, α is the finestructure constant, and α_0 is the Bohr radius. The diamagnetic contribution $\sigma^{(d)}$ to the nuclear magnetic shielding is given by¹⁸

$$\sigma^{(d)} = \frac{1}{3} \alpha^2 \langle \Psi | \sum_i (1/r_2) | \Psi \rangle \quad . \tag{11}$$

In Table IV, we tabulate calculated values of $\chi^{(d)}$ and $\sigma^{(d)}$ for positive ions, neutral atoms, and negative ions of the first row. The RHF values of Malli and Fraga¹⁹ are included for comparison in Table IV.

Although the theorem of Møller and Plesset²⁰ does not apply to open-shell RHF wave functions,

TABLE IV. Calculated diamagnetic susceptibilities $\chi^{(d)}$ and diamagnetic contributions $\sigma^{(d)}$ to the nuclearmagnetic shielding. As in Table II, values are given for RHF, polarization, and first-order wave functions. $\chi^{(d)}$ is given in 10⁻⁶ cm³/mole and $\sigma^{(d)}$ in 10⁻⁵ a.u. RHF values are those of Malli and Fraga (Ref. 19).

lues are those o	of Malli and Fraga (R	ef. 19).	¹ <i>S</i> C	12.153	25.965
	(d)	(d)		12.200	25.962
-	<u>x'</u> (<i>u</i>)	σ(α)		11.729	26.009
^{2}P C ⁺	6.388	25.107	^{4}S N	9.565	32.547
	6.361	25.106		9.533	32.543
	6.282	25.120		9.573	32.537
^{3}P N ⁺	6.138	31.430	^{2}D N	9.918	32.484
	6.124	31.428		9.852	32.483
	6.108	31.433		9.914	32.476
^{1}D N ⁺	6.267	31.391	^{2}P N	10.175	32,441
	6.239	31.391		10.204	32.435
	6.228	31.395		10.093	32,455
¹ S N ⁺	6.490	31.328	^{3}P O	8.846	39.511
	6.492	31.328		8.852	39.504
	6.356	31,364		8.874	39.500
${}^{4}S$ O ⁺	5.802	38.350	¹ <i>D</i> O	9.008	39.468
	5.799	38,346		8.979	39.468
	5.967	38.318		9.000	39.464
${}^{2}D$ O ⁺	5.932	38,290	¹ S O	9.264	39.405
	5.915	38.289		9.271	39.403
	5.928	38.285		9.155	39.435
${}^{2}P$ O ⁺	6.026	38.249	^{2}P F	8.110	47.071
	6.029	38.246		8.107	47.067
	5,988	38.261		8.117	47.065
^{3}P F ⁺	5.604	45.766	³ P B	31.529	20.651
	5.612	45.759		29.487	20.663
	5.616	45.757		30.991	20.650
^{1}D F^{+}	5.666	45.726	¹ <i>D</i> B	40.898	20.578
	5.662	45.724		35.928	20.607
	5.668	45.721		38.888	20.584
${}^{1}S$ F	5.767	45.667	¹ S B ⁻	29.126	20.622
	5.776	45.663		44.508	20.424
	5.730	45.687		37.087	20.548
^{2}P Ne ⁺	5.352	53.775	⁴ S C ⁻	20,830	26.696
	5.354	53.772		20.353	26.700
	5.356	53.771		20.833	26.683
² Р В	12.556	20.199	^{2}D C ⁻	23.315	26.617
	12.429	20.198		22.700	26.625
	12.276	20.213		23.469	26.602
³ <i>P</i> C	10.930	26.074	² <i>P</i> C ⁻	25.481	26.562
	10.847	26.073		26.539	26.501
	10.843	26.076		25.320	26.579
¹ D C	11.354	26.031	³ P N ⁻	17.665	33.205
	11.215	26.033		17.978	33.184
	11.248	26,035		18.044	33.179

 $\sigma^{(d)}$

TABLE IV. (continued).

 $\chi^{(d)}$

TABLE IV. (continued).		
	χ ^(d)	$\sigma^{(d)}$
¹ D N	18.511	33.155
	18.313	33.158
	18.414	33.396
¹ S N ⁻	19.992	33.080
	20.032	33.076
	19.422	33.126
² P 0 ⁻	14.845	40.317
	14.992	40.301
	15.006	40.299

a similar theorem does apply to polarization wave functions for open-shell systems. Thus, we can

^{*}Supported in part by the Petroleum Research Fund, administered by the American Chemical Society.

[†]Present address: Synvar Research Institute, 3221 Porter Drive, Palo Alto, Calif. 94304.

- ¹H. F. Schaefer, R. A. Klemm, and F. E. Harris, (a) Phys. Rev. 176, 49 (1968); (b) 181, 137 (1968).
- ²H. F. Schaefer and R. A. Klemm, Phys. Rev. <u>188</u>, 152 (1969).
- ³J. S. M. Harvey, Proc. Roy. Soc. (London) <u>A285</u>, 581 (1965).
- ⁴G. Wolber, H. Finner, R. A. Haberstroh, and S. Penselin, Phys. Letters 29A, 461 (1969).
 - ⁵G. Wolber (private communication).
- ⁶H. P. Kelly, Phys. Rev. <u>173</u>, 142 (1968); <u>180</u>, 55 (1969).
- ⁷N. C. Dutta, C. Matsubara, R. T. Pu, and T. P. Das, Phys. Rev. <u>177</u>, 33 (1969).
 - ⁸J. S. M. Harvey (private communication).
- ⁹C. F. Bunge, Phys. Rev. <u>168</u>, 92 (1968); A. Bunge
- and C. F. Bunge, Bull. Am. Phys. Soc. <u>14</u>, 939 (1969). ¹⁰P. O. Löwdin, Phys. Rev. 97, 1509 (1955).

rigorously expect polarization wave functions to give expectation values of one-electron operators to "first-order" accuracy. We have seen that for the one-electron operators that give rise to hfs, polarization wave functions yield results very different from the RHF results. However, Table IV indicates that for the less complicated expectation values $\langle 1/r \rangle$ and $\langle r^2 \rangle$, RHF, polarization, and first-order wave functions usually yield very similar results (typically the three values agree within 1%). We conclude that even for open-shell systems expectation values such as $\langle 1/r \rangle$ and $\langle r^2 \rangle$ are quite adequately predicted by the RHF method.

ACKNOWLEDGMENT

We would like to thank Professor Frank E. Harris for helpful discussions.

- ¹¹H. F. Schaefer and F. E. Harris, J. Comput. Phys. 3, 217 (1968). ¹²H. F. Schaefer, Ph.D. thesis, Stanford University,
- ¹²H. F. Schaefer, Ph.D. thesis, Stanford University, 1969 (unpublished).
- ¹³M. E. Rose, <u>Elementary Theory of Angular Momentum</u> (John Wiley & Sons, Inc., New York, 1957).
- ¹⁴<u>Tables of the Clebsch-Gordan Coefficients</u>, (Science Press, Peking, 1965).
- ¹⁵H. F. Schaefer and F. E. Harris, Phys. Rev. Letters 21, 1561 (1968); H. F. Schaefer, R. A. Klemm, and
- F. E. Harris, J. Chem. Phys. (to be published).
- ¹⁶E. Clementi, IBM J. Res. Develop. 9, 2 (1965).
- ¹⁷J. H. Van Vleck, <u>The Theory of Electric and Magnetic</u> <u>Susceptibilities</u> (Oxford University Press, New York, 1932).
- ¹⁸N. F. Ramsay, Phys. Rev. <u>78</u>, 699 (1950).
- ¹⁹G. Malli and S. Fraga, Theoret. Chim. Acta, <u>5</u>, 275, 284 (1966).
- ²⁰C. Møller and M. S. Plesset, Phys. Rev. <u>46</u>, 618 (1934).