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An improved form of semiclassical radiation theory is developed which includes the effect
of the atom s radiation field back on the atom. This formalism is applied to the problem of
a single "two-level atom" interacting with a monochromatic field. The resulting equations
are solved without resorting to time-dependent perturbation theory, and are found to predict
the behavior of the system over times long compared with the lifetime for spontaneous tran-
sitions. Not only stimulated emission and absorption, but also spontaneous emission with the

proper Einstein A coefficient, and a frequency shift which agrees at least semiquantitatively
with the Lamb shift are described. In addition, several nonlinear effects involving the inter-
ference between spontaneous and stimulated radiation are described, and new experiments
which might detect such effects are suggested.

1. INTRODUCTION

The theory of interaction of optical radiation
with atoms, beginning with Einstein's introduction
of the A and 8 coefficients' and refined by later
applications of quantum theory, ' ' has for many
years predicted all aspects of these phenomena on
which we have experimental evidence. However,
this evidence, while large in volume, is limited
in scope. Recent advances (lasers, etc. ) bring
into the area of feasible experiments a wider
range of phenomena, in which our present theory
has received almost no experimental tests thus
far. In planning new significant experiments, a
more detailed theoretical treatment of these phe-
nomena is needed, part of which is given in the
present work.

The original optical experiments (from roughly
1880 to 1930) provided most of the clues on which
our present quantum theory is based, but, in fact,
they gave evidence only on what might be called
the "kinematic" and "amplitude" aspects, and not
on the "dynamic" or the coherence aspects, of
radiation phenomena. For example, they gave
quantitative verifications of the positions of spec-
tral lines, but not about such dynamic matters as
the shape of the spontaneous emission pulse emit-
ted by an atom, or about the mutual coherence of
radiation from nearby atoms. Absorption spec-
trum experiments also gave line positions, but no
evidence about the dynamics by which the absorp-
tion develops in time with sudden illumination.
Likewise, one observed the amplitude and po-
larization of resonance radiation, but not its de-
gree of phase coherence with the primary radia-
tion, or the dynamics of its transient buildup

when an atom is suddenly illuminated.
More recent experiments have continued to

check the kinematic rather than the dynamical as-
pects of radiation theory. Thus, the existing ex-
periments on the Lamb shift' ' have measured
only the incident frequency needed to initiate a
transition, starting from a metastable S state.
The experimental fact is that upward transitions
are observed to start at a lower frequency, and
downward ones at a higher frequency, than pre-
dicted by the elementary solution of the Dirac
equation. This is consistent with the view that
the Lamb shift arises from a raising of the S
levels relative to others; but it is equally con-
sistent with the view that radiative line shifts in-
crease the frequency of all downward transitions
and lower the frequency of upward ones, whose
behavior could not be described in terms of level
shifts at all. Nor do the existing experiments an-
swer the question whether the radiative line shift
remains constant throughout the transition; they
are equally consistent with a theory (which, as
we will see, has some raison d etre) in which ra-
diative effects raise the frequency of all lines dur-
ing the part of the emission or absorption when
the atom is near the upper level, and lower it
when the atom is near the lower level. Further
experiments are thus needed before one could
claim that our present theory of the Lamb shift is
established to the exclusion of thinkable alterna-
tives.

Thus far, dynamical and coherence properties
have been observed only as smeared-out statisti-
cal averages, which do not permit inferences
about the underlying elementary processes. Thus,
existing experiments on blackbody radiation mea-
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sure only its spectral density, and not further de-
tails of the field fluctuations. Such measurements
are consistent with the notion of sudden exchanges
of energy ~ between field and atom; but they do
not require this, since a continuous energy ex-
change following any curve of a certain symmetry
will lead to just the same time average for the
field energy in any spectral region. Likewise,
the observed exponential decay of fluorescence is
consistent with the idea that each atom emits an
exponentially damped wave train, as in the Wigner-
W'eisskopf theory4; but it does not require this,
since the total radiation will fall off exponentially,
whatever the shape of the basic spontaneous emis-
sion pulse, provided only that the number of emit-
ting atoms falls off exponentially.

There are other dynamical effects on which we
can hardly claim to have experimental evidence,
even in the form of statistical averages. For ex-
ample, what interference effects are to be ex-
pected when spontaneous and induced emission
proceed simultaneously'? Vfhat nonlinear effects
result when an atom interacts with a coherent
radiation field over long time intervals'? The
state of such an atom can always be described by
a density matrix p(t). Does p(t) settle down to a
steady state, approach a periodic limit cycle, or
exhibit some more complicated long-time be-
havior'? All of the aforementioned dynamical and
coherence effects appear to be in the range where
more detailed experimental evidence could now be
obtained.

As far as the theoretical treatment of these phe-
nomena is concerned, the distinction between
"dynamic" and "kinematic" is simply whether
time-dependent perturbation theory is sufficient
to describe the phenomena. To describe "dy-
namic" phenomena one must develop means of
solving the Schrddinger equation accurately over
long time intervals (e. g. , in which an atom un-
dergoes a large change of state), but without
losing phase information. The purpose of this
paper is to develop such a method of solution,
and to present several applications, leading to a
number of predictions not yet tested by experi-
ment but on which the experiments are now fea-
sible.

2. QUANTUM ELECTRODYNAMICS AND SEMI-
CLASSICAL THEORY

-Further study of dynamical and coherence phe-
nomena may prove to have a greater fundamental
importance than would appear at first glance. It
is well known that our present theory of radiation,
quantum electrodynamics (@ED), faces serious
logical and mathematical difficulties. " The ap-
pearance of divergent integrals in almost every
nontrivial problem can be traced in part to infinite
vacuum fluctuations, and in part to the particular

propagators used. The Feynman propagator
Sp(x —x ) raises a difficulty about relativistic
causality in that it fails to vanish for spacelike
intervals (x —x ). In addition, it has a singular-
ity (c'f' —r') ' on the light-cone, "which alone is
sufficient to guarantee divergence of almost any
integral of the form fSy (x x—') f(x')d'x'. Itis only
after using devices such as regulators and re-
normalization techniques, or by striking out cer-
tain divergent expressions on grounds of Lorentz
or gauge invariance, that one obtains finite re-
sults that can be compared with experiment.

Yet the finite parts of the propagator S& appear
necessary for agreement with experiment. For
example, in the calculation of vacuum polarization
given by Bjorken and Drell, "use of the retarded
propagator, instead of SJ., greatly improves the
convergence and removes the difficulty about
causality; but it also leads to the prediction of
zero vacuum polarization. It might be thought
possible to separate Sy into its "physical" and
"nonphysical" parts; but as yet no one has seen
how to do this.

For these reasons, there has been a, growing
dissatisfaction with the present theory, in spite
of its experimental successes. Even Dirac, ' the
founder of @ED, has recently described its pres-
ent form as "a stopgap, without any lasting fu-
ture. " It is clear that, at the very least, there
is something seriously wrong in our present
formulation of this theory; but we lack clues tell-
ing us in what specific way it should be modified.

Most recent study of these problems has tended
to concentrate on the high-energy region. How-
ever, because of technological limitations, fur-
ther high-energy experiments can only continue
to give evidence on "amplitude" aspects of the
theory. In view of recent advances, it is now
possible to perform controlled experiments in the
optical region —where duplication in the high
energy region would be out of the question —which
test aspects of @ED on which we have as yet no
direct evidence. For these reasons, we suggest
that the missing clues are as likely to be found in
the optical region as anywhere else, and so it is
important that the optical phenomena be further
explored.

In Sec. 3 we develop a method of treating the
problem of an atom interacting with electromag-
netic field without resorting to the usual time-
dependent perturbation theory. The solutions will
retain their phase and amplitude accuracy over
long periods of time.

In Sec. 4 a number of detailed solutions are
presented in which the effect of spontaneous emis-
sion and radiative line shifts on long-time behavior
are exhibited.

In Sec. 5 we show that the method we have de-
veloped is quite general and could be applied just
as well to any problem in radiation theory.
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Finally, in Sec. 6 we discuss the differences
between this method and the usual formalism.
New experiments to test the detailed solutions of
Sec. 4 are proposed.

3. EQUATIONS OF MOTION

Consider an atom with energy levels Ez and
stationary-state wave functions $i,

the field E(t) on the atom, we introduce a new set
of variables:

M(t) -=(p ) = p(a*b+ab*),
op

(3. 5)

(s. 6)

As a result of Eqs. (3.4) these new variables satis-
fy

(3. 1)
CP

d ~ M+~'M = -K2WE(t), (3.7a)

In what follows we take into account only two
of these levels, between which there is a dipole-
moment matrix element p. Let ~ be the natural
line frequency of this transition, and choose the
zero from which we measure the energies to be
midway between the two "active" levels, so that
the energies are

1
E2 = —Ej = 2N~ (3.2)

q (t) = a(t) q, +b (t)q„

and the Schrlinger equation

i Sg = [Ho —g ~ E(t)](

(3. 3)

in which the dipole moment interacts with an
electric field E(t), then reduces to

tla(t) =E,a(t) —p, ~ E(t)b(t),

Ni(t) =E,b(t) —q .E(t)a (t).
(3.4)

The state vector of the atom at an arbitrary t~.me
will be some linear combination of the active
levels

8'=ME, (s. 7b)

where Z=2p/h .

These equations are exactly equivalent to Eqs.
(3. 4), but in the form (3. 7) we have a simple
physical interpretation. The atomic dipole mo-
ment responds to an applied field E(t) according
to a driven harmonic-oscillator equation, with
the unique feature that the coupling constant E'8'
is proportional to the slowly varying energy W of
the atom, reversing sign when S' passes through
zero. Thus, the dipole responds in opposite
phase, depending ~n whether the atom is nearer
to the upper state. the lower state. By this
means, as we will presently see, the atom auto-
matically adjusts its phase so as to give maximal
induced emission when near the upper one. Equa-
tion (3. 7b) is simply a statement of conservation
of energy. These equations were derived pre-
viously to describe maser action. "

There is one further immediate consequence of
writing the equations in this form: We have a
first integral. Multiplying (3. 7a) by M and sub-
stituting (3.7b), we get after integrating

~2+ 2~2 +g 2~2 ~2 2 (s. s)
This neglect of all other levels is well justified

if we suppose that g, is the ground state, so it
cannot be depopulated by transitions to lower
ones; and that the spectrum of the applied field
E(t) contains no appreciable component at any fre-
quency which could couple P, and g, resonantly to
other levels. Thus, no other levels can attain an
appreciable amplitude: Their effect can be found
by perturbation theory, '4 and amounts, for all
practical purposes, to a small effective level
shift, which we suppose to have been included al-
ready in E, and E2,

We make one further assumption, that the field
is linearly polarized with its polarization parallel
to the atomic dipole moment. We will discuss
more general applied fields in Sec. 4, and show
that there are no qualitative changes in our results
in that case. This assumption reduces Eq. (3.4)
to scalar equations.

To better understand the physical influence of

where we determined the constant of integration
by substitution of the definitions of M(t) and W(t),
and by use of the normalization condition

fa f'+ fb ('=1. (s. 9)

This first integral is of the form of the equation
of a sphere. We can take advantage of this to de-
fine another convenient set of variables, which
are just the Cartesian coordinates of a point on
the unit sphere, defined by

jAgM+i~M —= i pwe (x+ iy),

S' =—p S(g)g,

(3. 10a)

(3. 10b)

where x(t) and y(t) are real, and 0 is the frequency
of the applied field, which is supposed to be mono-
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chromatic. Taking the imaginary part of (3. 10),

M(t) = p, (x cosQt-y sinQt), (3. 11)

E =E cosQt.
app 0 (3. 12)

The first integral (3.8) can be written in terms
of these Cartesian variables giving

X +$ +8 =1 (3. 13)

the equation of the unit sphere. Thus, with these
variables the state of the system is specified by
a point on the unit sphere, the azimuth of which
determines the relative phase of the dipole mo-
ment with respect to the applied field, and the
colatitude of which determines the energy. The
upper and lower states are mapped onto the north
and south poles, respectively. Conversely, each
point on the sphere determines a particular linear
combination of states (3. 3) to within a phase fac-
tor which has no meaning. Thus, there is a 1:1
correspondence between points on the sphere and
physical states of the atom.

If we define a resonance parameter

(3.14)

then substitution of the ansatz (3. 10) into the
Eqs. (3. 7) results in

x =gy+(2p/I)z(t)E(t) sinQt,

y = —~x+(2p, /h)z(t)E(t) cosAt,

g = (2p/R)(x sinQt+y cosQt) E(t)

(3. 15a)

(3. 15b)

(3. 15c)

we can see the physical meaning of these Cartesian
coordinates. Thus, x(t) is the component of the
dipole moment in phase with the applied field,
while y(t) is the component 90' out of phase with
the applied field, if the applied field is

theory differs from conventional treatments in
that here we will include radiation reaction in the
driving field, i. e. , we will take

E(t) =E,„,(t)+E (t), (3.1V)

where Eext(t) is the external applied field, and

ERR(t) is the radiation reaction field.
Many discussions of z adiation reactl. on exist, '

but none of the discussions seems quite appro-
priate for the present case, though all arrive at
the same final results. We have included in
Appendix 8 a derivation appropriate to our pres-
ent problem. The results of that calculation, in
the dipole approximation, are that the effect of
radiation reaction on an oscillating dipole is
equivalent to a field

K =c/a, = 6 && 10"/sec. (3. 19)

We will discuss this point further in Sec. 5, and
show how K can be calculated from the current
distribution Z(r, t) within the atom.

Since the dipole moment to a good approximation
oscillates sinusoidally at. the natural frequency,
Eq. (3. 18) can be approximated by

E (t)=- ", M(t)+ ",M(t).
3C 3+c

(3. 20)

acting back on the dipole. This expression gives
the contribution for all frequencies up to the fre-
quency K. Above that frequency the fields will not
be effective since they correspond to wavelengths
smaller than the radius of the charge distribution.
For a charge distribution with dimensions of the
order of the Bohr radius a0, the cutoff is given ap-
proximately by

This Cartesian form is convenient for use in ob-
taining explicit analytic solutions, but for some
purposes it is convenient to express these equa-
tions in terms of the azimuth angle Q and the
colatitude angle 8 on the unit sphere reducing the

system (3.15) to two coupled equations

Then, if we assume that the external field is given
by

(t) =E cosQt,ext 0

the total field driving the dipole is

8 = (2p/K) sin[((g +n) t+ P(t)]E(t), (3. 16a) E(t) =E cosQt — M(t)+
3

M(t).3c 3'1l'c
(3. 22)

$=-o, y(2p/8) cote cos[(~+o) t+Q(t)]E(t).
'(3. 16b)

Thus far, our results have been exactly equiv-
alent to the usual semiclassical radiation theory
except that we have not resorted to time-depen-
dent perturbation theory. However, the present

Substituting this back into the differential equa-
tions (3. 15) and using the ansatz (3. 10), we have

x =oy +(4p'&o'/35c3)(x sin'Qt+y sinAt cosAt)z

+(8~'Ãp'/3mtfc')(x sinQt cosAt-y sin'At)z
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+(2y/h)zE, sinQt cosQt,

y = —ex+ (4g'&u'/skc')(x sinQt cosQt+y cos'Qt)z

+ (8(u'Kp'/3~bc')(x cos'Qt —y sinQt cosQt)z

+ (2p, /h) E, cos' Qf z, (s. 2sb)

z = —(4p, '(u'/Mc')(x' sin'Qf+y' cos'Qt

+2xy sinQt cosQt) —(8p, 'K~'/smhc')(x'-y')

xsinQt cosQt —(2p, /8')E, (x sinQt cosQt

+ y cos'Qf ) — (8p'KuP/smKc )xy cos2Qt. (3. 23c)

x = o y + pxz —yyz,

y = —ax + pyz + yxz + Xz,

z = p(z' —l) —Xy,

where X —= p, E,/5,

P —= 2y, '(u'/38 c',

y =4K~'p'/svhc'

(S. 24a)

(3. 24b)

(3. 24c)

(s. 25)

(s. 28)

(3. 2V)

The parameter p is exactly one-half the Einstein
A coefficient; it will appear presently that y is
related to the Lamb shift. As a check on the ac-
curacy of this approximation, note that the first
integral (3. 13) is still an exact first integral of
the secular equations (3. 24).

The corresponding secular equations for the
azimuth and the colatitude are

These equations contain two types of terms, those
which vary slowly with time, and those which os-
cillate rapidly at frequency 2Q. These rapidly
oscillating terms are often encountered in radia-
tion theory; they are known in magnetic resonance
theory as the "counter-rotating" terms and were
discussed by Bloch and Siegert. " There terms
oscillate so rapidly that their effect averages to
zero in a half-cycle of the dipole's oscillation.
We will then neglect those terms by averaging the
equations over a time v/Q. The resulting equa-
tions will be called the secular equations and will
describe the slow change of the energy and of the
phase of the dipole moment. The secular equa-
tions are

which radiates according to the classical Maxwell
equations. This radiation field then acts back on
the atomic dipole moment to cause radiation re-
action. The radiation given off by the atom under-
going spontaneous or stimulated emission will be
proportional to M, as «n classical electromagnetic
theory.

The predictions of this theory will not always be
in exact quantitative agreement with QED, as we
will see in Sec. 4; however, the area of agree-
ment does seem to be remarkably wide. We will
see that the two theories seem to be in complete
agreement in their description of all experiments
which have been carried out heretofore, and that
they differ only in finer details, yet to be tested
experimentally. We will be particularly inter-
ested in those cases where the results differ from
the predictions of QED. These results will, at
the very least, point out areas in which this meth-
od breaks down as an approximation technique for
QED. The method of calculation has a certain
plausibility of its own however, quite separate
from QED, and may be regarded not merely as
an approximation scheme to QED, but as a phys-
ical theory in its own right; one which we suggest
as a possible alternative to QED in which the
divergence difficulties are conspicuously missing,
yet one which agrees with existing experiments.
The areas in which their predictions differ thus
correspond to new experiments capable of decid-
ing between them.

Of course, one does not expect that this alterna-
tive theory can be correct in every respect; how-
ever, we believe it to be useful for suggesting new
experiments. If new experiments show that this
alternative theory contains just one "element of
truth" that is not contained in present QED, then
we would have the essential clue telling us in
what direction @ED must be modified.

4. SOLUTIONS OF SECULAR EQUATIONS

Solutions of the secular equations contain a
great amount of detail. In order to show clearly
the nature of these solutions we treat the various
special cases first, gradually generalizing our
analysis. By use of this approach we can see the
ways in which the various parameters influence
the solutions.

A. Strong Fields

P= —o, +X cosP cot8+y cos8,

8 = p sine+ X sing.

(3. 28)

This formalism differs from the usual semi-
classical theory in taking the dipole moment of the
atom to be an actual oscillating charge distribution

The simplest case for which we can obtain non-
trivial solutions is the strong-field case, i. e. ,
the case in which the external applied field is near
resonance and is so strong that radiation reaction
is negligible. This corresponds to neglecting ~,
p, and y when compared with X. The secular
equations are then
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x=0,

y =Xz, (4. 1)

8 =- Xg.

Assuming that the atom was in its ground state
at t=0, the solutions are

FIG. 1. The time de-
pendence of the energy and
of the amplitude of the di-
pole moment for spontane-
ous emission.

x(t) =0,

y (t) = —sinXt,

z(t) = —cosset.

(4. 2)

Physically this says that the atom alternately
absorbs and then reemits radiation at a rate
which is directly proportional to the driving field.
This sort of behavior has been observed in micro-
wave spectroscopy where spontaneous emission
is negligible, and is derivable from conventional
radiation theory.

B. Pure Spontaneous Emission

diets that spontaneous decay will begin immediate-
ly. If isolated atoms could be pumped very close
to the excited state, an experimentally observable
delay should occur before spontaneous emission
begins, if this theory is correct. This has not
been confirmed or disproved by existing experi-
ments. We will discuss this further in Sec. 6.

This theory predicts the proper decay constant,
the Einstein A coefficient. For long-term decay,

x= pxz,

x =Ps~,

~ = p(z' —1).

(4. 2)

The second case which we want to look at in de-
tail is pure spontaneous emission when the Lamb
shift is negligible. In general, the Lamb shift may
be large compared to the natural line width, but in
order to better understand the qualitative effects
of spontaneous emission we will ignore the Lamb
shift for the present.

The secular equations in this case are

W(t) = —25+ tanhPt

l -At—2hv(1 —2e ), t-~ (4. 5)

where A —= 2p. This is exactly the QED result.
These differences between the present theory

and QED are observable only when we can pump
the atom near the upper state. If the atom is ex-
cited only slightly above the ground state, these
results are identical to those found in the con-
ventional theory.

Another comparison can be made with the line
shape predicted by the two theories. The line
shape is given by IM(&o) I', and

The z equation can be integrated immediately
and we get the solutions,

p, z&t
M(~) —=

2 J e sechpt cos~,t dt.
p

(4. 6)

x(t)=cosP, sechP(t-t, ),

y(t) = sing, sechp(t —t,),

z(t) = —tanhP(t —t,),

(4. 4)
If&»p, then

~M(M) ~' = (rr g'/8P')[sech'(rr/2P)((d + (9,)

+ sech'(rr/2P)(~ —~,)], (4. 7)
This is spontaneous emission, but in a rather

different form from thatfound in QED (see Fig. 1).
Note that if the atom is exactly in the excited state,
i. e. , z = 1, then x =y =z = 0. The atom will re-
main forever in the excited state. This is rather
disconcerting until we realize that this is a point
of metastable equilibrium, so that even the very
slightest perturbation would be sufficient to cause
the system to decay as given by (4. 4). In any ex-
periment such perturbations will, of course, be
unavoidable. This differs from QED, which pre-

so the line shape is given by a hyperbolic secant
squared rather than a Lorentzian. These line-
shape differences might be distinguished by a
visibility-curve measurement such as those per-
formed by Michelson, ' if we could eliminate the
Doppler broadening and pump the atoms close
enough to the excited state so that the entire decay
would be present in the radiation. "

Having seen this much concerning the phenomena
of spontaneous emission in the formalism, we will
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go on to investigate the effects of the other terms
in our equations.

C. Spontaneous Emission with the Lamb Shift

case, but it is due to many level effects which we
will discuss in Sec. 5.

For comparison with QED, we can again cal-
culate the line shape. Integrating (4. 10), we find

Vfe will now solve the general secular equations
with no applied field:

p(t) = (y/p) ln sechp(t —to), (4. 13)

x= pxz -yyz,
0

y = pyz+yxz,

z = p(z'-1}.

(4. 8)

which we can substitute into Eq. (3. 10) to deter-
mine M(t).

M(f) = p, Re[(sechpt) ' e 0 ]. (4. 14)

The Fourier transform is then obtained by use of
the change of variables

The z equation is identical with that far sponta-
neous emission with no Lamb shift, so me can im-
mediately write down the result, tanhPt —= 1 —2M. (4. 15)

z(f) = —tanhP(t —f o). (4. 9)
Keeping only the positive frequency part, we have
for the line shape

Rather than solving Eqs. (4. 8) for x(t) and y(t),
it is better to return to the angular form of the
secular equations (3. 28). Equation (3. 28) be-
comes, in the present case,

2

~M(~) ~' = sinh —[cosh —+cosh ' ] '.
(4. 16)

Q(f) =y cos8

=yz(f)

= —y tanhP(t —to).

But since

and M +i~M = ip,~ sin8 ei[~t+ (f&(t)]

(4. 10)

(4. 11)

(4. 12)

This line shape is illustrated in Fig. 2. Again
we might be able to test this result with a
Michelson visibility experiment if we could guar-
antee that the excitation mas such that we got the
entire transition.

D. Applied Field, No Lamb Shift

We mill now investigate, in detail, the solutions
when there is a monochromatic applied field. We
will first neglect the frequency shift. In this case
the secular equations are

we see that Q(t) measures a frequency shift in the
oscillations of the dipole moment, and of the
emitted radiation. When the atom is near the
upper state, the dipole is oscillating at frequency
+y, while it oscillates at frequency & —y near
the lomer state, thus the emitted radiation is fre-
quency modulated t This result again differs with
QED, where the frequency of the emitted radiation
is constant.

This result is consistent with the observation
that the Lamb shift seems to raise the S levels,
however. In experiments in which the transition
observed has the S level as the lower of the two
levels involved, it is observed that the transition
frequency is lowered. Our theory gives that fre-
quency as & —y near the lower level, which is all
that will be observed in an experiment in which
incoherent radiation is absorbed. In experiments
in which the S level is the upper level, the tran-
sition frequency is increased, which again agrees
with our result, since we get +y in that case.
At this point it is not obvious mhy we should pick
out the frequency near the S level in the second

x = pxz+o, y,

y = pyz+ Le —nx,

z = p(z'- 1) —xy.

(4. IV)

x=f/h, y =g/k, —z =—Ii/p—h. (4. 18)

2

FIG. 2. The line shape for spontaneous emission
including the time-dependent frequency shift.

These equations are linearized by the following
ansatz:
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With this substitution, Egs. (4. 17) reduce to This is an hyperbola and has solutions only for

a ~p (4. 25)

g = - (xh/p) —nf,

h = p h+pg.

(4. 19) thus the transients always die out more slowly
than spontaneous emission. We can treat (4. 21)
in the same way. The oscillation frequency P
then satisfies

These are linear equations which are easily solved
though the solutions for x(t), y(t), and z(t) are
quite complicated. For example, the solution for
z (t) when z (0) = 1 is

z(t) =~(t)/a(t),

where

~(t) = —(a/p)[p(a'+ y' - p') cosbt+ b(a' —p') xsinbt

+p(g —p —b ) coshat+a(b +p )sinhat]
(4. 20)

and D(t) = [a(a' —p') cosbt —(pa/b )(a'+ X —p') sinbt

+a(b'~ p') coshat- p(b'+ p' —&')sinhat].

The oscillation frequency 5 is

b =-{-—,'(P2- X' —n')+ -.'[(n'+ X' Pm)' ~4n'P']'"}'",

(4. 21)

while the damping constant a is

a -P(ps ~2 a) &[( 2 ~2 pm)2 4 mpm]x/aP/a

(4. 22)

The solutions forx(t) and y(t) are of the same
form. While it is impossible to understand the
details of this solution by examination, we can
say at least that it is a damped nonsinusoidal
oscillation with oscillation frequency 5 and damp-
ing constant a. In all cases for which a 40 the
solution will decay exponentially to a steady-state
asymptotic value. In fact, we can see

X'/b'+ p'+n'/b' = 1, (4. 26)

x = 0 = Pxz + ny

y =0= pyz+Xz —nx

z=o= p(z'-1) —Xy .

(4. 2V)

There are two sets of solutions, one set in the
northern hemisphere and another in the southern
hemisphere. We have already seen in (4. 23)
that the asymptotic solution is z = —a/p, so that
the asymptotic solutions are

x = —(n/~)[(p/a) —(a/p)l,

the equation of an ellipse. These curves are il-
lustrated in Fig. 3. Using this graph we can read
off the oscillation frequency and the damping con-
stant for any set of the parame". ers and X.

Note that we have qualitatively different solutions
for the case ~ =0, exact resonance. At resonance
with a field strength satisfying X &p, the oscillation
frequency is zero. Above the "critical field, "

X.

&P, there is no damping; the solutions oscillate
forever. This is true only for exact resonance,
however. Any slight value of z will cause the sys-
tem to decay slowly to a steady-state value.

We can also use the differential equations to
determine the asymptotic steady-state solutions.
Vfe obtain these solutions by requiring

lim z(t)=-a/p, as t-~ (4. 23)

x'/(P'- a')- n'/a' = 1 (4. 24)

To obtain a better understanding of these rather
complex analytic solutions, we will further analyze
the differential equations themselves and study
some graphical solutions obtained by use of an
analog computer.

Consider the dependence of the oscillation fre-
quency b, and the decay constants, on the param-
eters 0. and X. The spontaneous emission param-
eter is a constant for a given transition. Expand-
ing (4. 22), we can write it in the form

0.

e 1

FIG. 3. The decay constants and oscillation fre-
quencies for transients after sudden turn on of the driv-
ing field.
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FIG. 4. Solutions of

the secular equations for
a=ad=0 and X=0.99P. Y(t3

(.0

-i.o'

1 ogtt

FIG, 6. Solutions of
the secular equations for
strong applied fiel& off
resonance, y = o, & = P,
and A. =3P.

1.0 '
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iopt

y = —(p/x) (1 —a'/p'),

g = a/p-.

(4. 28)
g =yyz

y =yzz+Xz )

z = —Xy

(4. 2S)

The point in the northern hemisphere is a point
of unstable equilibrium.

Figures 4-6 show graphs of solutions for x(t),
y(t), and z(t) for various values of the param-
eters o. and X. These graphs were obtained by
solving the differential equations (4. 17) directly
with an analog computer.

E. Strong Field with Lamb Shift

We have already seen that the effect of the
Lamb shift is to cause the frequency of the atomic
transition to be raised when the atom is near the
upper state, and lowered when the atom is near
the lower state. We would expect such a fre-
quency shift to cause effects which are evident
with fields so strong that spontaneous emission
can be neglected.

In this case the secular equations become

i.o

where we have assumed the applied field to be
resonant with the unskifted transition frequency.

There is an immediate first integral by elimi-
nating z between the x and y equations. If we as-
sume x(0) =y(0) = 0, the integral is

(x+ X/y)'+y' = (Z/y)' (4. 30)

/
/

I
I
I
I

I
I

\

This says that the projection of the system point
orbit in the xy plane is a circle with its center at
x = —X/y, y =0 and radius of X/y. This orbit lies
entirely on the sphere only if X& &y. By use of
the equation of the sphere (3. 13), we can determine
the other two projections of the orbit. The xz
projection is an hyperbola, but the yz projection
is a quartic, an ellipse in terms of y and z'.
These projections are shown in Fig. '7 for vari-

-I.O,U

( o, i

rIinnnnn. .z(t) rr'r(t]qllvv

-io

IOOP~

FIG. 5. Solutions of the
secular equations for e
(0.01P, X —1.01P, and y = 0.

FIG. 7. The system-point
orbits for G. = P = 0, various
Z/y.

Ix
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z(t) =-cn(uly/2x), y &-.'y . (4. 31)

By use of the Eqs. (4. 29) and the identities for
elliptic functions, we can determine the corre-
sponding solutions for x(t) and y(t):

ous values of the applied field strength.
We can actually obtain an analytic solution

for x(t), y(t), and z(t) in this case. Combining
the first integral with the z equation (4. 29), we
have an equation in the form for solution in terms
of elliptic functions. From the tables" we have

X(t)

Y(t)

1.0

-1,0

I.O

-I.O
I.O

FIG. 9. Solutions of the
general secular equations at
resonance with a weak applied
field, A=0, P=0.1y, and

X =27.

x(t) = —(y/2X)sn'(u
I y/2X),

y«) =snht ly/»)«(&t ly/») .

In the region X & 2y the solutions are

x(t) = —(2X/y)sn'(2 yt
I
2&/y)

(4. 32)

(4. 33)

(4. 34)

y(t) = (2x/y)sn(ayt l2X/y)cn( —,'yt
I
2~/y ) (4 35)

-I,O

We can obtain analytic solutions also for the
case in which the applied field is off-resonance.
In this case the secular equations are

(4. 38)

lim z(t) = cn(Xt IO) = —cos&t, as &-~ (4. 37)

A typical case is illustrated in Fig. 8.
In the limit of a strong field, i. e. , X. »y, the

solutions reduce to those given in (4. 2) as ex-
pected, i. e. ,

y =yxz+Xz —(yx (4. 39)

8 = —Xy

Again there is a first integral which gives a pro-
jection of the system point orbit

2~/y+(1+ o /y)' = (s —~/y)'; (4. 40)
The solution is also simple in the case X = 2y
when we have

z(t) = —cn( ,yt I1) = —sech —,-Xt, (4. 38)

I.O

This last case is the only nonoscillatory solution
to Eqs. (4. 29); we must in general include spon-
taneous emission before we get damping or
steady-state solutions.

the other two projections can be obtained as be-
fore. These orbits have been graphed for vari-
ous values of 0. , and X = 2y. " There is an asym-
metry between positive and negative values of n.
This is because a field with its frequency such
that z = —y will be at resonance with the shifted
frequency when the atom is in its ground state,
while a field with its frequency such that a. =y
will be at resonance when the atom is in the ex-
cited state.

Substituting Eq. (4. 31) into the s equation (4. 30),
we get a differential equation which is again in the
form for solution by elliptic functions. The solu-
tion is too complicated to be of much value, so we
will rely on the analog solutions, even though we
could obtain an exact analytic solution.

I.O ~

-I.O ~

I,O'

FIG. 8. Solutions of the
secular equations for o.= P

IfIff if ff I

F. General Solutions

We have thus far been unable to obtain analytic
solutions to the secular equation in the most gen-
eral case. By use of the analog computer we
have been able to obtain graphical solutions, how-
ever; those are shown in Figs. 9-11.

For the case of exact resonance, o, =0, we are
able to reduce the secular equations to quadrature,
though we are unable to perform the resulting in-
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and J = (e/m) Re(4~ P%), (5. 1b)

FIG. 10. The system-point orbits
for n=0, P=O. ly, and A. =2y.

tegral. "
There are several things we can learn about

these general- solutions. The analog plots seem
to indicate that for o, =0, the critical field is X
= &y. Above this field, the solutions are oscil-
latory and there seems to be no damping. Below
this field, the solutions are damped to their
steady-state values in times long compared with
(P) '. We can determine the steady-state values.
At resonance the condition for steady-state solu-
tions is

p (~, t) = ef ~l

e(r, ~,~, ..., ~ ) l'

xd'&2d &3 ~ ~ d+N' (5. 2a)

where e is the electronic charge, 4 is the atomic
wave function, and P is the momentum operator,
be interpreted as the actual electric charge den-
sity and current density associated with the atom. '
By about 1930, this interpretation was superseded
by the present interpretation. The reasons for
dropping Schrodinger's interpretation are not al-
together clear, though some are known.

One objection raised against this interpretation
is that in the case of more than one particle, the
charge distribution, as defined in Egs. (5. 1), is
not defined in ordinary 3-dimensional space for
an N-electron system, since the wave function for
such a system is a function of the 3N components
of the coordinates of the N particles. The charge
distribution defined in (5. 1) is only for a one-
electron system, however, and is not generalized
to a N-electron system by simply replacing 4'(v, t)
by 4(xl, x2, ..., r~, t). Instead the charge density
of the N-particle system is given as the sum of
the charge densities of the individual particles.
The charge density due to electron number 1 in
such a system would be

0
O=x = pxz —yyz

0=y = pyz+yxz+Xz

O=z=p(z'-1) —Xy .

The solutions are

(4. 41)

for electron 2,

p (~, t) = e f l
4(x, x, x, ..., x, t ~I'd'r

1

Xdf' d& e~'d V (5. 2b)

x =-y~/(y'+p'),

y„=-p~/(y" p'),
z [I xm/( 2 p2))vs

(4. 42)

etc. ; and the total charge density for the N-elec-
tron system would be

I.O '

5. GENERAL FORMALISM

The formalism which we have developed and ap-
plied in Secs. 3 and 4 uses an interpretation of
quantum mechanics that differs from the Copen-
hagen interpretation which is normally used.
When the dipole moment of the atom is taken to be
the actual charge distribution which gives off the
atomic radiation, we are using the "Schrodinger
interpretation. " Schrodinger proposed in 1926
that the quantities

I.O.

-I.O

IN A ALA

PIG. 3.1. Solutions of the
general secular equations
with a strong applied field,
~=O, P=O.Zy, and Z&-,'y.

Z(i)
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N
p(r, t) = Z p (r, t) .

E= 0
(5. 2c)

Likewise, the contribution to the current from the
first electron would be

Z (r, t) = (e/m )Re J 4*(r,r, r, ..., r, t)

x Pe(r, r, r, ...,r, t)d'r d'r3. ..dV

(5. 3a)

and similarly for all of the other electrons so that
the total current would be

N
$(r, t)= Q J (r, t) (5. 3b)

These quantities represent a generalization of the
quantities defined in (5. 1) which are defined in
ordinary 3-dimensional space. It is also easily
shown that as a result of the N-particle Schro-
dinger equation they satisfy the usual continuity
relation,

pV' ~ J+ ——= 0c &t
(5 4)

Another argument often heard is that this and
all other semiclassical theories are incapable of
predicting spontaneous emission and the Lamb
shift. We have seen in Secs. 3 and 4 that such is
not the case; we have in fact described just those
phenomena as mell as other distinctly "quantum"
phenomena.

There is one argument which is not entirely
answered at this point. The usual quantum-
mechanical solution for the free-electron problem
predicts a spreading wave packet, thus according
to the interpretation (5. 1), we would have a so-
lution for the free electron which is not stable,
but spreads indefinitely over all space. This is
not really a correct description of an electron
according to this formalism, however. An elec-
tron is charged and thus has an associated field
which reacts back on the electron. We must
solve the problem of the electron interacting with
its own field. It is possible for such a charge
distribution to be bound and nonradiating. Bohm
and Weinstein" have described such charge dis-
tributions and have shown that in fact the con-
dition that they be bound is exactly the condition
that they be nonradiating. Clearly, any descrip-
tion of the free electron must necessarily include
spin and thus use the Dirac equation for the
electron. This causes no essential difficulty
since the Eqs. (5. 1) are easily generalized for the
Dirac equation. The resulting equations remain
to be solved, but the essential point is that this
interpretation cannot be rejected due to this ar-

X(t) = pE, (t)/5, (5. 5)

where Eo(t) is the slowly varying amplitude of the
applied field. If the field is very strong, i. e. ,
Z» p and X» y, then yet another solution can be
obtained for an important special case. If the
field is of the form

E (t) =E sech(E t/h) cos~t,ext (5. 6)

then the secular equations can be written as

x=0, (5. Va)

gument until this problem is solved.
The secular equations (3. 24) were derived using

this Schrodinger interpretation, but only in the
dipole approximation, for linearly polarized ap-
plied fields, and a "two-level atom. " These
restrictions and approximations are not necessary
but are made only to simplify the analysis so that
analytic solutions can be obtained. More com-
plicated cases have been treated. The treatment
of applied fields with general polarization is
straightforward and has been carried out. 24 The
result is that the energy and magnitude of tht." di-
pole moment have the same time dependence as in
the linearly polarized case. The problem has al-
so been treated without the dipole approximation,
actually using (5. 1) to describe the oscillating
charge distribution. 2' The result is that the
equations reduce to exactly those we derived in
Sec. 3, except that a definite numerical value is
obtained for the constant y of Eq. (3. 2V), the
Lamb shift. This constant which diverges in the
point dipole approximation converges nicely for
the charge distribution (5. 1), which is spread
over the entire atom. The numerical value of
this constant has been compared with the Lamb-
shift experiments and found to agree within ex-
perimental error. " Finally, the extension to
n levels has been carried out. " The equations
in that case are somewhat more complex, but
can be seen to yield the familiar cascade of
"photons" as an electron descends from a higher
excited state through successive lower states to
the ground state. When only a few levels are in-
volved in the transition, the problem is easily
solved with an analog computer, as we did in
Sec. 4.

One other case in which we can easily obtain
solutions is the case in which the applied field is
not cw but pulsed or amplitude modulated. If the
amplitude of the applied field varies slowly com-
pared with the spontaneous emission time (P) ',
then the atom will remain in its steady state
[(4.43) or (4. 28)]. The steady state slowly
changes according to the value of X = y{t}:



118 C. R. STROUD AND E. T. JAYNES

y = X(&)z,

z = —X(t)y,

X(t) = X sech' f,

(5. 7b)

(5. 7c)

(5. 7d)

that they received a g pulse of the radiation in
traversing the illuminated region, then the atoms
would emerge with the proper initial conditions so
that their subsequent spontaneous decay pulse
should have a line shape like that given in Fig. 2.
The width of the line would be twice the Lamb
shift of the given transition unless the Lamb shift
happened to be small for the particular .transition,
in which case the line width would be just that
given by the usual theory but the line shape would
be a hyperbolic secant rather than the Lorentzian
(see Fig. 1). There seems to be no reason in
principle why the experiment could not be carried
out this way, the main difficulty would be obtain-
ing a suitable two-level atom and an accompanying
coherent source which can deliver a p pulse.

An interesting point concerning this experiment
is that QED does not predict exactly a Lorent-
zian line shape for a spontaneous decay; the
Lorentzian line shape is a result of the Wigner-
Weisskopf approximation. We have solved the
problem of spontaneous decay using QED without
time-dependent perturbation theory in order to
investigate this problem. 24 The method used was
similar to that given by Kroll. " We found that,
indeed, spontaneous decay is not exponential for
long times, but rather the amplitude of the upper
state falls off as t 2 eventually. This correction
term is extremely small, about one part in 10',
so that for all practical purposes, the decay is
over before the correction is appreciable com-
pared with the exponentially decaying term. Thus,
as far as any feasible experiment is concerned,
QED predicts a Lorentzian line shape.

As we pointed out in Sec. 4, this p pulse is ex-
tremely important in any experiment which can
hope to find these effects. If the atoms are ex-
cited by an ordinary incoherent source, they will
remain near the ground state and only the ex-
ponential tail which agrees with QED will be ob-
served. If we are able to prepare good enough
z pulses, another type of experiment becomes
feasible. The formalism predicts a metastability
of the system in the excited state, thus there
should be a delay before the decay takes place if
we prepare the system sufficiently near the ex-
cited state. The necessary preparation is quite
exacting, however, as we must get the atom in a
state with z(0) &0. 94 in order to double the decay
time, and with z(0) &0. 9999 in order to get five
times the decay time.

The very detailed solutions presented in Sec. 4
offer all sorts of additional possibilities for ex-
periments. Their description of the nonlinear

interference which occurs when spontaneous and
stimulated emission occur simultaneously is
especially interesting. It suggests that we might

where X, = gE, /@

These are easily solved to obtain

z(t) = atanhX, t,

y (t) = w X,sech', t = w X(t).

(5. 7e)

This is the hyperbolic secant which was seen ex-
perimentally by Hahn and McCall. " This is the
one pulse shape which is preserved on absorption
and reemission.

Other types of coherent excitation are easily
described by analog computation.

6. COMPARISON WITH QED EXPERIMENTAL
TESTS

We have described a method for doing calcula-
tions in quantum radiation theory. In Sec. 4 we
have described rather complex phenomena in a
mathematically simple and intuitively appealing
way. In Sec. 5 we have shown that the method is
quite general and capable of treating a wide range
of problems. If we use the Dirac equation for
calculating the current, we can treat relativistic
problems by this formalism. A great many cal-
culations, for example, the Klein-Nishina formu-
la, are normally calculated semiclassically and
thus have already been described by a variant of
this formalism. Even such "far out" phenomena
as light-light scattering can be described semi-
classically using the Dirac current.

The method which we have described is not
identical with QED. In fact, the two theories dis-
agree in their predictions of some phenomena.
These disagreements are, however, always in
fine details which have not yet been tested by ex-
periment. Some of these fine details would seem
to be subject to experiment with existing technol-
ogy. These experiments are interesting not only
as a test of the semiclassical theory but as a test
of QED. Even if this semiclassical formalism
does not turn out to be the ultimate correct theory
it might well point out an experiment in which
QED fails. In that case we will have a vital clue
as to how QED should be modified.

There are several possible types of experiments
which are suggested by the calculations of Sec. 4.
The most obvious seems to be the line shape
which under certain experimental conditions can
differ greatly from the Lorentzian predicted by the
Wigner-Weisskopf theory. Let us go into a pos-
sible experiment of this type in a little detail. Gf
course, Doppler broadening and various types of
homogeneous broadening in a solid make it dif-
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ficult to do any sort of natural line-shape experi-
ment in a gas or solid. These difficulties could
be overcome by using an atomic beam. If a beam
of our "two-level atoms" passed through a region
of coherent illumination at the proper velocity so
do some experiments observing the interference
between an applied field and the stimulated field
which it generates in resonant scattering. Def-
inite asymptotic phase relations are predicted
in Eci. (4.42) for this problem. The correspond-
ing QED calculations do not seem to have been
carried out at this point.

These few examples illustrate the sort of pos-
sibilities which exist. It is hoped that the de-
tailed solutions of Sec. 4 will suggest other pos-
sibilities perhpas simpler and more direct than
those suggested above.
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APPENDIX A: TYPICAL VALUES OF RADIATION
PARAMETERS

The following table gives the values of the ra-
diation parameters for two special cases: (i) the
1$ —2P transition in hydrogen, and (ii) the sodium
D lines. The values are theoretically derived in
the case of hydrogen, but in the case of sodium
we are unable to locate reliable theoretical esti-
mates of these parameters, so that we must rely
on experimental measurements of the lifetime of
the I' states to determine the spontaneous emis-
sion parameter and thus the dipole moment. The
value for the Lamb shift is based on the known de-
pendence of the Lamb shift on its parameters.
This value of the Lamb shift is only meant as an
order of magnitude estimate. The critical fields
E~ and E are the fields at which the stimulated'Y

processes are able to overcome spontaneous

emission and the radiative shift, respectively.
The P& is just the power in a plane wave with the
electric field E&.

APPENDIX B: RADIATION REACTION

Vx(VxE ) —k 'E =0, in Va a a

and PzxE =0, on S, (H2)

where n is the inward normal to S. The En(r) are
normalized so that

fE ~ E dV=5

A related set of functions H~(x) is defined by

gxE =P H,a a a'

VxH =4 Ea a a (H4)

The electric and magnetic fields can be expanded
in terms of these eigenfunctions,

E(r, t)= —2Mmg p (t)E (~),

H(r, t) =2& w Q (u q (t)H (~).a a a a

Substituting these expansions into Maxwell's
equations, we find

P =q

The radiation problem in which we are interested
is an oscillating dipole whose radiation field re-
acts back on the dipole changing its motion. We
will solve this problem using Green's function.
The results of this calculation are the same as
those found elsewhere by other methods. "

It is convenient for this discussion to consider
our system to be contained in a volume V with a
closed surface S. We will define a set of normal
field modes by the equations, "

TABLE l. Typical values of the radiation parameters.
P +0 'q =J (t),

Parameter

P =(d/27t'

P= gA

p,

'y

Ep=h P/P
E =By/2p
PV

Hydrogen 1S-2P

2.5 && 10 /sec
3x 10 /sec
1.29 ea
8.7 && 10 /sec
29 V/cm
360 V/cm
170 W/cm

Sodium 3P»3S

5~10 /sec
3 &10 /sec
2.46 ea
3 && 10 /sec
1.5 V/cm
8 V/cm
0.1 W/cm

where J (t) =—2c v m fd'x J(y, t) ~ E (r)a a

0 =Ac.
a a

Combining these Egs. (B.6),

p +0 p =J



C. R. STROUD AND E. T. JAYNES

Now if our current is due to an oscillating dipole G (O, t; O, t')

$(~, t) =(1/c)p(r, t),

where P(r, t) is the polarization,

(B9) 4V
dQQ(E „'(0)),sinQ(t-t'), (B16)

0

J (t)=2&v fd'r p(r, t) ~ E (r), (B10)

which reduces, for a point dipole at the origin, to

Z (t)=2M~E (0) Si(t). Bl1)

The amplitude Ps(t) then satisfies

P + Q 2P = 2M' E (0) ~ Nl(t).a a a a
(812)

The solution for the amplitude can be written down
immediately:

where K is the cutoff, which will be left unspeci-
fied.

In our Schrodinger interpretation, we expect
the charge distribution to be spread over a vol-
ume with a radius a, the Bohr radius. Any ra-
diation with wavelength shorter than this will not
have appreciable effect on the charge distribution,
so we must use a cutoff if we are to use a dipole
approximation. The conventional Lamb shift
derivation uses a cutoff at a wavelength of the
Compton radius, and nothing that we do here will
be affected by the value we choose for the cutoff.

The value of (E ~(0))av, the average taken over
the field modes, is

p, (t)= „"f'„dt'[E (0) M(t')]sinQ (t-t'),
a

(B13)

(S '(0)) =-.'(Z '(0)) =1/3V.

Thus, we have

(B1V)

where we have dropped the homogeneous solutions
which correspond to external applied fields, The
electric field is then given by

E(, t)=-4 Z E ()f
a

x E (0) ~ M(t )

G (O, t;O, t )=,f dQ QsinQ(t —t )xx 3gg
0

4 & sinK(t —t') &

3vc' st (t —t')

which gives, for E (0, t),

t—= f G(x, t; 0, t')M(t') dt'. (B14)

Vfe need for our purposes only the component of
the field which is parallel to the dipole, and only
its value at the position of the dipole: Thus, we
need calculate only

Writing the derivative in terms of t we can carry
out an integration by parts

E 2

G (O, t;O, t )= —4v '- sinQ (t —t ).a

(B15)

sinK(t —t ) d'
(t- t') dt" (B20)

In order to carry out this sum we go to the contin-
uum limit by letting the cavity dimensions be-
come very large. In addition, we impose a high-
frequency cutoff which is necessary only because
of our dipole approximation. Our results would
be perfectly convergent if we used the finite
charge distribution p —=eC 0 rather than our di-
pole approximation. In fact, Crisp has carried
out that calculation and found it to give results
identical to ours, except that it determines the
value of the cutoff parameter. "
In that case

Now if we change to a new variable defined by
y =K(t —t ) the integral becomes

dy, M(t- )=— —M(t-) as K-y Sing
dt E y 2 dt3

(B21)

Thus, the reaction field acting on the dipole is

(B22)

This is exactly the expression we use in Eq.
(3. 17).
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