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Using an effective interaction or reaction matrix obtained from a modified Brueckner theory,
various low-temperature properties are calculated or estimated for dilute solutions of He in

liquid He. The system is regarded as a low-density Fermi liquid with He quasiparticles
created by He atoms in superfluid He. The single-particle energy spectrum is given by an

effective mass, and an effective interaction between the He quasiparticles is derived. The
calculations are done for two different two-body potentials: an Yntema-Schneider potential
given by Brueckner and Gammel, and a Frost-Musulin potential given by Bruch and McGee.
The Landau f function is estimated from the reaction matrix, and the coefficients of the ex-
pansion of the Landau f function in terms of Legendre polynomials are calculated. The es-
timated values are in reasonably good agreement with experimental results. The exclusion-
principle sum rule is also roughly satisfied by the lowest-order coefficients. Low-tempera-
ture properties, sue/ as the compressibility, the quasiparticle effective mass or specific-
heat ratio, and the magnetic susceptibility, are estimated; results are in fair agreement with

experimental values. The various properties are also given as functions of the He concen-
tration in the solution, and the maximum solubility of He in liquid He is estimated in good

agreement with the experimental value. Also, transport coefficients —i. e., viscosity, ther-
mal conductivity and spin diffusion —are estimated after identification of the reaction matrix
with the scattering amplitude in the formulas developed by Abrikosov and Ehalatnikov and by
Hone. The agreement with experimental results is surprisingly good, considering that the
results depend very much on the value chosen for the effective mass.

I. INTRODUCTION

Measurements by Edwards et al. ' and Anderson
et al. ' show that He atoms in dilute solutions
behave like a normal Fermi liquid, as predicted
by Landau and Pomeranchuk, '& ' and that many of

the low-temperature properties of 3He in solution
should be qualitatively similar to those of pure liq-
uid He. The experiments also indicate that there
is a weak and predominantly attractive effective in-
teraction between 'He atoms in dilute solutions in
liquid He. From additional theoretical work,
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one obtains qualitatively an understanding of vari-
ous properties, but the determination of the Fermi
liquid parameters remains phenomenological; and
the theories are not really built on a microscopic
first-principle basis.

Campbell' has done a more microscopic calcula-
tion of the He- He solution properties. It is phe-
nomenological in the sense that the experimental
values of the volume per atom in the solution and
the average nearest-neighbor distance are used.
An unknown He effective mass is also treated as a
phenomenological parameter, and a self-consistent
3He effective mass is chosen at zero He concen-
tration. Massey and Woo' and Woo et ai. ' have
tried to calculate from bare atoms and realistic
two-body potentials, the effective mass of 'He

quasiparticles and the residual interaction between
them, using the method of correlated basis func-
tions. Similar work is also done by Davison and
Feenberg sf

There is an average attractive effective interac-
tion between the He quasiparticles in a dilute solu-
tion. The effective potential consists of several
contributions which partly cancel each other, and
the interaction between the He quasiparticles is
surprisingly weak compared with the interaction of
bare particles at the same density, or the inter-
atomic forces in the system. The physical reason
for the considerable cancellation between the direct
and the induced contributions is just that He here
is an isotopic impurity. The effective interaction
may be defined as a reaction matrix. It includes
effects of virtual transitions to states outside the
excluded Fermi sea, and will depend to some extent
on the concentration or number density, and on the
initial state. The effective interaction is here the
reaction matrix corresponding to a very low con-
centration of 'He, i. e. , to a small Fermi momen-
tum, and concentration effects or rearrangement
terms are small and negligible because they vanish
in the low-density limit.

The properties of the system thus can be calcu-
lated in a two-body approximation, i.e. , by means
of Brueckner theory, where the reaction matrix, or
G matrix, is obtained by solution of a two-body
problem in the system. The physical basis of the
Brueckner theory is that when two particles inter-
act they possibly interact strongly, but at the same
time the liquid is sufficiently dilute that their inter-
action with other particles may be considered in an
average way. This is certainly the case for low num-
ber density and small Fermi momenta. The con-
tribution from three-body correlations can be ne-
glected. It is known that the importance of three-
body collisions is not large for nuclear matter.
Although liquid helium is a denser system, and the
three-body contribution to the binding energy is

important in pure liquid He, the two-body ap-
proximation should be much better here for the
mixture, because it is the difference between the
scattering of two He atoms and the scattering of a
He and a He atom in the medium which is re-

quired. The difference from replacing a He atom
by a He atom in an already rare three-body colli-
sion then should be quite small.

II. EFFECTIVE INTERACTION AND REACTION MATRIX

e=c —(Q/e)ve (2. I)

where 4 is the unperturbed free-particle two-body
wave function, and 0 is the corresponding perturbed
one. Here v is the two-body potential, which in our
case will be an effective potential as explained la-
ter. The Pauli exclusion operator Q prevents
scattering into occupied intermediate states, and
the energy operator 8 includes potential and kinetic
single-particle energies. If ko is the initial-state
and k is the intermediate-state relative momentum
of the two interacting particles, the energy denom-
inator e is defined by a reference energy spectrum

e(&) = (~'/M)(r '+ ~')

where y ~=2hkz —ko/m

(2. 2)

(2. 3)

We want to calculate the properties of the He-'He
solutions which are due solely to the presence of the
He atoms, i. e. , which are absent in pure He. So

we introduce the reaction matrix or G matrix, and
the calculations are performed as reported and ex-
plained in earlier papers ~

' on pure liquid He.
The contribution from two-body correlations is cal-
culated by means of Brueckner theory, i. e. , with
a modified Brueckner-Gammel method. '6~ ~~ The
approximation of a reference energy spectrum with
an effective mass and a quadratic momentum de-
pendence is used for the input single-particle en-
ergy spectrum in the Bethe-Goldstone equation. 8

The intermediate-state potential energies off the
energy shell are chosen to be equal to zero, and
the outer self-consistency requirement in the
Brueckner method is neglected. The Bethe-Gold-
stone equation is solved numerically as an integral
equation by combined matrix inversion and itera-
tion, to give the "true" or perturbed wave function.
The matrix inversion is used for the short-range
strongly repulsive part of the two-body potential in
the numerical integration in coordinate space, and
an iteration procedure is used for the outer attrac-
tive part of the potential. Afterwards, the G-ma-
trix elements are calculated by numerical integra-
tion.

The Bethe-Goldstone equation is written
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for propagation on the energy shell and ko& k~.
Here, m* is the effective mass for the hole spec-
trum or particles in the Fermi sea, and 6 is a
measure of the gap between the occupied and the
intermediate-state energy spectra.

Equation (2. 1) is now written in coordinate space,
and, after an expansion and separation into partial
waves, we get the Bethe-Goldstone integral equa-
tion in the form

uz(ko r) = P I,(kpr)

3He atoms then is

v(r) = V(r) —2(1+ o')Z(r) V(r&4) + (1+o.) g'(r) V(r«)

(2. 8)

Here, x44 is the maximum of z and the He- He
average nearest-neighbor distance, which isa ~

3. 8 A. The distance x34 is the maximum of x and
the 3He- He average nearest-neighbor distance
which, assuming the same local liquid structure,
is —,'[1+(1+a)'i ] 8. 8 A= 4. OA. The function g(r)
is defined by

+ J I'~( r, r')v(r')ui(kp, r')dr', (2. 4)

where we have introduced

g(r) = ,'y —
—,', -y', for y &2

for y &2

(2. 9)

gi, (kpr) = kprj~(kpr)

ug(kp r) =kpr'kg(kp r)
(2. 5) where y = (~4P/ep)'io r= r/2 5.

The 'He atoms occupy a volume per atom of

(2. 10)

and the Green's functions I"i(r, r ') are defined by
(do = (1 + (x)(d 4 (2. 11)

r, (r, r')=-(2/~) f, dk and we have chosen the value

xg z, (kr) g 1,(kr')Q(P, k)/(y +k ) . (2. 6) a=0. 30 (2. 12)

The G~-matrix elements are finally calculated for
each partial wave as

&kol G. Iko& = (4v/ko')(2L+1)

x J, gz(kpr)v(r)ui(k„r)Cr . (2. 7)

The potential to be used for the mixture is differ-
ent from the two-body potential for free particles.
Campbell' has derived an effective coordinate-
space potential for the mutual interaction between
two 'He atoms by assuming that a 3He atom occupies
a volume which is (1+n) times greater than that
occupied by a He atom. The effective potential is
a sum of three terms: The first is thebare He-'He
potential; the second is the induced potential V34

arising from each He atom interacting with the
He background through the bare He-4He potential;

and the third is the induced potential V44 from the
4He background interacting with itself through the
bare He- He potential. For small relative dis-
tances x, the strongly repulsive core of the bare
'He-'He potential dominates, while the three po-
tential terms cancel each other to order a~ for
large x. The induced potential t/'34 is always re-
pulsive, and the induced potential t/'44 is always at-
tractive.

The total effective potential between two fixed

V~o (r) = 7250[1200 exp( —4. 82r)

—1.24/ro —1.89/r P] (2. 18)

and the FM potential is the Frost-Musulin potential
defined by Bruch and McGee as

Vvu(r) = —12. 54[1 + 8.01(1 —2. 98/r)]

x exp[8. 01(1 —r/2. 98)],

for y &3. 5A (2. 14)

for the molar volume ratio or relative volume in-
crease. Values for a are given as 0. 28 by Baym;
0. 284 by Ifft et al. ' and by Edwards et al. ; 0. 286
to 0. 311 by Davison and Feenberg; 0. 303 by
Massey and Woo'; and 0. 308 by Boghosian and

Meyer. 3 Bardeen et al. obtain 0. 31 from a hard-
sphere model. So we take the value (2. 12) as an
approximate "average. " The form (2. 8) of the ef-
fective potential can be expected to persist as long
as the superfluid He background can deform itself
quickly to accommodate the more slowly moving
'He atoms.

The calculations are done for two different po-
tentials since the chosen two-body potential proba-
bly would have some influence on the results. The
YS potential is the Yntema-Schneider potential de-
fined by Brueckner and Gammel~7 as
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= —7250[1.41/r + 3. 82/r']

for x&3. 5A,

in ('K), with r measured in A. The calculations
are done for four different values of the Fermi
momentum ky l. e.

k~ =0. 14A kg= 0. 20A

k'~ = 0. 26 A k~ ——0. 32 A

with corresponding values for number density and
3He concentration. It corresponds to 0.4% He,
1.3/o He, 2. 8% He, and 5. 0/o He, respectively.
For l. 3% and 5. 0/o He, we have experimental re-
sults to compare with later.

For the input effective mass of the energy spec-
trum for particles in the Fermi sea, we choose the
value

m =M /Ms=2. 5 (2. 16)

where M, is the mass of a bare 3He atom. This is
just taken to be an average value. It should vary
slightly with the concentration, and more exact
values are given by Anderson et al. ' as m = 2. 34
for zero concentration sHe, m =2. 38 for 1.3/o SHe

corresponding to k~ = 0. 20 A ', and m* = 2. 46 for
5. 0% sHe corresponding to kz =0. 32k '. However,
other theoretical and experimental values given tf /M=16. 36'KA (2. 17)

during the years are m* = 1.51 to 1.86 by Burke

et al. '; 1.79 to 2. 11 by Davison and Feenberga';
1.8 by Parry and Ter Haar, 1.85 by Woo et al.
1.9 by Feynman; 1.93 by Luban; 2. 0 by King
and Fairbank and by Dash and Taylor40; 2. 33 by
Opfer et al. '; 2. 33 to 2. 47 by Emery"; 2. 34 by
Baym and Saam'; 2. 34 to 2. 47 by Bardeen et al. 9;

2. 35 by Grigorev et al. ; 2. 37 to 2. 44 by Camp-
bell~8. 2. 41byAndersonet al. ; 2. 5 by Husaet al. ,
by Sandiford and Fairbank, and by Ifft et al. ';
2. 7 by Pellam; 2. 8 by Ptukha 6; and m*=3. 0 by
Berezniak and Eselson. " Because of the small
variation of m with concentration, we use the value
(2. 16) as input for all Fermi momenta. For the
other parameter 6 in the input energy denominator,
we use the value b, =p. 21, which is the smallest 6
we can choose without having trouble with the ener-
gy denominator in our computational method, i.e. ,
with y') 0 according to Eq. (2. 3).

We define the net effective interaction or reac-
tion matrix as the one we get between 3He quasi-
particles, i. e. , with @=0.30, minus the one we

get with He atoms instead of the 'He atoms, i. e. ,
with n =0, in the calculations. Results are shown

in Tables I and II. The G-matrix elements are
given in dimension (A), which can be converted to
('KA8), the conversion factor being

TABLE I. Diagonal Gz, -matrix elements in A. Weight of 2I +1 included. Yntema-Schneider potential 0ko is varied

m = 2.5.

0.20

0.001
0.125
0.25

0.375
0.50

0.625

0.75
0.875
1.00

0.32

0.001
0.125
0.25

0.375
0.50
0.625
0.75
0.875
1.00

kp(A ') ko/kg. Go

—5.23
—5.20
—5.10
—4.93
—4.72
—4.45
—4.14
—3.80
—3.43

—6.15
—6.06
—5.82
—5.42
—4.93
—4.36
—3.75
—3.15
—2.55

Gi

—0.03
—0.13
—0.29
—0.51
—0.75
—1.04

1e33
—1.63

—0.08
—0.33
—0.70
—1.14
—1.62
—2.08
—2.50
—2.86

G2

—0.01
—0.01
—0.03
—0.06

0.10
—0.15

—0.01
—0.03
—0.07
—0.15
—0.27
—0.43
—0.62

G3

—0.01
—0.01

—0.01
—0.02
—0.06
—0.11

—0.01
—0.02
—0.04

G~+ 3G0

—5.23
—5.29
—5.49
—5.81
—6.23
—6.73
—7.30
—7.90
—8.50

—6.15
—6.32
—6.81
—7.54
—8.43
—9.40

—10.37
—11.26
—12.07

G~+ G

—5.23
—5.23
—5.22
—5.23
—5.23

0 e22
—5.23
—5.23
—5.23

—6.15
—6.14
—6.14
—6.15
—6.14
—6.14
—6.15
—6.15
—6.17

5.23
5.16
4.96

4.64
4.23

3.73
3.16
2.56
1.95

6.15
5.97
5.49
4.76
3.86
2.88
1.93
1.04
0.26
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0
TABLE II. Diagonal Gz, -matrix elements in A. Weight of 21 +1 included. Frost-Musulin potential. ko is varied.

m = 2.5.

k~(A ')

0.20

0.32

ko/k~

0.001
0.125
0.25

0.375
0.50
0.625
0.75
0.875
1.00

0.001
0.125
0.25

0.375
0.50

0.625

0.75

0.875
1.00

G()

—6.69
—6.64
—6.51
—6.31
—6.05
—5.70
—5.32
—4.89
—4.43

—7.83
7 072

—7.41
—6.92
—6.30
—5.59
—4.82
—4.05
—3.28

G(

—0.05
—0.16
—0.36
—0.63
—0.95
—1.30
—1.68
—2.07

—0.11
—0.41
—0.87
—1.44
—2.04
—2.64
—3.18
—3.65

Gg

—0.01
—0.01
—0.03
—0.07
—0.12
—0.18

—0.01
—0.03
—0.08
—0.18
—0.33
—0.53
—0.77

G3

—0.01
—0.01

—0.02
—0.03
—0.06
—0.12

—0.01
—0.03
—0.05

G +3GO

—6.69
—6.77
—7.02
—7.42
—7.95
—8.58
—9.29

—10.06
—10.84

—7.83
—8.03
—8.64
—9.57

—10.70
—11.93
—13.18
—14.35
—15.40

Ge+ G

—6.69
—6.69
—6.69
—6.69
—6.69
—6.69
—6.69
—6.69
—6.69

—7.83
—7.82
—7.82
—7.83
—7.82
—7.83
—7.83
—7.85
—7.86

6.69
6.60
6.35
5.96
5.43
4.80

4.08
3+32

2.53

7.83
7.61
7.01
6.08
4.95

3.72
2.49
1.36
0.34

III. LANDAU PARAMETERS

f (k, k '; o, 0 '
) = t5'E/5n(k, 0) 6n(k ', 0

'
) (s. 1)

This function is needed for values of its arguments
near the Fermi surface, so we write the expansion

Calculations of quasiparticle properties, such as
the compressibility, the specific heat and the mag-
netic susceptibility, are probably best carried out
within the Landau theory 8 '0 for Fermi liquids.
The basic function f(k, k'; cr, o') is the effective in-
teraction between a pair of quasiparticles, and is
defined as the second variational derivative of the
total energy with respect to the particle occupation
number, i.e. ,

8 z = Fz,/[1+ Fz,/(2L+ 1)]

c,= z,/[1+z, /(21, +1)]

(s. 4)

For a neutral Fermi liquid, we have an exact
relationship between the Legendre polynomial ex-
pansion coefficients of the Landau f function in the
form of a sum rule. It depends on the fact that the
forward scattering amplitude for two fermions of
the same spin vanishes. We can write

Z(a, + c,) =ZF,/[1+F,/(u, +1)]

where Q and Cz are related to Fz and Zz, in a sim-
ple way by the connection

f(e;o, o') =(~'ff'/u M*) ++z,/[1+ z,/(2f, +1)]= o (3. 5)

&&Z(Fz, +o o 'Zz, )6 z(cose) . (3. 2)

The function 6'z(cose) is the Legendre polynomial
of order L, and 8 is the angle between k and k'.
The scattering amplitude a(8; o; o ') is given by a
relation analogous to Eq. (3.2), i.e. ,

a(e, o, o ') = (~'t '/u„M*)

which is the exclusion-principle sum rule for the
system.

To make a connection between Brueckner theory
and the fundamental equation of the Landau theory,
we start from the assumption that the f function
can be related to the G matrix through the relation
(3. 1) as outlined and explained earlier" for pure
liquid 3He.

The G matrix can be written

xQ (Bz+ o o' Cz, )&z,(cose), (3. 3) G=Go —2(1+o o') G~ (3. 6)
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TABLE III. Landau parameters or expansion coefficients for liquid He- He mixture.

a (A' ')
Coef. 0.14

YS potential
0.20 0.26 0.32 0.14

FM potential
0.20 0.26 0.32

F)

p

+1
Z2

Z3

Bp

B(
B2

B3

Cp

C)

C2

C3

—0.065
0.010
0

0

0.043
0.011
0.001
0

—0.069
0.010
0

0

0.041
0.010
0.001
0

—0.113
0.026
0.002
0

0.055
0.026
0.003
0

—0.128
0.026

0.002
0

0.052
0.026
0.003
0

—0.176
0.049
0.007
0.001
0.063
0.048
0.008
0.002

—0.214
0.048
0.007
0.001
0.059
0.047
0.008
0.002

—0.251
0.073
0.015
0.004
0.066
0.073
0.016
0.003

—0.336
0.072
0.015
0.004
0.062
0.071
0.016
0.003

—0.083
0.013
0

0

0.056
0.013
0.001
0

—0.091
0.013
0

0

0.053
0.013
0.001
0

—0.144
0.033
0.003
0.001
0.071
0.033
0.003
0.001

—0.169
0.033
0.003
0.001
0.067
0.033
0.003
0.001

—0.224

0.062
0.008
0.002

0.081
0.061
0.009
0.002

—0.288

0.061
0.008
0.002
0.075
0.060
0.009
0.002

—0.320
0.094
0.018
0.004
0.085
0.093
0.020

0.004
—0.470

0.091
0.018
0.004
0.078
0.090
0.020
0.004

x f f(8) (Pr, (cos8) sin8d8

x f'
z(8) O'~(cos8) sin8 d8

because
-1

f (p~(x) a'~ ~ (x)dx= 25rg~/(2L+ 1) . (3.11)

Afterwards, the coefficients BI, and CI. are cal-

culated according to Eq. (3.4). Results for L & 4
are given in Table III. A comparison with other
results is given in Table IV. The experimental
values are taken from Anderson et gl. 3 We see
that I'0, or the angular average of the spin-aver-
aged effective quasiparticle interaction, is nega-
tive, indicating an attractive interaction. I', in-
dicates that the effective mass changes very little
with the He concentration, and the value for Zo
shows that the magnetic susceptibility is close to
the ideal Fermi-Dirac value. It measures the
exchange correction to the magnetic susceptibility,
and it is small in dilute solutions of He in He.
The agreement with the other theoretical and ex-

TABLE IV. Landau parameters or expansion coefficients for liquid He- He mixture. Comparison with theoretical
and experimental results. Experimental values are taken from Anderson et al. (Ref. 3).

k~(A )

0.20

0.32

YS potential
FM potential
Bardeen et al.
Emery
Experimental value

YS potential
FM potential
Bardeen et al.
Emery
Experimental value

—0.11
—0.14
—0.20
—0.14

—0.25
—0.32
—0.42
—0.26

0.03
0.03
0.05

0.05
0.05

0.07
0.09
0.17
0.18
0.16

0.06
0.07
0.09

0.09

0.07
0.09
0.05

0.08

Bp

—0.13
—0.17
—0.25
—0.16

—0.34
—0.47
—0.73
—0.35

0.03

0.03
0.05

0.05

0.05

0.07
0.09
0.16
0.17
0.15

Cp

0.05

0.07
0.08

0.08

0.06
0.08
0.05

0.08

References 7 and 9.
Reference 11.
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perimental values is, otherwise, reasonably good.
As a test of the sum rule (3. 5) we get from our

calculations

centration in the solution, is given by

P =(pMv', )
-' (4. 1)

Z (Bz, +Cz, ) = —0.007, for k+=0. 14A
L &4

or P~/P = (1+Fo)/(I+-', F,) (4. 2)

= -0.019, for k+=0. 20A

= —0.042, for ky = Q. 26 A

= —0.093, for k~ = 0. 32 A '

for the Yntema-Schneider potential, and

Q (Bz, + C~) = —0.011, for k~ = 0. 14 A
L &4

= —0. 028, for k~=0. 20A

= —0.071, for kz = 0. 26 A

= —0. 165, for kz = 0. 32 A

(3.12)

(3.13)

M /M o=1+s Ei (4. 3)

where M 0 is the effective mass at zero concen-
tration 'He. The specific heat of the mixture is
very close to that of an ideal Fermi-Dirac gas,
and the phonon and roton contributions to the spe-
cific heat are very small. The energy of a single
'He atom in the He is, to a very good approxima-
tion, just a kinetic energy with effective mass
M

The magnetic susceptibility is related to that of
an ideal gas g~, by

where p~ is the compressibility for the ideal gas.
The specific-heat or effective-mass ratio is given
by

for the Frost-Musulin potential. This indicates
that the exclusion-principle sum rule is satisfied
to a fairly good approximation, at least for the
lowest densities. It has been assumed, or rather
hoped, that the Landau coefficients would be small
for L &1. This assumption would correspond to an
effective interaction function of approximately the
form

f (8)=A+ Bcos8,

and a similar angular dependence for z(8). This
seems to be a good approximation for our mixture
problem, as has already been assumed by Bardeen
et aE. ' '

IV. COMPRESSIBILITY, EFFECTIVE MASS, AND
MAGNETIC SUSCEPTIBILITY

The compressibility, the effective mass, and the
magnetic susceptibility can be obtained from the
Landau coefficients Fo, E„and Zo.

The isothermal compressibility of the He sys-
tem, defined from the change in energy with con-

XF/x = (1+~o)/(I + 3 &1) (4. 4)

The magnetic susceptibility is very close to the
ideal Fermi-Dirac value, and the temperature
dependence of the susceptibility per atom is nearly
independent of the concentration. The departure
of the magnetic susceptibility from the ideal Fermi
gas behavior is mainly because of the effective
He- He interaction, since He has no spin and in-

teracts with spin-up and spin-down 'He atoms in
the same way.

Using the results obtained in Sec. IV for the
Landau coefficients, which are given in Table III,
we get the values given in Table V. These results
can be compared with other theoretical and experi-
mental results, as we have done in Table VI. The
experimental values are taken from Anderson et
al. %e see that the results are close to those
for an ideal Fermi-Dirac gas, and are in fair
agreement with other theoretical and experimental
values. The various properties are shown as
functions of the He concentration in Figs. 5 and
6. The effective mass is increasing with the den-
sity, while the compressibility and magnetic sus-

TABLE V. Compressibility, effective mass, and magnetic susceptibility for liquid He- He mixture.

a (A-')
Property 0.14

YS potential
0.20 0.26 0.32 0.14

FM potential
0.20 0.26 0.32

Pg/P
M /Mo

x~/x

0.932
1.003
1.040

0.879
1.009
1.046

0.811
1.016
1.046

0.731
1.024
1.041

0.913
1.004
1.052

0.847
1.011
1.059

0.760
1.021
1.059

0.659
1.031
1.052
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TABLE VI. Compressibility, effective mass, and

magnetic susceptibility for liquid He- He mixture.
Comparison with theoretical and experimental results.
Experimental values are taken from Anderson et al.
(Ref. 3).

Pg/P M /M() y~/y

I.O

0.9

'
RATIO

"F M/M 0

0.20

YS potential
FM potential
Bardeen et a$. ~

Emery
Campbell'

Experimental value

0.32

YS potential
FM potential
Bardeen et al.
Emery b

Campbell'

Experimental value

'References 7 and 9.
Reference ll. .

'Reference 18.

0.88

0.85

0.80

0.86

0.73
0.66
0.58

0.74

1.01
1.01
1.02

1.02

1.01
1.02

1.02

1.03
1.06
1.06
1.03

1.05

1.05
1.06

1.09
1.09

1.09

1.04
1.06

1.05

1.05

1.07
1.08

0.8

0.7

FIG. 6. Properties of He- He solutions as function of
concentration He. Frost-Musulin potential.

for pure liquid 'He. This means that He can dis-
solve in liquid He until Eq. (4. 6) is satisfied.
For a small concentration of 'He, the dependence
of the He chemical potential on concentration can
be written

p. ,(x) = p, (0)+ T~(x)+ psVo —//, ,„=B&, (4 6)

where Tz = e(k /M)(kg/m ) (4. 7)
ceptibility are decreasing with density. And in
pure liquid 'He, I'0 and Zo would have opposite
signs, positive instead of negative for Fo and nega-
tive instead of positive for Zo.

We can also estimate the maximum solubility of
He in He. According to thermodynamics, for

equilibrium between two phases in the mixture at
zero temperature, we have

is the Fermi energy for an ideal gas of fermions
of effective mass m*,

(4. 8)

is the number density of He atoms, and

&s(x) =&s (4. 6)

RATIO

I.t- XF/X

10

M iMo

/

where p, ~(x) is the partial chemical potential for
'He at the concentration x for maximum solubility,
and B3 is the chemical potential or binding energy

(4. 9)

J3, —p, ,(0) = 0. 38 'K (4. 10)

is an exchange contribution to the chemical poten-
tial.

For the difference between the binding energy
for zero concentration and the binding energy for
pure liquid He, we take the value

0.8

0.7

0.6-

This difference has been given as 0. 24 K by
Wheatley, 0. 276 'K by Ebner, 0. 284 'K by
Edwards et al. , 0. 287 'K by Ifft et al. ,

3i 0. 295'K
by Bardeen et p&. , and 0. 31 K by Emery. " As
mentioned in Sec. III, the functions G~ and G~
given in Eq. (3. '7) and Figs. 3 and 4 correspond to
Vo and t/'k in the notation of Bardeen ega/. Extrap-
olation finally gives that Eq. (4. 6) is satisfied for

FIG. 5. Properties of He- He solutions as function of
concentration He. Yntema-Schneider potential. Tp. = 0. 37 K, x = 6. 0 lo (4. 11)
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for the Yntema-Schneider potential, and

T~=0.39'K ~=6. 5/o (4. 12)

for the Frost-Musulin potential.
These results can be compared with other results

for the limiting solubility at zero temperature,
which are 6% He by Bardeen et al. , by Ebner, '
and by Campbell'; 6. 3% by Vilches and Wheatley'~;
6. 35% by Wheatley '; 6. 37% by Ifft et al. '; 6. 4%
by Edwards et al. ; and 6. 64% ~He by Schermer
8t al.

V. TRANSPORT COEFFICIENTS

The transport coefficients of viscosity, thermal
conductivity, and spin diffusion depend directly on
the effective interaction in the mixture, and also
on concentration and temperature.

The transport coefficients can be estimated or
calculated from formulas developed by Abrikosov
and Khalatnikov, "and by Hone, ' as we have done'7
for pure liquid He. The scattering amplitude a
for particles in the liquid is a sum of singlet and
triplet amplitudes multiplied with the appropriate
spin projection operators, i. e. ,

a = &(1 —o o')a~+ ~ (3+ o" o ')az,

=-'(a, +3a,) ——,'o" o '(a, —a,) (5. 1)

%e identify our G matrix with this scattering am-
plitude. It should be a good approximation, since
Table III shows that the coefficients Bz, and Cz, are
quite close to the coefficients I'L and ZL. And we
are then able to include the dependence on the angle
y between the relative momenta before and after a
scattering process, while the Landau theory pro-
vides no information about nonforward scattering.

The scattering which we consider for the trans-
port coefficients involves particles on the Fermi
surface, so the magnitudes of the initial and final
relative momenta are equal. The only variable in
addition to the angle y between the scattering planes
is the angle 8, defining the total and relative mo-
menta as

where Gz, (P, k, ) is given by Eq. (2. 7). The scat-
tering amplitude for parallel spins is 2a„and
the scattering amplitude for antiparallel spins is
ae+ ao.

The transition probability ar(8, y) to be used in
the formulas for the viscosity and the thermal con-
ductivity is

(u„(8, y) =a)„(8, y) =(2v/I)

[lIa.(8, e) I'+ lIa.(8, e)I'], (5.4)

which gives the scattering rate for distinguishable
particles.

The viscosity p is given by

qT = '(+'/M) (k~'/m*')(k/2wA„)

where 2„=(-,'[Ia,(8, p) I'+3Ia, (8, p) I']

&&(I —cos8) sin y/cos( —,'8)j„

The thermal conductivity z is given by

wr =,'~ '(@'/M )'(k,'/m*')(Z'/2~@a„)

where W„=&2[Ia,(8, q)I'+3Ia. (8, q)I']

(5. 6)

(5. 7)

(5. 6)

x (1 —cos8)/cos(~8)]„ (5.9)

and K is Boltzmann's constant.
The spin diffusion D is given by

g'2 Q2

m 7l g
(5. 10)

where &o =[lac(8, q)+ao(8, q') I'

which gives the scattering rate for indistinguisha-
ble particles with singlet and triplet spin weights.
The transition probability for calculating the spin-
diffusion coefficient is proportional to the square
of the scattering amplitude for particles with op-
posite spins, i.e. ,

(go(8, y) = (2v/8')
I a,(8, y)+a, (8, y) I', (5. 5)

P=k~ cos(—,
' 8), ko= kz sin( —,

' 8)

After an expansion of the 6 matrix, we get

(5. 2)
&& (1 —cos 8)(1 —cosy)/cos( —,'8)]„. (5.11)

The expressions for A, or the averages over the
angles 8 and q, are calculated numerically by taking
the integral

a, = Z Gz, (P, ko) 6'1,(cosp) = 2 az
even L

(5. 3) (4v) 'f sin&d8 f dye(8, p) =A(8, p)„(5.12)

a, = Z Gz, (P, ko) Os, (cost) = aar
odd L

over the angles 8 and y, where the dependence of
the scattering amplitude on the angle 8 is given
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through Eq. (5. 2).
The formulas (5. 6), (5. 8) and (5. 10) are proba-

bly not very accurate. The determination of the
transport coefficients in terms of an effective in-
teraction, is based, in the theoretical expressions
given by Abrikosov and Khalatnikov" for the vis-
cosity and the thermal conductivity, and by Hone'
for the spin diffusion. These expressions are de-
rived by solving the linearized Boltzmanntransport
equation exactly, under the assumption that the ex-
citation energies of the quasiparticles relevant to
the transport are small compared with the temper-
ature. Thus, certain factors are approximated by
unity in the collision integral. This approximation
can be checked by using the resulting solutions for
the nonequilibrium quasiparticle distribution func-
tions as trial functions in a variational calculation.
Aside from corrections involving Fermi-liquid ef-
fects, Baym and Ebner' obtain as lower limits on
the transport coefficients

in our estimates.
Using the G~-matrix elements in Tables I and II,

we obtain the transport coefficients given in Table
VII. A comparison with other theoretical and ex-
perimental results is given in Table VIII. The ex-
perimental values are taken from Abel et al. for
the thermal conductivity and from Anderson et al.
for the spin diffusion. We see that the agreement
between our results and the experimental values is
not too bad. There is a difference by a factor of
approximately 1 to 2 for the thermal conductivity
and 1 to 1.5 for the spin diffusion. This is quite
good agreement, since the results depend very
much on the chosen value for the effective mass.
There is also fairly good agreement with other re-
sults. The transport coefficients are shown as
functions of the He concentration in Figs. 7-9.
The values are increasing with the density, as one
could expect. However, the spin diffusion finally
has a lower value for pure liquid 'He.

=3
IAE

5
1P. ~A.E D=4 D», (5. 13) VI. REARRANGEMENT TERMS

0. 750'g~g & e & 0. 925'0&ij, ,

0. 417z~z & v & 0. 561m~@,

0. 750D~ &D &0. 964DH

(5. 14)

Similar results are also obtained by Emery and
Cheng, "and by Hgjgard Jensen et al. Since the
exact value is somewhat uncertain, we will simply
use the values

where q„» is given by Eq. (5. 6), »„» by Eq. (5. 8),
and D» by Eq. (5. 10). The variational solutions
put lower limits on the exact transport coefficients
for a given scattering amplitude, since they are
based on the principle of maximizing the entropy
production. The usual solutions, on the other hand,
overestimate the transport coefficients, since they
are derived by effectively neglecting some of the
scattering. Brooker and Sykes" give both lower
and upper limits as

In our calculations in Secs. IIIand IV, rearrange-
ment terms are neglected. The second variational
derivative of the total energy expressed by Brueck-
ner theory, with respect to the particle occupation
number, gives the reaction matrix plus rearrange-
ment terms containing first and second derivatives
of the reaction matrix with respect to the Fermi
momentum. These derivatives are neglected in
the definition (3. 9) of the Landau functions. Re-
arrangement terms are important for pure liquid
He and change, for instance, the effective inter-

action completely from an average attractive G

matrix to an average repulsive Landau f function.
However, for the dilute-mixture problem, rear-
rangement terms are small, and vanish in the low-
density limit.

If we include rearrangement terms, we get in-
stead of Eq. (3.9),

IAE
1&= 2&xz r &=DH (5. 15)

+ x (2 —»-» )4
"1

2 BG,

&0
~ en~

TABLE VII. Transport coefficients for liquid He- He mixture.

a, (A ')
Property 0.14

YS potential
0.20 0.26 0.32 0.14

FM potential
0.20 0.26 0.32

gZ'(P K') 5x10 '
t&T(erg cm ' sec ) 3.3
DT (cm sec K) 8.6xl0

33 x10 129x10
9.3 19.1

22.4 x 10 50.6 x 10

378 x10 3 x10
32.5 2.0

101.9 x 10 5.1 x10

20 x10
5.7

13.5 x 10
11.7

30.6 x 10
19.9

61.7 x10

78 x 10 230 x 10
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+( —+-, x- ~x )k~ dxO, g3 3 8GO
3 3

&kF
+x(3+x 3x)k+2 2 ~ 3

y0 ~~F

+( ——x ——, x )k ' dx~o Z 3
3 F gp F

TABLE VIII. Transport coefficients for liquid He- He mixture. Comparison with theoretical and experimental

results. Experimental values are taken from Abel eg al. {Ref. 60) for the thermal conductivity and from Anderson

et al. (Ref. 3) for the spin diffusion.

u, g-')

0. 20

0.32

YS potential
FM potential
Campbell

Baym and Saam

Emery
Emery and Cheng

Baym and Ebner'
Experimental value

YS potential
FM potential

Campbell
Baym and Saam
Emery'
Emery and Cheng

Baym and Ebner'
Experimental value

q T'{P 'K')

33 x10
20 x10
35x 10
34x10
38x10
38x 10

378 x10
230 x10
420x10 '
430 x10
460 x10
390 x10

~ T{ergcm ' sec }

5.7

19.1
12.1
10
ll
32.5
19.9
40

64
33.3
26

24

DT (cm sec 'K)

22.4 x 10
13.5 x10

16x10

18.6 x10
17.2 x 10

101.9 x 10
61.7 x 10
105 x 10

82x10
90 x10

Reference 18.
References 12 and 14.
Reference 11.

References 15 and 16.
'Reference 13.

300 30

200 20

l00 l0

0 l 2 3 4 5 6

He

0 1 2 3 4 5 6
0 5

He

FIG. 7. Viscosity for He- He solutions as function of

concentration He. YS is Yntema-Schneider potential and

FM is Frost-Musulin potential. m = 2.5.

FIG. 8. Thermal conductivity for He- He solutions as3

function of concentration He. YS is Yntema-Schneider

potential and FM is Frost-Musulin potential. m = 2.5.
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i'4

2{ 2 -I
oK2

I00-

50-

-I.O I,O

cos 8

0
0 I 2 3 5

% He

FIG. 9. Spin diffusion coefficient for He- He solutions
as function of concentration He. YS is Yntema-Schneider

potential and FM is Frost-Musulin potential. m = 2.5.

where the second derivatives are neglected. The
rearrangement terms are evaluated and calculated
as explained earlier" for pure liquid 'He. The
functions f (8) and z(8) are obtained from G(8),
starting from the functions (S. 9), and resulting
functions are given in Fig. 10 for k~ =0. 32A
The rearrangement terms vanish for lower densi-
ties.

The Landau coefficients I'I„ZI, BI„and CI, are
calculated according to Eqs. (3.4) and (3.10), and

results for L & 4 are given in Table IX. We see
that Ii

p and Bp become less negative, indicating a
less attractive interaction. We get larger values
for Il, and Ja„ indicating a greater change in the
effective mass with the He concentration, although
it is still very small. Inclusion of rearrangement
terms gives, however, better agreement with ex-
perimental values. The value for Zp does not

change, itis small, and indicates that the magnetic
susceptibility is close to the ideal Fermi-Dirae
value.

As a test of the sum rule (S. 5), we get for kz
=0. 32A )

FIG. 10. Functions f(0) and g(0) in A. YS is Yntema-

Schneider potential and FM is Frost-Musulin potential.
o w

Rearrangement terms are included. k& = 0.32 A

Z (a, +C,)=0.002 (6. 2)

for the Yntema-Schneider potential, and

Z (Bz, + C~) = —0.034
L&4

(6. 3)

for the Frost-Musulin potential. Comparison with
the results (3. 12) and (3.13) shows that the exclu-
sion-principle sum rule is even better satisfied
with rearrangement terms included in the calcula-
tions.

The compressibility, the effective mass, and the
magnetic susceptibility are obtained from the Lan-
dau coefficients I'0, E„and Zp, i.e. , from Eqs.
(4. 2), (4. 3), and (4. 4). Using the results given in
Table IX, we get the values given in Table X.
These results can be compared with the other the-

TABLE IX. Landau parameters or expansion coefficients for liquid He- He mixture. Rearrangement terms included.
k~=0.32 A . Experimental values are taken from Anderson et al. {Ref. 3).

Potential

Without rearrangement terms
With rearrangement terms

Without rearrangement terms
With rearrangement terms

Experimental value

—0.25
—0.20

—0.32
—0.26

0.07
0.09

0.09
0.11

0.16

Zo

0.07
0.07

0.09
0.09

0.08

&o

—0.34
—0.26

—0.47
—0.36

0.07
0.09

0.09
0.11

0.15

0.06
0.06

0.08
0.08

0.08
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TABLE X. Compressibility, effective mass, and magnetic susceptibility for liquid He- He mixture. Rearrange-
0

ment terms included. kz =-- 0.32 A . Experi. mental values are taken from Anderson et al. (Ref. 3).

Potential

FM

Without rearrangement terms
With rear rangcment terms

WIthout rear rallgc I'lien t terms
With rearrangement t;erms

Experimental value

Pp/P

0.77

0.66

0.71

M /Mp

1.02
1.03

1.03
1.04

1.05

1.04
1.04

1.05
1.05

1.08

oretical and experimental results, as we have done
in Table VI.

VII. DISCUSSION

The Fermi liquid model seems to work quite well
for dilute solutions of 'He in liquid He. The effec-
tive potential is built on the assumption that the
superfluid He background can deform itself quickly
to accommodate the more slowly moving He atoms.
However, a He particle moving through the He

background has associated with it flowing He

atoms which can certainly affect the nearby He
atoms in a rather complicated way.

We have assumed that the effective interaction or
Landau f function can be obtained directly from our
reaction-matrix elements. The second variational
derivative with respect to the particle occupation
number of the total energy written in terms of
Brueckner theory gives the reaction matrix plus
rearrangement terms containing first and second
variational derivatives of the reaction matrix.
Our a,pproximation that the Landau f function can
be related directly to the reaction matrix is then
based on the assumption that the energy expression
is a reasonable approximation for the total energy,
and that the rearrangement terms can be neglected.
However, as shown in Sec. VI, inclusion of rear-
rangement terms would improve the results for F,
and the corresponding effective mass ratio.

The reaction-matrix elements are calculated as

explained, and are rather insensitive to the detailed
shape of the input single-particle energy spectrum
on the energy shell, and to the corresponding input
parameters in the calculations.

We have used the reaction matrix elements to
estimate both the Landau f function and the scatter-
ing amplitude a in the calculations of the transport
coefficients. The function a(8, o, o ') may be related
to f (8, a; o

'
), but it is not equal to f because, in a,

one considers a scattering with no energy change,
but with some small momentum transfer. In f, the
quasiparticles travel forward, but scatter with
some small energy transfer. For low densities,
however, the coefficients BI are approximately the
same as EI., and the coefficients Ci, are approxi-
mately the same as Z~.

It has been assumed that the Landau coefficients
would be small for L &1. This is true to a good
approximation for the dilute-mixture problem. All
the coefficients are quite small for L &1, which
indicates that the effective interaction function has
approximately the form 2+8 cose.

The restoring force which produces the analog of
zero sound in the mixture is f (8), which is negative
for all momenta k &k~. Zero sound will, therefore,
not propagate, and it is the large negative value of
I'0 which prevents the observation of zero sound in
the 3He- He mixtures. The restoring force for
spin waves is z(8), which is positive for all 0 & kz
in dilute mixtures. Then spin waves should propa-
gate instead of zero sound.
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