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Spin-exchange optical pumping has bean used to measure the hyperfine pressure shift of

deuterium in helium as a function of temperature. A new technique for optical pumping at
low temperatures has been combined with a previously reported technique for optical pumping

at high temperatures to make measurements between —135 and 400 C. The experimental re-
sults are compared with existing theoretical calculations.

I. INTRODUCTION

The precise measurements of hyperfine struc-
ture by optical pumping techniques have revealed
slight frequency shifts which depend on the buffer
gas. Although the initial impetus for using these
buffer gases was to eliminate the Doppler shift
and also to inhibit wall collisions, the shifts them-
selves have become of interest as a method for
testing theoretical interatomic interactions. It has
been found that the hyperfine intervals depend es-
sentially linearly upon buffer gas density up to the
equivalent of several atmospheres of pressure at
room temperature. ' This effect has unfortunately
been called a pressure shift and for the sake of
conventional usage we will continue to do so al-
though the distinction, especially when measure-
ments are made over an extended temperature
range, can be a source of confusion.

Pressure-shift measurements have been made on
the hydrogen isotopes, the alkalis, ' ' and nitro-
gen" and phosphorous, "and a number of theoret-
ical calculations have been made in an attempt to
understand these shifts. "'" Recently, Das and co-
workers have made extensive calculations on both
the hydrogen-helium system"~" and the nitrogen-
helium" system. This experiment was designed
to test the theoretical results for the hydrogen-

helium system; results of a similar experiment
on the nitrogen-helium system will be reported at
a later date.

The theoretical interpretation of pressure shifts
has, for the most part, been based on a statistical
model in which the shift M(R), due to a single buff-
er gas atom, a distance R from the atom in ques-
tion is computed. It is believed the shift is the re-
sult of bothvander Vfaals and overlap forces. This
shift is then weighted with the probability e l (R)~~ ~
of finding a buffer gas atom a distance 8 away.
Here, V(R) is the interatomic potential. The final
result for the shift of the magnetic dipole inter-
action constant A. is written

(~X) = pje ~(R) dr,
where p is the buffer gas number density.

In the past, experimental values for the pressure
shift could only be measured for very restricted
temperature ranges. At these temperatures the
theoretical predictions were only in fair agree-
ment with experiment. It is now possible to mea-
sure the pressure shift over a greatly extended
temperature range. This development enables one
to test the theory in considerably more detail. In
particular, it may be possible to distinguish be-
tween errors in the calculations of hA(R) and the
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interatomic potential V(R).
Recently we reported"~" a technique for alkali

optical pumping at high temperatures. We have
discovered that the same apparatus can be modi-
fied to obtain optical pumping signals at very low
temperatures as well. We have used the combi-
nation of the two techniques to study the temper-
ature dependence of the hyperfine pressure shift
of deuterium in helium from —135 to 400 'C. The
D-He system is of particular theoretical interest
because of its relative simplicity. Within the pre-
cision of present optical pumping experiments, the
fractional pressure shift is the same for all of the
hydrogen isotopes. ' We chose deuterium because
of the ease with which the rf field which stimulated
the transitions could be generated.

In Sec. II we describe the experimental tech-
nique. This is followed by a discussion of the mea-
surements and a comparison of our results with
previous experiments and theory.

II. EXPERIMENTAL TECHNIQUE

A block diagram of the apparatus is shown in
Fig. 1. Its use for high-temperature measure-
ments has been fully described in Refs. 18 and 19.
The optical pumping cell contains Rb, He buffer
gas, and D, gas. The Rb atoms are polarized in
a weak magnetic field through the absorption of
circularly polarized resonance radiation.
Deuterium atoms, produced in an rf discharge,
are polarized by spin-exchange collisions with the
optically pumped Rb atoms. When an rf field is
applied at the hfs resonance frequency, the D atoms
are depolarized, and the spin-exchange collisions
depolarize the Rb atoms, resulting in a decrease in
the intensity of the pumping light transmitted by the
cell.

In the conventional optical pumping apparatus,
Rb is present on the walls of the optical pumping
cell, and the density of Rb atoms depends upon the
vapor pressure of Rb. Because of the exponential
temperature dependence of the Rb vapor pressure,
such an arrangement can be used only at temper-
atures near room temperature. In order to per-
form optical pumping experiments far above or
below room temperature, the Rb density must be
controlled independently of the temperature of the
cell.

For high-temperature measurements, the optical
pumping cell is situated in an oven heated by a
stream of hot air. The Rb metal is contained in
an air-cooled sidearm attached to the cell. The
oven determines the cell temperature, and the
density of Rb atoms in the cell is controlled by
adjusting the flow of air which cools the sidearm.

For optical pumping at low temperatures, the
hot and cold air connections are simply inter-
changed. The cell is then cooled by a flow of cold
nitrogen gas, and the proper Rb density is main-
tained by heating the sidearm with hot air. This
drives Rb into the cell at an easily regulated rste.
As the Rb is driven into the cell and diffuses to
the walls it plates out on the walls, but the rate
of deposit is so slow that it presents no problem.
The nitrogen gas is cooled by bubbling it through
liquid nitrogen. The dry nitrogen was used to
prevent frost from forming on the cell, and the
outside of the oven windows were warmed by jets
of hot air to keep them frost free as well.

The optical pumping cells were 300-cm' Pyrex
spheres with glass-covered electrodes mounted in
a turret above the cell. The rf discharge was very
weak and did not measurably affect the cell temper-
ature. The cells were prepared for high-temper-
ature use as described in Ref. 18 and could then
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cell at hot and cold spots. The temperature gra-
dient across the cells was always less than 10'C.
Temperature measurements on a dummy cell with
a thermocouple inside it indicated that the probable
error in the temperature measurements is 10'C.

'C for Das and co-workers. "
Ray and Das" have computed the fps over an ex-

tended temperature range. Their computations
applied to a pressure of 94. 4Torr are shown in
Fig. 2 along with our data.

IV. COMPARISON WITH THEORY V. CONCLUSION

We begin with a comparison of theory and exper-
iment near room temperature. The experimental
data above 60 'C were well fitted by straight lines;
these were used to compute both the fractional
pressure shift (fps) and its temperature derivative.
Extrapolating our data gives a fps of (4. 1+0.2)
x 10-'/Torr at 50'C. This can be compared with
the previous experimental value' of (4. 4 +0. 1)
x 10 '/Torr for a comparable temperature (45
+ 5'C). Theoretical calculations by Clarke'~ and
Ray, Lyons, and Das" give 1.73 x10 '/Torr and
1.9x 10 '/Torr, respectively. Clarke's calcu-
lation was for a temperature of 50'C; we pre-
sume this was also true for the work of Ray et al.

The experimental value for the temperature de-
rivative of the fps was (8. 26+0. 61)x10-"/Torr/

C at 50'C. The theoretical values were 3. 97
x 10 "/Torr/'C for Clarke and 6. 12x10 "/Torr/

Although the calculations of both Clarke and Ray,
Lyons, and Das fail to accurately predict the pres-
sure shift at 50'C, it is clear from Fig. 2 that
the temperature dependence predicted by Ray and
Das is much more accurate than their calculated
fps. The observed temperature dependence should
be quite helpful in making improvements in the
theory. It is clear from this experiment that
Clarke's calculations are much less successful in
predicting the correct temperature dependence.
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