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The atomic-beam method has been used to study the Stark effect in the resonance lines of
indium (6s St/2 5P'P«„4102K) and thallium (7s St&2 —6P Pt&2, 3776~). The difference be-
tween the atomic polarizability of the S~&~ state and that of the I'l/2 state [Ae(sp)] has been
determined and compared with calculations in the Coulomb approximation. For indium, we
find Dn(sp) = 138(11) && 10 cm and for thallium AG.'(sP) =115(12)x 10 cm .

I. INTRODUCTION

Although the perturbation of atomic levels by
electric fields was first observed more than forty
years ago, ' there has been little progress by way
of a systematic study of the Stark effect on free
atoms until the present decade. This has been due
to the experimental difficulties of measuring small
frequency shifts and attaining high electric fields,
as well as theoretical difficulties in calculating and
interpreting experimental results. Unlike the
Zeeman effect, which depends only on the angular
part of the wave function and can be calculated
accurately for any atomic state, the calculation of
the Stark effect involves infinite sums of radial
integrals requiring accurate radial wave functions
for excited states.

Recently, there has been a resurgence of interest
in the electric field effect. The renewed activity
is due to the successful application of new experi-
mental techniques to the Stark effect and to theo-
retical developments. In addition, interest has
been generated by the application of the Stark ef-
fect to the search for electric dipole moments in
elementary particles, 2-~ and the measurement of
isotope shifts' and hyperfine structure of excited
states. '~ ' On the experimental side, atomic-
beam level-crossing, &' and optical double-res-
onance" techniques have been used to observe dif-
ferential Stark shifts between levels of an atomic

state as well as shifts between levels belonging to
two different states (optical Stark shift). " To ob-
serve the differential shifts within a state = 10-'
to 10 ' Hz/(kVcm ')', relatively low electric fields
(& 100kV/cm) are required on account of the pre-
cision attainable in radiofrequency spectroscopy.
To observe and measure the Stark shift in optical
transitions requires large electric fields (& 100
kV/cm), which are required because of the line-
widths associated with optical transitions and the
calibration procedure, which involves large Stark
shifts of approximately 10 MHz. Thus techniques
had to be developed for achieving high electric
fields. On the theoretical side, methods have been
developed for treating the infinite sums appearing
in the Stark effect"~ ' and calculating the radial
integrals needed. "

In the present experiment, the atomic-beam
method was used to investigate the Stark shift in
the 4102 A line of indium and the 3776 A line of
thallium. This experiment serves as an impor-
tant preliminary to the measurement of isotope
shifts in indium by the atomic-beam method.

II. EXPERIMENTAL METHOD

The experimental method employed here has been
described previously in connection with the Stark-
shift measurements in the D, lines of cesium, ru-
bidium, and potassium. "~" The application of the
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method to indium and thallium deserves some ad-
ditional discussion owing to the different energy-
level structure; hence, we will review the methods
using indium as an example. The basic idea is one
of a tuning experiment in which optical absorption
lines of beam atoms are tuned by an electric field
to emission lines of the same atoms. The atomic-
beam apparatus is used to detect the spin-flip which
accompanies tuning. For a description of the atom-
ic-beam apparatus, we refer to the literature. "

An atomic-beam apparatus with flop-in geometry
is employed. In the C region, a pair of electric
field plates replaces the usual C magnet, and an
optical photon source (resonance lamp) replaces
the usual radiofrequency photon source (signal gen-
erator). The electric field plates may be used to
select a particular mJ trajectory, and we assume
this to be the case. Such state selection simplifies
the analysis, but is not necessary and was not used
in this experiment.

Imagine a beam of indium atoms in the ground-
state level l5'Pl/2m' = —~) in the C region and
with no electric field present. The energy-level
diagram is shown in Fig. 1. If the atoms are il-
luminated with resonance radiation 4102 A, they
will be excited to the 6s 'S», state and decay back
(~ = 7. 5 x10-' sec) to the 'P„, state as well as to
the metastable 'P3/Q state. It is clear that of those
atoms returning to the 'Pz/p state, one-half will be
in the mJ =+ & level and will thus be refocused at
the detector. Some of the atoms terminating in the

P3/Q state wil 1 al so undergo transitions mJ
to mJ =+ ~, however, due to the different gJ of
the 'P,

/Q state, these atoms will not be deflected
properly and we may ignore them for the present.
Thus, with no electric field applied in the C region,
a flop-in signal is observed at the detector. To
consider what happens when an electric field is
applied to the beam atoms we have to take the hy-
perfine structure into account. The hyperfine
structure associated with the 4102A line of indi-

II5t&

um"y' is shown in Fig. 1. Also, reference to the
Breit-Rabi diagram shows us that 90% of the indium
atoms are in the lower (F =4) hyperfine state prior
to being flopped. We neglect the remaining 10%%up

for simplicity and assume that all the atoms are in
the I' =4 hyperfine state. The beam atoms then
have two hyperfine absorption lines while the lamp
emission line has four hyperfine components. The
situation is depicted in Fig. 2(a}. Application of
an electric field to the beam atoms decreases the
transition frequencies of the lines n ' and P', de-
tuning them from n and P. o.

' and P' are decreased
by the same amount within the approximation des-
scribed in the next section. Hence, the flop-in
signal diminishes. However, for the appropriate
values of the electric field, o,

' and P' can be
brought into resonance with other hyperfine com-
ponents, as shown in Fig. 2. Each time that e' or
P is made coincident with an emission line com-
ponent the flop-in signal increases. The frequency
shifts associated with each of the diagrams in Fig.
2 and the electric fields at which they occur are
shown in Table I. Similar results hold for thallium
(f = & }except that the P component of the hyperfine
transitions is forbidden, and hence fewer reso-
nances occur. The energy-level diagram for thal-
lium is shown in Fig. 1. The possible resonances
for thallium are shown in Fig. 3 and summed up in
Table II.

III. THEORY

In this section, we obtain an expression for the
Stark shift &vS in an optical line. A comprehen-
sive treatment of the Stark effect may be found in
the literature. '& '

The interaction of an atom with an external
electric field E directed along the z axis is de-
scribed by the Hamiltonian

&, =eg[rc '(s, y)].E,
2
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FIG. l. Indium and thallium energy levels.
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FIG. 2. Possible overlaps between absorption lines of indium beam atoms (primed) and indium lamp lines (unprimed).

TABLE I. Frequency shifts, electric fields, and signal intensities associated with indium.

Indium

Overlapping lines

Dv S(MHz)

Approx. kV/cm
Signal intensity

p'=p
0
0

1.132

2974
162

0.242

8435
274

0.364

D

p
/

11410
319

1.030

19845
425

1.000

F=5

0

1.444

8435
274

0.667

where we have expressed the position vector of the
ith electron, r i, in terms of the spherical tensors
C&'(8, Q)." We treat X, as a perturbation on the
atomic Hamiltonian which includes the central field,
spin-orbit, and hyperfine structure operators.

The hyperfine interaction is included since

S 1/2 hf 1/2

and Av ('S
/

)=&v (S )

Thai lium
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F beam
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y/
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FIG. 3. Possible overlaps between absorption lines of thallium beam atoms (primed) and thallium lamp lines (un-

primed) .

TABLE II. Frequency shifts, electric fields, and signal intensities associated with thallium.

Thallium

Overlapping lines

No state selection

vS(M«)
Approx. kV/cm
Signal intensity

0
0
1.50

12 090
366

0.50

21311
485

0.50

33 401
610

0.25
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~ I(y 'F'mF I (rC0')f I yFmF) I
'

&W(y 'F', yF)
(2)

where &W(y'F', yF) = W(y'F') —W(yF)

Considerable simplification can be achieved by
considering the magnitude of the hyperfine struc-
ture and hyperfine Stark effect" in relation to the
energies of the electronic configurations and the
Stark shifts induced in the electronic configura-
tions. We note first that EW(y'F', yF) differs
from the energy denominator without hyperfine
structure &W(y', y) by order (&vhf)/(&vopt) 10-',
and hence the hyperfine structure may be neglected
in ~W. Next we examine the hyperfine structure
Stark effect. The frequency shifts induced by an
electric field in the hyperfine transition (F =0,
mF =0)—(F=1,mF=O) of the 6p'Pl/2 state «

for both indium and thallium.
The first nonvanishing contribution of K& to the

energy is given by second-order perturbation the-
ory:

e 2E2
&v (yFm )=

I (o('J'
&

I (rC0'). I o.J'

(3)

In the present case, we are dealing with a single
electron coupled to a 'S, core; therefore, to the
extent that the transition electron does not polar-
ize the core,

"'Tl have been measured and are given by 6(»)
=3 x10-'E' Hz, where E is in V/cm. 22 Similar
results may be expected in other transitions in
the P,/, state as well as the S 1/2 state. This is
to be compared with the frequency shift induced by
an electric field in the electronic transition
6s'('S)7s - 6s'('S)6p of thallium which can be read-
ily estimated to be 6[&v(6P —7s)]-10-'E' Hz, and
to the linewidths= 10' Hz inherent in the present
experiment. Similar remarks apply to indium.
Thus, for the purposes of this experiment, hyper-
fine structure effects may be neglected. All hy-
perfine states are displaced by the sa,me amount
by the application of an electric field. The amount
by which they are displaced depends only on the
electronic quantum numbers within the above ap-
proximations, and is given by

e2E2
&v (o.Jm ) =

S pgp

e2E2 l' l 1 j' j 1
(mljm. )= (21+1)(2l'+l)(2)+1)(2j'+1)

( )S j A p p. pnlj jjsm. —m. 0
~ o p

j
l 'l 1

I
(n'l'j ' Ilrllnlj) I

'
~W(n'l'j', nlj)

A number of authors have evaluated the angular factors in Eq. (3) for particular values of ljmj, "~"but in
fact we can reduce Eq. (3) to a simple formula that sums up the Stark effect for any alkalilike transitions.
For, due to the selection rules on l and j and remembering that j equals l+ 2, there are at most three non-
vanishing terms in the angular part of the summation. Furthermore, the 3j and 6j coefficients are of a
particularly simple kind and may be readily expressed in terms of their arguments. Thus, we arrive at

m. ' (j+1)'-m. '
(nlj =1+ zm. ) = ., R(l —1,j —1;nlj)+.„. &2R(1+1,j;nlj)+ —, ,2 R(l+1,j+1;nlj) (5)

where R(l —1,j —1;nlj) get:

l(n l—1,j—1llrllnlj)1'
&E(n'1 —1,j—1;nlj)

n'4n

and similarly for the other terms. The +in the
second term on the right-hand side is to be used
with j =l + 2.

Applying Eq. (5) to an s», and a p», state, "we

av (ns1/2)

e2E2

9@ [R(p 1/2,
' ns

1/2
+ 2RQ1/2' 1/2

&v (np1/2)

e2E2

9@ [R(sl/2' pl/2)+2R(d3/2' p1/2)
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or for the shift in the optical line n,s, /, —n, P,»

5(n,s„,~,p„,)
2E2

9g ~ ( 1/21 8~1/2) (Pl/2I 1 1/2)

+ 2[R(d3/2,
' n2p, /2) —R(p»» n,s»,)]j

If we define the atomic polarizability as usual by
k~v~ = —2 nE', then

25(n, s, /, —n, p», )hE '=&a(n, p, /»n, s,/, )

where

&n(n, p, /„n, s„,') = n(n, P, /, ) —o.(n,s,/, )

IV. APPARATUS

The atomic-beam apparatus is conventional, ex-
cept for the electric field plates, and will not be
discussed here. The electric field plates, the
high-voltage power supply, and the associated
read-out equipment have been described previous-
ly, and no further discussion is needed. We limit
our discussion to the beam source, detector, and

light sources.

A. Production and Detection of Beams

Beams of indium and thallium were produced by
electron bombardment of a tantalum oven contain-
ing indium or thallium and having a 0.030-in. slit.
Approximately 30 W (electron bombardment) were
required to produce thallium beams and 60 W were
required for indium. The oven temperature was
not measured, but was estimated at approximately
1200'K. The populations of the metastable 'P„,
state can be calculated from the Boltzmann factors
and are negligible for thallium, while about 15% of
the indium atoms are in the 'P3/2 state.

Detection of indium and thallium was accom-
plished with an iridium hot-ribbon surface ioniza-
tion detector 1 x0. 1 x0. 0015 in. Iridium was used
because of its high work function (5.9 eV) and the
fact that it is inherently quieter and less trouble-
some than the more usual surfaces. Typical back-
ground from the hot ribbon was around 2&&10-' A
with a noise &10 "A. A Keithy 417 high-speed
picoammeter was used to measure the ion currents.

at right angles to its direction, the absorption
width of beam atoms is the natural width &vN-10
MHz. The light source must put out enough photons
within this width to flop a substantial number of
atoms. An intense electrodeless discharge lamp
was developed for this purpose.

The low vapor pressure of indium makes it im-
practical to discharge the metal directly; conse-
quently, indium iodide was used. The high vapor
pressure of iodine, which is produced in the dis-
sociation of the iodide, causes the discharge to be-
come unstable, so it is necessary to use micro-
scopic amounts of the iodide in order to limit the
iodine vapor pressure. To this end the iodide was
formed in the presence of an argon discharge so
that formation of the iodide could be monitored
through the appearance of the indium blue line.
The procedure is similar to that used by Cunning-
ham and Link~' with two exceptions: (i) We distilled
the indium to insure purity; and (ii) We reacted the
indium with iodine prior to sealing off the lamp.
After forming the iodide, the argon was pumped
out and the lamp refilled with spectroscopic grade
xenon at a pressure of 1 Torr and sealed off. The
thallium lamp presented no special problem and
thallium chloride was used.

The quartz lamps were cylinders 5 cm diam and
6 mm long. They were outgassed under vacuum at
around 900'C for at least 10 h before filling. The
pressure prior to filling was approximately 2&&10 '
Tol 1 ~

Excitation of the lamps was achieved with a100-W
diathermy unit with a type-A antenna. The lamp to
be excited was placed in an oven, one end of which
consisted of the microwave antenna. A boron ni-
tride holder fixed the lamp inside the oven. A
schematic of the oven is shown in Fig. 4. Normally
the diathermy unit was operated at 60 to 80% power
and the lamp temperature maintained about 210'C
for indium and about 240 'C for thallium. The
lamp profiles were scanned with the atomic-beam
apparatus as previously described. A scan of the
indium lamp line is shown in Fig. 5, where the fre-
quency scale has been established from the known
hyperfine structure of the 5P 2P», and Gs 'S,/2
states. '

~
'

y The intensity distribution shown is
actually a composite since a number of absorption
lines are simultaneously scanning the lamp. It is
clear from the width of the lamp line that less than
—,% of the available light is effective in pumping
the beam.

V. EXPERIMENTAL RESULTS

B. Resonance Lamps

The measurement of the Stark effect by atomic
beams requires light sources having a high spec-
tral density. Since the atomic beam is illuminated

The measurement of the Stark shift consists in
scanning the lamp line with the atomic-beam ap-
paratus, as previously described, identifying the
various resonances and using them to determine
the frequency shift as a function of the applied
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FIG. 4. Details of the indium and thallium lamp oven:
(1) Heavy Duty, Inc. heater, (2) boron nitride lamp
holder, (3) copper screen, (4) asbestos, (5) copper shell,
(6) type-A antenna, (7) electrical feedthrough.

voltages V'. All that remains to be done is mea-
sure the electric field gap, d, and determine the
electric field from V/d. The illumination region is
sufficiently small compared to the dimensions of
the plates that fringing effects may be neglected.
Details of the plates were previously published. "
The voltages were supplied by a Sams" 50-kV sup-
ply and read by a digital voltmeter using a Parks"
voltage divider. Over-all accuracy of the voltage
system was &0.1%. The electric-field gap was
measured with a feeler gauge which was checked
against a micrometer. The value of the gap was
d =0.825 +0. 024 mm. We present below, separate-
ly, the results for indium and thallium.

A. Indium

Typical results for indium are shown in Fig. 5

and are summarized in Table III in terms of the
polarizability difference bn(6'S»» 5'P, &,). Also
shown are the theoretical values of the polariza-
bilities which are based on Eq. (5) and the Bates-
Damgaard (BD) Coulomb approximation, which was
used to calculate the radial integrals.

XIOOO

4 8 12 16 20 24 MHz
(I I

I
(

I
I

I
)

I
I I)

400 800 I200 1600

(Applied voltage in kV)2

FIG. 5. Indium Stark-shift data. Overlapping lines
are indicated abo0e the resonances. The frequency scale
is established from the known hyperfine structure of the
4102K line of indium.

The resonance lamp and beams were made from
naturally occurring indium. In natural abundance,
indium consists of two isotopes '"In (96%) and
'"In (4/q). The hyperfine structure of these iso-
topes differs by = 25 MHz" and may be neglected
for our purposes. The isotope shift = 270 MHz" is
a small fraction of the linewidth and may be ne-
glected particularly in view of the low abundance of
113I

Two features of Fig. 5 arerather conspicuousand
deserve comment; first, the absence of a peak at
2974 MHz, and second, the near equality of the
three high-field peaks. These features can be
understood with reference to the last row of Table
I, where we show the signal intensities. The signal
intensities are calculated by multiplying together
the transition probabilities of overlapping lines.
Theoretical transition probabilities were used. We
see that if we did not select the F =4 hyperfine
state but instead had both the F =4 and F = 5 hyper-
fine states present in the beam (no state selection)
the signal intensity at 29'l4 MHz would be = 9/q of
the zero electric-field signal intensity. In view of
the linewidth, we would not expect to observe this
peak. Furthermore, the signal intensities at 8435,
11410, and 19845 MHz would be equal. Indeed, due

TABLE III. Summary of calculated and experimental polarizabilities.

Theoretical polarizabilities && 10 cm Experimental

Indium
Thallium

n ( Pj)2)
4.7
2.7

n ( P3)2 + 2)

4.5
4 4

n('P„, +g)
7.4
9.0

n ( Sg/2)

150.8
125.0

An( Sg(2, Pg(2)
2 2

146.1
122.3

«(Su2 Pu2)2 2

138(11)
115(12)

Bates-Damgaard.
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to the small gg = 0.67 of the 'P», state and the high
velocity of the beam atoms, state selection cannot
be accomplished with the size of the electric-field
gap employed.

16

12

B. Thallium

Results for thallium are shown in Fig. 6 and
summarized in Table III. All measurements were
made using naturally occurring thallium, which con-
sists of two isotopes 2"Tl (30%) and "'Tl (t0%).
Here the isotope shift is a large fraction of the
linewidth amounting to= 1600-1800 MHz, "~"and
consequently the thallium resonances are broader.
The difference in the hyperfine structure" (= 200
MHz) which could lead to a more complicated pat-
tern may be neglected.

The experimental results are in good agreement
with BD calculations but were found to be lower
than BD by = 6% in all measurements "We can
obtain a reasonably good value for o. ('P», ) by re-
lating o. to the oscillator strengths f, and using
experimental f values. If we use the f values of
Penkin and Shabanova, "we get for indium and
thallium, respectively, n(5'P», ) = 4. 5(1.5) x10 "
cms and n(62P»2) =3.5(1)x10 ~ cm'. From these
values of the ground-state polarizabilities, we can
deduce the excited-state polarizabilities. We get,
for indium and thallium, respectively, n(6'S», )
=142(12.5) x10 ~ cm and n(7'S»2) =118(13)x10 ~
cm' in very good agreement with DB (Table III).
We have calculated also the polarizabilities of the

o 10

E
2 6
O

I-

500
I I

1000 1500
(Applied voltage in kV)

2000

FIG. 6. Thallium Stark-shift data. Overlapping lines
are indicated above the resonances.
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We propose fractional integrals (Euler transforms) of conventional quantum. -mechanical
functions as special integral-transform trial functions. Calculations on the first four mem-
bers of the He isoelectronic sequence with three different-order Euler transforms of both
Slater and Gaussian 1s orbitals are reported. A pilot calculation for H2 with an Euler trans-
form of an LCGTO (linear combination of Gaussian-type orbitals) molecular orbital gives a
total energy E=—1.10903 a.u. at 8=1.4 a.u. (exact value is —1.17444 a.u. ). A generalization
of the shape function used in this work is given and the general applicability of Euler trans-
forms discussed.

INTRODUCTION

A new class of trial functions has recently been
introduced by one of us. ' These functions are
generated by the integration over the appropriately
weighted "scale factor space" of conventional trial
functions. We refer to the weight functions S(t)
for these integral-transform trial functions as
shape functions; the mathematical problem is the
determination of S(t).

Instead of attempting to solve the generally dif-
ficult integral equation that a given S(t) satisfies,
we took the simpler approach of parametrizing
some pxeselected S(t) and optimizing its parame-
ters variationally. Simple arguments suggest
that a trial S(t) should be ah-convergent sequence;
there is still however the problem of choosing an

appropriate yet tractable sequence.
In this paper, we propose a class of sequences,

simple in form, which generate trial functions that
can be expressed by well-known fractional inte-
grals. 4

FRACTIONAL INTEGRAL TRANSFORMS

The Riemann-Liouville fractional integral of
f(x) is defined by

g(y; u) -=@,[f(x);y]

=r '(p. ) J,'f(x)(y x)' 'dx, —

and the corresponding Weyl fractional integral by


