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over all / save for the absent 'So state, and charge
independence is valid. In this case, it is useful to write
the formulas in terms of pi +ps, pi —ps, and ps
because the last two have the same complex phase.

It is interesting to note the connection between this
derivation of M and the limitation placed on M by its
invariance under time reversal. ' Terms in (Irt —os) n
and e1&e2 n do not occur here because change of spin
symmetry is forbidden by the assumed charge inde-
pendence of the interaction. The term in (Iri k) (Irs p)
+(Irt p)(Ir& k) disappears only because of the sym-
metric nature of the S matrix. This property of the S

matrix can be proved by the invariance of S under time
reversal.

The formulas have been checked against those de-
rived by Stapp' by a different technique up to f waves
with mixing but without Coulomb phase shifts and
against Breit and Ehrmans formula for 2 Re(C*B)
without mixing. This work was started after some
illuminating discussions the author had with Professor
E. Segre and Professor O. Chamberlain about the
analysis of proton-proton scattering experiments.

s H;. P. Stapp (private communication).' G. Breit and J. B. Ehrman, Phys. Rev. 96, 805 (1954).
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A general method is described whereby the low-energy behavior
of collision processes can be investigated systematically. The basic
procedure is the construction of the renormalized Green's functions
for the participating particles in the presence of external sources.
For processes involving the collision of a boson with a fermion, —
photon scattering, meson scattering, and photoproduction of
mesons —one requires the propagation function of a nucleon in
the presence of external electromagnetic and meson fields, as well
as the propagator for a meson in an electromagnetic field. The
rather direct relation of these functions to the various transition
matrices is derived. The possible forms of the Green's functions
are limited by the principles of Lorentz, gauge, and charge con-
jugation invariance. Their detailed structure is determined in part
by the requirement that they describe particles of known mass,
charge, magnetic moment, and mesic coupling constant. These
conditions are sufhcient to imply a number of theorems. For ex-
ample, it is shown that the amplitude for photon-proton scattering
is given correctly up to terms of 6rst order in the photon energy
by a Born approximation calculation, if one assigns to the proton
its experimental charge and magnetic moment. If one includes the
meson-nucleon coupling constant in this set of parameters, then

perturbation theory is also valid for the leading terms in a
momentum-energy expansion of the E-wave in meson-nucleon
scattering, the S- and P-waves associated with the nucleon current
in photomeson production, and the entire meson current for the
same process.

The methods employed to establish the theorems are extended
in order to provide a phenomenological framework for the de-
scription of the experiments for energies low enough so that the
expansions in boson energy are still valid, but for which the
deviations from the theorems are of practical significance. Thus,
it is suggested that for the description of photon scattering one
should attribute an electric and a magnetic polarizability to the
nucleon. The description of the P-wave in meson-nucleon scat-
tering also requires the introduction of two additional parameters.
From the manner in which these enter the scattering amplitude, it
can be concluded that the phase shift in the state of angular
momentum and isotopic spin 3/2 is enhanced compared to its
Born value, if only the phase shifts in the other states deviate in
the opposite direction. Finally, parameters are introduced to
describe the S-wave in meson-scattering, and the basis for a
phenomenological description of photoproduction is indicated.

I. INTRODUCTION

~CONSIDERABLE attention has been devoted~ recently to the investigation of the low-energy
limit of 6eld theories which can be renormalized. In
particular, the study of the simplest processes involving
the collision of a boson with a fermion —photon scat-
tering, ' photoproduction of mesons, ' and scattering of
mesons' —has yielded a number of theorems which have

*Society of Fellows.
[Now at the Department of Physics, University of Pennsyl-

vania, Philadelphia, Pennsylvania.
' The zero-frequency limit was erst treated in full generality by

W. Thirring, Phil. Mag. 41, 1193 (1950), the amplitude to first
order in the frequency by F. E. Low, Phys. Rev. 96, 1428 (1954)
and by M. Gell-Mann and M. I . Goldberger, Phys. Rev. 96, 1433
(1954).

s N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
3 Deser, Goldberger, and Thirring, Phys. Rev. 94, 711 (1954).

proved of considerable utility in the interpretation of
experiment. For the phenomena involving mesons, the
theorems have been of special value in pointing to
suitable experiments for measuring the meson-nucleon
coupling constant. '

In order to investigate the threshold behavior of
scattering or production matrices, one expands these,
in eGect, in power series in the four-momenta of the
bosons. One then observes that one or more of the
leading powers is of the same form as its Born approxi-
mation, expressed, however, in terms of the experi-
mental charge, magnetic moment, and mesic coupling
constant of the fermion. The purpose of this note is to
report a systematic procedure for the construction of
such theorems; in the course of the discussion we shall
rederive the results that are already known, ' ' as well
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as a number of additional theorems on photomeson
production and meson-nucleon scattering. 4

The physical properties of a nucleon which underlie
these results are most clearly subsumed in the structure
of its Green's function in the presence of external boson
sources. ' The rather direct relation of this quantity to
the transition amplitudes is derived in Sec. II. The
basic physical information at our disposal, to be 6tted
naturally into a framework that satisfies the require-
ments of I.orentz, gauge, and charge conjugation in-
variance, is twofold. First, we know the form and
analytic properties of the field-independent part of the
renormalized Green's function, 6, for four-momenta in
the neighborhood of the free-nucleon mass shell.
Second, we can insist that the propagator describe a
particle with the correct experimental electric and
mesic charge and magnetic moment, a condition im-
posed on the terms of 6 which are linear in the boson
sources. The role of the requirement that we deal with
a renormalizable theory is merely that the above
statements have a meaning, after a suitable scale change,
if necessary, for the various functions of the theory.

It is perhaps worth emphasizing that the true sig-
nificance of the theorems is that they provide a means
of measuring parameters which are logically de6ned by
other experiments. Thus, the charge and magnetic
moment of the proton is measured, in principle, in the
scattering of the proton by a weak, slowly varying
external electromagnetic field, weak enough so that
only eGects linear in the field need be considered and
sufFiciently slowly varying so that any space-time
variation of the geld strengths ma-y be neglected. Again,
the meson-nucleon coupling constant —in the sense in
which the term will be usedin this paper —is meas-
ured by the scattering of a nucleon by a weak, slowly
varying meson field. Because of the pseudoscalar nature
of the meson, the coupling constant so defined is more
the analog of the magnetic moment than of the charge,
since there is no scattering to first order in the field
from a uniform meson field. ' If we notice the formal
identity between the scattering and production phe-
nomena to be considered and the dependence of the
scattering of the fermion on terms of second order in
the external boson fields, then the theorems may be
given an alternative statement. It is that the matrix
elements which determine the scattering of a fermion

4 The new results to be established in this paper concerning the
E-wave in meson scattering and the P-wave and meson current
effects in photoproduction have been established by independent
methods by F. E. Low, to whom the author is indebted for illu-
minating discussions.

5 In the treatment of photoproduction we also require the
Green's function of a meson in an external electromagnetic field.

The alternative definition proposed by Deser, Thirring, and
Goldberger, reference 3, in terms of meson scattering at zero
energy is less closely related to the original Yukawa hypothesis.
In the absence of a satisfactory dynamical theory, however, one
can only remark that this definition is of use in the correlation of
a different class of phenomena than those considered in this paper.

V This is, of course, equivalent to the observation that the
emission of a single pseudoscalar lq.eson is int;o a P stat;t;,

by a weak, slowly varying 6eld also determine —with
exceptions to be noted below —the scattering by some-
what stronger but still slowly varying fields.

We have divided the detailed considerations accord-
ing to phenomena. Section III, which treats of y-ray
scattering, contains the proof that the scattering am-
plitude for this process is correctly given up to terms
of first order in the frequency of the photon by the
Born approximation computed for a nucleon with given
charge and Pauli moment. ' We actually construct the
Green's function in greater detail than is required for
the proof of the theorem. Thus, we are in a position to
specify the number of additional parameters required
to determine the scattering amplitude to the second
power of the photon momentum. It is suggested that it
should be possible to understand experiments up to
energies somewhat below the threshold for meson pro-
duction by assigning to the proton (approximately)
constant electric and magnetic polarizabilities in addi-
tion to its charge and magnetic moment. The interpre-
tation of existing experiments' in terms of single nucleon
scattering cross sections is not sufficiently certain to
allow a real test of this hypothesis.

In Sec. IV, it is shown that the P-wave in meson-
nucleon scattering is given by Born approximation
except for relative corrections which vanish as both the
momentum and mass of the meson go to zero. That
there is no analogous theorem for the 5-wave is merely
a consequence of the fact that the coupling constant
taken as fundamental in the discussion is the strength
for the emission of a meson into a I' state. ' The 5-wave
near threshold is determined by two parameters, ' the
coefFicients of the 5-wave terms which are independent
of and linear respectively in the energy of the meson.
The first deviation from the Born amplitude for the
P-wave can also be expressed in terms of two param-
eters. Since there are three independent P-wave phase
shifts (erst ——burrs in the approximation which neglects
nucleon recoi]'), it is then possible to derive a single
relation among them. One qualitative statement of this
relation is that if o.ii and o.i3 are reduced compared to
their Born values, then o.33 is necessarily enhanced.
Comparison with experiment yields values for these
parameters by no means small compared to the coupling
constant, although this is easily understood in terms of
the resonance in the scattering.

Three theo rems on photomeson production are
established in Sec. V. The S-wave theorem for the
nucleon current leading to charged meson production
(Kroll-Ruderman theorem)' is shown to be a direct
consequence of the de6nition of the mesonic coupling
constant and of gauge invariance. It is then demon-
strated that the P-wave production from the nucleon
is given near threshold by the Born approximation
computed with the actual meson-nucleon coupling

I

s Pugh, Frisch, and Gomez, Phys. Rev. 95, 590 (1954).
We use the notation of Fermi for the g and P phase shifts,

Anderson, Fermi, Martin, and Nable, Phys. Rev. 91, 155 (1953).



1000 ABRAHAM KLEIN

constant and magnetic moment Thirdly, a similar
statement is established for the contribution of the
meson current which involves the charge and the
coupling constant. The latter contribution contains all
angular rnornenta for the meson and multipoles for the
photon because of a retardation factor for the motion
of the meson. The deviations from these theorems can
also be considered. In the present instance, however,
it leads only to a type of analysis which has essentially
been exploited in the literature;" we have therefore
been content with noting the general forms of the cor-
rection terms.

X dxtd(tdxsd(2 (p o', k
I xt, $1)a

J

X-,'i(a/ag„+a/ap„)G. , „„(x„x„p„p,)

Xsi(&/c)&20+c)/t)$20) (x2, $2I p~, &)e. (l)

Here po, p'o. ' are four-momentum and spin variables
specifying initial and final nucleon states, kv, k p, are
the corresponding momentum and vector component
variables of the photon. The amplitude (x, (I po. , k)e is
the initial state of the combined system:

(» (I p~ i)e=(xl p )e(EI&), (2)

II. EXPRESSION FOR SCATTERING AMPLITUDE

We shall derive the scattering amplitude for a boson-
fermion collision, taking as a representative case that
of photon scattering. As is well known, the transition
amplitude from a given state of the system at some
initial time to another state at a later time is deter-
mined by a suitably expressed matrix element of the
Green's function for the system taken between those
states. The 5 matrix is dehned as the amplitude for
going from a free-particle state in the remote past to
another such state in the remote future. " For the
example chosen, the 5 matrix is given by the expression

(p'o', 10'p
I S I ptr, km)

(hmxlpy $10~+~ j»py $20~ ~)

tion of the photon-nucleon system is defined by the
relation"

G~e, l ~(x4xsi &i&)
= —((0-(»)A(x2)~. (h)~.(4))+&0(»—»)
= G+(» x2)-eB+(6,6)..

i—32G+(xt,x2).e/3J„($1)3J„($2)I g=p, (6)

with J„($) standing for the external current which is
usefully assumed to be coupled to the electromagnetic
field.

To transform Eq. (1), consider the first term of Eq.
(6). Since»p)xpp we can write

G+(»,x2)-e =2(0 I4-(xt)6(») I
o&

=i 2„e" -* (Oly. (0)lu&(alii, (o)lo&, (7)

where the sum is over all states of unit "charge, " and
I'„ is the four-momentum of the state e,

~-= (y,&-(p) = (p'+~-')').

Among the allowed values of m, there is the isolated
lowest point m„= m, the mass of a nucleon. Separating
the contribution from this state from all the others, we

may write according to the theory of renormalization"

G+(xi,x2) e

Z

z2 P dp expl ip(xt —x2) —iE(p) (xip —x20)j
(22r)2

x(olp. (0) I p &(y~lp, (0) lo&+ ", (g)

where ~ indicates the contribution from higher mass
states and the matrix element (olp (0) lpa. ) is now

understood to be finite and a solution of the free particle
Dirac equation for a real nucleon. From Eq. (8) com-
bined with Eqs. (3) and (S), we then obtain the
the relation:

lim(xtp~~) ) dxt(y~
I xt).G+(xt,x2).p

=i(22r) e'&2*'ue(po)Z2 (9).

arid

(*Ip~)=
1 (ps+ms) i

(22r)2

(g I k) = $(22r)22k05 le"p—
e'&*up (pa), Equation (9) is true in the sense that all terms which

oscillate with infinite rapidity are to be equated to zero,
the limiting procedure of Eq. (1) being understood in

that sense. We have also required the normalization
condition

(p~ &I» $)e=L(» pl p, i)tvoje, u (Po)u. (P,o') =3...222/E(p). (10)

where yo is the usual Dirac matrix and the four-
momenta are those of free particles. The Green's func-

I For example, see M. Gell-Mann and K. M, Watson, Ann. Rev.
Nuc. Sci. 4, 219 (1954).

"These states are most conveniently considered to describe
particles with their experimental massey,

For the photon propagator g+(pt, b)„., there are

"The completely analagous case of the meson-nucleon system
has been studied by S. Deser and P. C, Martin, Phys. Rev. 90, 1072
(1953). For the notation see J. Schwinger, Proc. Natl. Acad. Sci.
U.S. 37, 452 (1951)."F.J. Dyson, Phys. Rev. 85, 1736 (1949),
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similar expressions. From the equation ($10)esp)

s.(&,b)..
z p dk

expLik ((1—gs) —ikp($10 —hp) j
(24r)' » 2kp

g+ "&. We next note the validity of the equation

J
"d'~" '"-"8 -'(t' h")8 "'(f' k"') fv($"')

g —1 I d4)&e—4k'$'+(P/) (16)

we conclude the relation

X (0 I A„(0) I
kP, }(k)t I

A, (0) I 0)+, (11)
for k' the four-momentum of a real photon and 40($)
any function of $. Finally, we introduce into Eq. (13)
the convergent Green's function, G„where"

lim(Pro~~), "dg, (k I g,) 6=Z2G, . (17)

X 0 & (c)/pi /10+ 4)/r)$10) Q4- ($1)$2)vv

= i
I ( 2w)'2 k 0] le "—&sb„—„z, (12)

f
d4$'d4X'd4$d4Xe '"'*'e '"'P'u (P'o')

Xg -'(q' ~") G -'(x' x")|'G (x" x"')/

»,(P)», (Y")I. o

XG4-'(x"',x)g+-'(t"', t),„u(po)e'" e "& (13)

where summation or integration over repeated vari-
ables is understood. Several additional observations
are required before Eq. (13) is transformed into final
working form. First, we note that we must divide by
the product Z2Z3 to obtain a unitary and indeed finite
S matrix. Second, we make a change of variables from
the external current to the external electromagnetic
potential according to the expression'4 (in which vector
indices have been suppressed):

Applying Eqs. (9), (12) and corresponding expres-
sions for the limit (xsp $90—+—~), to the second term
of Eq. (6) as well as to the first, we obtain for Eq. (1)
the more immediately useful equation:

(p'o', O'Iz
I
S

I po, kv)
zZg'Z '

=Z,ZOS..S„„&(p'—p)S(1
'—1)+

(2kp'2kp) '*(2rr) 0

By the use of Eqs. (14)—(17) and the accompanying
remarks, we are now in a position to state a convergent
expression for the S matrix for photon-proton scat-
tering, "conveniently expressed in terms of a transition
matrix T, where

fi(P'+O' P k) (P—'0',—k'14
I
T

I Pcr, kv)

d4$'d4x'd4$d4xe '"'*'e '"'&'u(p'a')
(2w)4 ~

X(*'IG '&'G/&(eA„(g))&(e&, (('))IA=OG Ix)

Xu(po) e' ev'"& (18)

and T is then related to 5 according to the equation

(p'o', k'44
I
s

I
po., kv)

=S...S„„S(p'—p) S(1 '—1)—2wic(p'+k' —p —k)

xL(2w)02kp'2kpj '(p'~', k'ul Tl p~ kv) (»)
In Eq. (18) e is the renormalized charge of the proton.

Before proceeding to the proofs of the photon scat-
tering theorems, it is perhaps worthwhile to exemplify
the use of Eq. (18) by deriving the Born approximation
scattering for a fermion with a charge but no anomalous
moment. For the Green's function in the external field,
we then take

G(x,"IA~) = (.IGLA]l")

d'&($)(p A(t))j+ —*'
I (2o)

(xl~(t) Ix') =qS(p —x)s(x—x'), (21)
since A, and J are related by the expression

PG/»(g)»(g') =Z, (PG/W, (g")u, (g"'))
The significance of the notation is expressed by the

Xg+ ' (&",&)84."'(("',$'), (14) equations

&.(~) =& ~g, "'(r~')J(&'), v(~)dr=&, (22)

involvirig the uncoupled photon Green's function

"In Eqs. (14) and (15), A, (P) is the renormalized external
field, whereas J(f) is the unrenormalized current. Consistency
between the definition (compare reference 12) t1+——e(A)/eJ and
the renormalization scheme, g+——Zpg+„(A)=Z, &(A)„requires
the renormalization J=Z3 &J,.

"The renormalization succeeds formally if we assume this rela-
tion to obtain even in the presence of the electromagnetic Geld.
The scale factors in Eq. (13) then disappear without any necessity
of mentioning vertex renormalization. The proof of equivalence
to the more usual statements is easily carried through.

"In what follows we discard the subscripts + and c, since
except briefly at the start of Sec. V, we shall be dealing exclusively
with convergent propagation functions of the indicated type.
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with p the ordinary four-momentum operator. It then
follows directly that

G '~'GEAj/&(~A. (k))~(~A. (E')) I ~ OG='
=7.(5)(~ p+ ) '7.(e)+~.(e)(~p+ ) '7. (k) (23)

itself about the point yp+m=0, we obtain

G(p; f03)= (7p+m)-'+ (2m)-'s&(0)

+ (2~)-2(~p+~) S,(0)+ . .
= (vp+m) '+~G(~p), (30)

which yields in turn the following form for Eq. (18):

(pV, k'p
i
T

i p~, kv)

~'~(p' ')h. t v(p+&)+~j '~.

+y, fy(p k'—)+mj 'y„—}m(p~), (24)

with AG again analytic in the domain of interest.
Now to obtain the scattering which is independent of

the boson momenta, we can ignore any explicit de-
pendence of Gt A] on the field strengths or their
derivatives, since for such a dependence we have, for
example, the relation

wherein it is understood that

p'+k'= p+k. (25)

hG t hG SF', ($')

SA„(P) ~ 8F„(~') 8A„(t)

) G-'(x', ago]) e'"Z'xu(p~), (26)

We have here illustrated and wish further to emphasize
the point, which is fundamental to our further dis-

cussion, that in any consideration of the second varia-
tional derivative of GLA], only that part of it which

has a second-order pole on the free-particle energy shell,
that is a factor of GL0$ standing both on the right and
the left, contributes anything to the scattering. Other-
wise the factors of

sG
(b,„Bg' 4„8—„')8 ($' $), —(31)»F.,(Y)

and each derivative with respect to the photon coor-
dinates leads to a factor of the photon momentum upon
insertion into Eq. (18). We therefore require only the
explicit dependence on the electromagnetic potential,
and the form in which this may occur is restricted by
the principle of gauge invariance to the combination
II„=p„—eA„; more explicitly this means the com-
bination

whose vanishing assert the free particle character of
initial and Anal nucleon states, dominate the situation.

II.=p. «'8 (5)—A. (5), (32)

G-'(P; POj) = (~P+~)D+(2') '(pp+tn) F (p /nP)

+ (2m) '(yp+no)'F (p'/ns') $, (27)

as determined by the dual requirements of I.orentz
invariance and the condition that

G-'(p; L0])(~p+~) '~(p) =~(p), (28)

when N(p) itself satisfies

(yp+m)u(p) =0. (29)

Equation (28) prescribes the singularity of G itself for
four-momenta satisfying p'+m'=0. It follows that &i
and S2 are analytic functions of their argument in this
neighborhood. " As a consequence, if we expand G

III. PHOTON SCATTERING

We require the structure of the Green's function in

the presence of an external electromagnetic field. It is
instructive to begin our considerations with the zero-
field propagator, since this suKces to obtain the zero
frequency limit of the scattering. We thus consider the
structure

with the understanding that &1($)=p($). But Eq. (30)
now tells us that AG(yII) is an analytic function of yll
so that its derivatives can contribute nothing to any
scattering process. Our result is thus that the Green's
function, G~, eGective for zero energy scattering is"

Gi(p LAj)=(&II+~) '. (33)

To extend our considerations, we must now include
in the Green s function its explicit dependence on elec-
trornagnetic field strengths. It is generally true, how-

ever, quite independent of the expansion in the photon
momentum, that we may ignore any dependence on the
external current, J„($), since this is zero for a real
photon; that is, J„(P)=—0~A„($) contributes, after
computation of the variational derivative, a factor k'
or k'2 both of which vanish. Again, we require the de-
pendence on the 6eld strengths themselves in a very
restricted sense, for G need be correct only to the second
order of the field. Moreover, terms which depend on the
square of the field strength will contribute to the scat-
tering first to the second order in the frequency.

To see these arguments in more detail, we consider
the problem of constructing invariants which are linear
in F„„.We shall be guided in part by the requirements

' The subscript 1 on GI will be used to denote that part of the
'7 This will certainly be the case if we exclude virtual inter- Green's function effective for scattering throughout the varying

actions with quanta of vanishing rest mass. contexts of this paper.
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of charge conjugation invariance, which can be stated
in the convenient form

in terms of the additional set of parameters OR~, OR2~,

and p,'. The latter can be correctly identified as the
anomalous magnetic moment of the nucleon if we
compute from Eq. (35) the scattering of the nucleon to
Grst order in the fieM, as given by the expression

g(p' p k)(p'~'—
I T.—l p~)

8-
' d'x'd4xd4)e 'r ' 'e'& e "&u(p'o. ')

(2) J

x(~'I gG-'/ge~. (&) I ~-p I ~)u(p~)

= g (p' p k)u(p'o—'){—y„+i (p, '/e) kso ~„}u(p~)

=g(p' —p—k)u(p'o') {L(2p+k)„/2m]

+ (i/e)kpo p,„(u'+e/2m) }u(po). (36)

Equation (35) suKces to compute the scattering to
Grst order in the frequency, since any terms of second
order in the field not already contained therein are by
the requirements of gauge invariance proportional to
the square of the field tensor. Indeed, we wish to
establish the theorem that to first order in k, the scat-
tering is correctly described by the Green's function

G,= I &Ilym —-', &' F]-r. (37)

To see this most clearly, we consider a trivial analytic
continuation of the series, Eq. (35), obtained by
choosing as independent operators G~ ' and o.F, rather
than yil+m and oF. The numerical values of ORr,

will then be altered, but without changing notation, the
new series reads

G—(II I A])=G-'+G,—'(2m) 9r+. . .
+-', (2m)

—'{Gr ', oF}5Rt+ (38)

where C is the charge conjugating matrix and the
operation of transposition is to be applied to all vari-
ables of the nucleon, remembering that p~= —p. For
the formation of the required invariants, we have at
our disposal the linearly independent Dirac matrices
and the vector II„. A systematic consideration then
shows that essentially the only combination that satis-
fies Eq. (34) is o„„F„„=.oF; all .other possibilities are
simply expressible as multiple commutators and anti-
commutators of yII with o-Ii. To the first order in the
field then, it is correct to write the series

G r(II-, Pl]) =~IIym ,'u—'~F-+(2m) '(~I-I+m)'O&+" .
+-', (2m) '{yll+m, oF}5Kt
+-', (2m) '{yll+m, {yII+m, oF}}Oust

+—'(2m) 'L/II+m, L/II+ m, 0F]]5Rss+ ~ (35)

Inverting and expanding about G~, we obtain"

G(II, La])=G,+(2 )- P,+. . .

+{G» (2m)-'-,'~F}~,+ . . (39)

The theorem now follows from the observations that
when we compute the second derivative of 6 at the
point 3=0, the terms involving the coefficients F are,
as before, analytic on the free-particle energy shell,
whereas the new contributions involving the coefhcients
OR exhibit at most a pole of the first order. Indeed, the
representative terms exhibited in Eq. (38) are the
most singular members of their respective classes.

The actual form of the T matrix of Eq. (18) computed
to first order in k by means of the Gr of Eq. (37) and
expressed as the scalar product of a Pauli spin operator
with initial and final polarization vectors is'

e' T e= (e'/m)e' e—(ie/2m)p'2kpa (e'Xe)
+(ie/2m)ukpI (n e')(e nXe)+(e n)(n eXe')
—(n' e)(e n'Xe') —(e n')(n' e'Xe)]

+2''kpo" (n'Xe') (nXe). (40)

Here n and n' are unit vectors in the direction of the
incident wave and in the direction of observation re-
spectively, and p, is the total magnetic moment. The
diGerential cross section for unpolarized particles to
which Eq. (40) gives rise, may be written as

do/dQ= (e'/m')-', (1+cos'g)+O'I 6p'+(u'e'/m')
—(pe'/m')+ —,

' (e4/m4) ]
+k cosgL —as(e/m)+2&'(e'/m')]
+ks cos gtt 2p +3@ (e'/m—')

—u(e'/m') ——;(e4/m4)]. (41)

In Eq. (41), we have returned to unrationalized units in
which e' is the Gne structure constant. It should. be
remarked that for y rays with energy of 100 Mev or
more scattered from protons, the magnetic terms are of
the same order of magnitude as the Thomson cross
section, the main contribution arising from the isotropic
terms which is proportional to the forth power of the
total magnetic moment.

Equation (41) is not yet accurate enough to be
compared with experiment even in the energy range
for which a frequency expansion of the scattering am-
plitude might bc cxpcctcd to hRUc approximate vRlldity
the region below the threshold for meson production,
since there are additional contributions to the cross
section of second order in the photon energy. These
come about as a result of interference between spin

' The structure of the Green's function, Eq. (39), couid have
been inferred equally well by considering the proton to be situated
in a weak uniform magnetic 6eld, in which it is still possible to
prescribe energy values, as determined by the singularities of GI.
The term depending on SKI is then associated with the 6rst order
change in the wave functions.
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independent terms in the scattering amplitude, of
second order in the photon frequency, and the Thomson
amplitude. The terms in question may be divided con-
veniently into two classes. There are first those which
are contained in the Green's function, 6, itself. "The
leading effect on the cross section is, at Inost, propor-
tional to p2 and therefore should be small compared to
the magnetic scattering. In any case, such additions can
be readily calculated although, for reasons to be stated
below, we shall not take the trouble.

More important, undoubtedly, are the effects of the
transition of the nucleon to excited states after absorp-
tion of the incident photon, the Rayleigh scattering.
For energies below the threshold for meson production,
we may expect to obtain an approximate description of
this scattering by adding to the Green's function of Eq.
(38) members which are quadratic in the electromag-
netic field strengths.

We require only such terms as have nonvanishing
matrix elements between solutions of the free-particle
Dirac equation and, further, remain linearly inde-
pendent when such matrix elements are computed.
There are in fact only three such forms, which may be
taken conveniently as F„„', (y„II./m)F„iF, i, and
y5F„,F„„*,where F„„*is the tensor dual to F„,. Of these,
the last is effectively of third order in the frequency,
the second proportional to E', and the first to II'—E'.
For a nonrelativistic description, therefore, it is suf-
ficient to consider the addition to 6 ' of the terms

(42)

which yield the not unexpected result that the Rayleigh
scattering should be describable by means of an electric
and magnetic polarizability, n and P respectively.

For a model which includes Thomson but omits mag-
netic scattering, we then obtain the scattering ampli-
tude:

cially in view of the fact that no deviation from
Thomson scattering was detected for heavy nuclei.

(p'~' A I
T

I p~, vs)

2

t d'x'd'p'd'xd'(e 'r' 'e '"'&'N(p'o')
(2ir)4 "

x(~'I G-'~'G/&(g4, (g))s(gy, (Y)) I,= G-'
I ~)

XN(Po)e'&'e'« (4.6)

Here P, ($) is the external meson field, i and j the iso-
topic indices of incident and emergent meson.

We proceed immediately to the construction of the
Green's function, G(p, Lp]). If we consider first terms
linear in g, we have at our disposal besides the principle
of Iorentz invariance, the property corresponding to
charge conjugation invariance, as expressed by the
condition

«-'(p, I
-~&)'G-'=G-'(p, L~&),

where C has the same effect on the Dirac matrices as
in the electromagnetic case, and in addition for the
isotopic matrices v-;,

C7-;TC '= —7-;. (48)

Again, there is really only one invariant independent of
yp, that is, the quantity ps~ p, all other invariants
being expressible as multiple commutators and anti-
commutators of the two operators. For example, we
have the relation

IV. MESON-NUCLEON SCATTERING

In direct analogy with Eq. (18), the formula for the
renormalized transition amplitude is given by the
equation"

e' T e= (e'/m)e' e—nks'e' e+Pks'(nXe) (n'Xe'),
(43)

{+Pi ysv
'

f j=Z'ys'ysByv ' f . (49)

and a cross section

rr P (e'/mm. '), (43)

to within a factor of two, with ns the mass of the
m meson. We hesitate to draw any conclusions from
this circumstance since the interpretation of the experi-
mental results in terms of individual nucleon scattering
cross sections is subject to considerable doubt, espe-

"In this sense our method of calculation has greater generality
than a direct momentum expansion of the scattering amplitude.

"The values of n and P in, Eq. (44) justify the neglect of the
additional contributions of order k~ arising directly from G~.

d(r/dQ= [(e'/m) nk' j' ', (1—+cos'8-)
—2L(e'/m) —nk'jPk' cosfl+P'k4-,'(1+cos'(l). (44)

The characteristics of Eq. (44) are suited to fit the
one existing experiment' with the not surprising values
for n and Pie'

It is important to remark that in the choice of a funda-
mental coupling term to define the constant g, we have
at our disposal either —gys~. fi, or i(g/2m)yean&&&~ p,
since both lead to the same scattering of the nucleon by
p to the 6rst order in the momentum transfer. "As will
become clear gradually, it is convenient to choose the
latter form. '4

Employing the effective Green's function G&,

Gi [yP+m+i (g/2m)ys—y—„B„~.fi)—', (50)

"The symmetry of Eq. (46) in the meson field variables immedi-
ately establishes the relation

(p'~', O'I T
I p~, v') = (p'~', v'I T

I p~, 6')— —
There was, of course, a similar relation in the case of photon
scattering.

+ We recall that N(p)y5u(p)=0.
24 It is perhaps well to emphasize that this choice has absolutely

nothing to do with the fundamental dynamics of the meson-
nucleon system.
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which will be the subject of a theorem, the expansion
to first order in p analogous to Eq. (38) can be expressed
as

G—'(p Ly])=Gi '+Gi '(2m) 'Fi+
+-,'(G, ', ps~ P) O',t+ (51)

p (gs/2m)g'+ps(g/2m)'~ 9)x (f)$/c)f),

whereas the leading P waves are of the form

(52)

)r[g'/(—2m)s]Vp Vfl+)ising'/(2m)']

Xe~ go~~ V~PXVpf, (53)

where e~ p represents the three-dimensional Levi-
Civita tensor density. Equations (52) and (53) provide
the justification for the conclusion of a theorem for the
P wave, although not for the S wave.

If the parameters pi, p2, X~, and X2 were all of order
unity, it would betoken the validity of the Born
approximation for pseudoscalar theory with pseudo-
scalar coupling, at least in the low-energy region. Yo
understand this, one need only recall the form of the
Hamiltonian for this theory which results from the
Dyson or Foldy transformations. " To see to what
extent the actual circumstances differ from this simple

one, it is instructive to compare with experiment the
phase shifts obtained from a Green's function con-

25 Thus, a form such as @ 2@ is of no interest in the present
dsscussxon.' F. J. Dyson, Phys. Rev. 73, 929 (1948); Berger, Foldy, and
Osborn, Phys. Rev. 87, 106 (1952).

of which we are assured that only the first term con-
tributes anything to the scattering. Indeed, the inser-
tion of Eq. (50) into Eq. (46) yields the Born approxi-
mation for the P wave of order (q'/a&), where cu is the
meson energy, whereas the S wave behaves as cv'. If we
admit, provisionally, the result that any other P wave
in the theory must behave as q', we should then have
established the validity of the Born approximation to
the P wave in the limit as cv—&0. On the other hand, we
shall see that there may be S waves in the theory of
zero and first order in u.

To verify these last assertions, we must consider
those contributions to G which are second order in g
and no more than first order in the derivatives of each
of the fields."A systematic procedure for generating
those forms which have nonvanishing and linearly
independent matrix elements between free-particle nu-
cleon states is to transform the quantities ~ P (yll) "~ P,
m=0, 1 . by commuting the factors yII to the outside
where they can be replaced by —m. By this means we
find five independent forms, conveniently expressed as
4', y,~ Px&„P, (c)„Q,)', o',.~ (c)„gxc),$), and {y„II„,
B„&,f)„&,) By c.arrying out the reduction to the non-
relativistic limit, separating S and P wave eGects, we
find that the S wave up to first order in the meson

energy can be represented by adding to G ' the forms

structed from Eqs. (50), (52), and (53). Turning first
to the P waves, we obtain by a straightforward calcu-
lation, the following formula for the transition ampli-
tude, expressed as an operator in isotopic and ordinary
spin space,

(Al 2'les) = —(g/2m)'(r "L~ q~ q'/ —~(q)]
+r'r~t ~ q~ q'/&o(q')]} —»rEg'/(2m)']q'q 8'

+2)tsLg'/(2m)']e, ,srso" q'X q. (54)

If we decompose the scattering into the separate
channels labeled by values of total isotopic spin and
angular momentum, we obtain for the phase shifts, in
the approximation in which t,"sin8 —6, the formulas

~»= (4/3) (g'/4~) (p/2m)Y(p/~)
X t 1+-,'(ce/m) (Xr+)~s)],

= —(2/3)(g'/4 )( /2 )' '( / ) (55)x LI——,'(~/m) (&,—2&,)],
~»= —(8/3) (g'/4~) (~/2m) Y(~/~)

XLI—-,'-( /m) (),+4)t,)].

o.33=0.235''. (56)

To obtain the order of magnitude of Xt+)ts from Fqs.
(55), we shall set &o—fi and assume thatss

We then find
(g'/4~) () /2m)'=0. 081.

)t i+) s—4.8M/)i, (57)

a result that hardly inspires confidence in the validity
of the energy expansion. " Actually, if we look upon
Eqs. (55) as the linear approximation to resonance and
antiresonance formulas, then Eq. (57) predicts a reso-

s7 H. A. Bethe and F. de Hoffman, Phys. Rev. 95, 1100 (1954);
J. Orear, Phys. Rev. 96, 176 (1954).

"Value quoted at the Fifth Annual Rochester Conference (to
be published) by G. Chew and F. E. Low, based on fit to data
using an effective range formula. The S wave in photoproduction
yields the somewhat smaller value of 0.066. See G. Bernadini and
E. L. Goldwasser, Phys. Rev. 95, 857 (1954).

This value justified, however, the neglect of the corrections to
the Born approximation that can be obtained directly from GI.

Here p is rest mass of the meson and rf =q/p. From Eq.
(55), we can derive the interesting result that if nsi ——rr»
and n&~ are reduced compared to their Born approxima-
tion values, then n» is enhanced relative to its per-
turbation theoretic value. This is a consequence of the
fact Xi+As necessarily lies between X,—2X, and )t,+4K,,
both of which are positive, by hypothesis. Under the
same assumptions, X~, itself, is necessarily positive. It
is perhaps worth emphasizing that this result holds for
the nonrelativistic limit of the relativistic theory and is
independent of the actual dynamics of the meson-
nucleon system.

Of the P-wave phase shifts only n33 is known with
any accuracy. For meson energies below 100 Mev,
roughly, it is represented by the formula'7
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nance at much too low an energy compared with ex-
periment. It almost certainly determines that the other
phase shifts change sign compared to their Born values
if we take Eqs. (55) seriously for these also. This means
that Eqs. (55) have at most a qualitative validity even
in the extreme low-energy region.

We conclude this section by comparing with experi-
ment the S wave represented in Eq. (52). We first
record the scattering amplitude

(g'j I
T

I qi) =p, (g'/rr4)8, , p,—(g/84r4)'

x;; .L (q)+ (q')7, (58)

from which we obtain directly the phase shifts for
isotopic spin ~ and —,',

n3 ——pi (—g'/4x)(p/M-) g ,'p2—(g—'/4rr) (p(u/4'') g,
(59)

p i (g /44r) (p/~) rl+ p2 (g'/47r) (p~/I') ~.

propagation functions remain to be renormalized. It is
convenient to change variables from E, 1' to (P), (A),
the vacuum matrix elements of the quarsfised fields. "In
carrying out this transformation, it is well to remember
that E and J each depend on bo/h matrix elements. We
thus find, suppressing indices, and recalling the defini-
tions

that
b„=~(A)/», g~=~(y)/SZ, (63)

(S/») (~G/SZ)
=S L~'G/~(~»(A)7S. +(~S /~(A)) (~S/~(~)) 8,

+b L~'G/~Q»Q)7(~Q)/»)
+(~S /~(~))(~G/~Q)) (~(~)/»)

+(&/»)L(~(A)/~&)(&G/&(»)7 (64)

When Eq. (64) is inserted into Eq. (62), only the
first two terms survive in virtue of the observation that

There is perhaps still some question as to whether the
S phase shifts behave strictly linearly with momentum J
near zero energy. For the sake of illustration only, we
shall favor such advocacy and select the phase shifts
of Orear, "

= J"d'((~Q)/»(P')) g„-'(P'~)e' ~=o, (65)

c 3= —0.11', o.x
——0.16q.

We then find that

pg —0.01, p2—0.56,

(60)

(61)

since the functions (h(A)/8E) =8(p)/» are nonsingular.
The renormalization goes through smoothly if first we
remember Eq. (17), and second we recall the relations

a rather dramatic expression of the difficulty of the
problem of constructing a dynamical theory of the
S wave.

(A)=Z4&A+Oi( ')A+Qi(Q' —p')y,

(y)=z,—:y+Q,( ' —')y+o, ( )A,
(66)

V. PHOTO-MESON PRODUCTION

Since it is our aim to display a formula for the transi-
tion amplitude in which the contribution of the meson
current alone is separated from the remainder, we must
alter somewhat the procedure followed subsequent to
Eq. (13). Let g„be the photon propagation function
and f44 that for the meson. Let us further suppose that
the renormalization constants Z~ and Z3 have the same
significance as in Sec. II and that Z5 is the constant
that renormalizes g~. For the rer4orrr4al4zed transition
matrix, it then is a straightforward matter to derive the
expression, analogous to Eq. (13),

~(p'+v' p &) (p'a", v'i —
I
7'I—p .~p)

Z2Z3 Z5

J
~d4g'de'd4(d4n7 (p'o'r') e '""'

(2~)
—zql y'g —& (

I /t) G—g (
I +II)

XPG(~",~"')/t Z, (&")sJ,(g") I,G- (*'",x)

xg (~",~)„~(p«).' ""~, (62)

wherein E is the external source of the meson field, and
we have included the charge degree of freedom in
designating variables for the nucleon. The various

where A and @are the prescribed fields and the operators
0 and Q possess the property

o(o) =Q(o) =o. (67)

eg
t d'g'd'x'd'pd'xe '&' 'e '&'&'u(p'a' r')

(24r)4

X((x'
I
G '8'G/Rgb, (g') 8eA„(g)G-'I x)

-(*'IS -'(~', ~")~b (",.'")/~~A. (~)

X&G '/&gyi(g'")
I x)}~ 4=ON(par)e'"e'"&, (68)

which is understood to be expressed completely in
terms of finite propagation functions. Of the two terms
of Eq. (68), the first has the same structure as en-
countered in the previous sections, and will be con-
sidered below. We turn now to the second term, which
describes the efI'ect of the meson current.

The general form of the renormalized meson propa-

'0 See J. Schwinger, reference 12.

Since it is only the latter value of the operators that
enters Eq. (62), the renormalization constants cancel
out and we obtain finally the desired formula:

~(p'+v' p &) (p'a", A—I
7—'I p r, &p)
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where q is the meson-momentum operator and X (q'/m')
is an analytic function of its variable. The dependence
of BM on the electromagnetic potential is given by the ~h~~e q;s the matr, x
replacement

8„8;,~ il„5,,—ieA„(V's),;, (75)

&0

V'3 — Z

.0
—i 0~
0 0
0 0.

(7o)q
—& q

—eA.
(76)

To construct invariants depending explicitly on the
field strengths and currents, we have at our disposal It follows that
solely the vector q„. The only invariants permissible in
a power series expansion are then of the form ( ') "q»J», r; V3;, ,' —~ 7'3

for integral e, and such terms can contribute nothing Alternatively we could have remarked that
to processes involving real photons. In the present
instance, therefore, it suffices to assume the relation

(77)

rl»'v' 0= «LP»

i eI—(1+ )A., '~3 (78)(71)BM- (q, LAX = B
—

(q —eA, Lo

gator in the zero-field limit is given by the expression: Here p, ~' and p„' are anomalous moments of proton and
neutron respectively. The familiar last term of Eq. (74)

BM
—

'(q, LO]) is a consequence of the requirements of gauge invariance
= (q'+pP){c 1+(q'+p')/m'j&(q'/m')), (69) for the interaction of charged mesons with the electro-

magnetic field, as expressed by the replacement

The combination that occurs in Eq. (68) can now be
evaluated using Eqs. (69) and. (71) as follows:

BM '(~BMI«A ) I
o= (~BM '/«A ) I oBM

=2q, L1+O(q'/m') $(q'+ p') —'L1+O(q'/m') j. (72)

Consequently, the relative correction to the Born ap-
proximation is of the second order of smallness in q.
Likewise, the matrix element for the emission of a
meson, 8G '/8(gp), taken between free-particle states
is by definition given by its Born approximation with
relative corrections once again of the second order.
Taken together, these statements constitute a proof
that the contribution to photoproduction arising from
the meson current is given correctly to the leading order
in the boson momenta by perturbation theory, with
the relative corrections as specified. "The actual form
of the transition amplitude for charged production is

(q'~IrMIsl)

Either Eqs. (75)—(77) or Eq. (78) reminds us of the
existence of the last term in Eq. (74).

Now this term contributes to charged photo-meson
production an S wave which is energy independent. We
have only to observe that there is no other energy-
independent S wave in the theory to complete the
proof of the Kroll-Ruderman theorems. Direct com-
putation establishes that the remainder of Gl con-
tributes an 5 wave which is linear in the photon (or
meson) energy. Any other 8 wave must appear in G—'
as a term bilinear in A, g and will be at least, first order
in the photon energy, according to the requirements of
gauge invariance. Such a term will be exhibited below.

To separate photoproduction processes according to
the charge of the meson produced, we introduce the
usual definitions

~=-(2)-'(~+'~.), ~*=(2)—:(~-i~),
(79)

71 ~%2
y

7:—2 71 172 ~

Up to terms of first order in the meson energy, Gi
yields for positive and negative meson production fromk q —Ape&(q)
protons and neutrons respectively,

wherein the isotopic matrix element has already been
evaluated Lcompare Eq. (79) below).

Ke turn finally to the consideration of the nucleon
current, for which we assert that the leading contribu-
tions to both the S and I' wave are contained in the
Green's function (which ignores the neutron-proton
mass difference)

G-'(p'IAj L~j)
=yfp e (1+rs)A]+m —p— '~F (1+rs)—— —

',p„'rrF ,'(1 rs)+i(—g/-2m)ys7-»8»—~ P

+ (eg/2m)ps'„A„, 'fats, ~ P$. (74).-
"The corrections to the meson current are actually only one

order smaller, when one takes into account the nucleon current.

~(—)/0 (+)=(1+2@/m) =1.3, (81)

not in essential disagreement with experiment. "
As the final theorem of this paper, we have the

statement that except for relative corrections which
vanish as co —& 0, the I' wave is given by Born approxi-
mation computed for a nucleon characterized by its
experimental charge, magnetic moment, and mesic

"Sands, Teasdale, and Walker, Phys. Rev. 95, 592 (1954l.

T~ e=v2(eg/2m)ie e{1&L&p(q)/2mj). (80)

Equation (80) predicts a threshold yield of negative to
positive mesons:
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coupling constant, that is, by the Green's function G&.

By analogy with the meson scattering case, G& generates
a F wave of order (kq/~), whereas any other F wave
in the theory behaves at least as kq.

We may record here for convenience the leading
P-wave terms for positive production from protons,
negative production from neutrons, and neutral pro-
duction from protons, respectively:

g (o kXe)(e q)
T+ e=&2 p„

2m Go

g ((r q)(e kXe)
T e=v2-

2m kp

(o.q)(0 kXe)

kp

(~ kXe)(e q)-

(82)

(83)

g (o.q)(0 kXe) (o kXe)(e q)
TO e Jlly

2m
"

Mkp
(84)

in terms of the total magnetic moments of proton and
neutron.

As with the processes of photon and meson scattering,
our methods provide a basis for the phenomenological
treatment of photoproduction as long as the experi-
mental behavior of the cross section is "normal, " that
is, as long as the 5 wave goes linearly and the P wave
cubically with the meson momentum. We prefer not to
enter into the details of a numerical analysis since such
an analysis would not differ substantially from con-
siderations that have already been recorded in the
literature. "We shall, conclude this work, however, by
providing the framework for such an analysis, at the
same time essentially filling in the details of proofs
given in the foregoing.

It is amusing to remark erst that in the formation of
invariants bilinear in A, P we are not constrained to
terms which are explicitly gauge-invariant. Thus a
term in G ' of the form (2m) 'iy~y„'B„~ P, not
hitherto considered, gives rise by the considerations of
gauge invariance discussed in connection with Eq.
(78) and preceding equations, to an additional term of
the form

(e/(2m)'hag ~kL~3 7"]LA '+-,' ( CI'A„)

+2AxBQB/l+ (BRA p)BQ+ (BpAQ)Bxff ' (85)

of which the erst three members essentially describe
electric dipole absorption with emission of charged
mesons into an 5 state and the last two members
electric quadrupole absorption with emission in a
P state; both eGects are quadratic in the energy-
momentum vectors of the bosons.

Turning to forms that are explicitly gauge invariant,
we have three possible types of isotopic dependence,
s.P, (~X/)3, and $3. If C stands for a linear combina-
tion of these, the permissible, independent Dirac inva-
riants at most of second order in the momenta are four
in number, y~C oF, ysyqB„.C F„q, f,y,y„B„C,o F}, and
(ynII„pity„B„CFq„}.Passing to the nonrelativistic limit,
we obtain as the leading 5 wave Co" E, representing
electric dipole absorption, and as the leading P waves
VC I and e V'CXH, giving magnetic dipole absorp-
tion. To obtain additional electric quadrupole absorp-
tion beyond that contained in Eq. (82) we must include
terms of still one higher power in the energy of the
photon. We have therefore verified the assertions about
the minimal energy-momentum dependence of the
invariants bilinear in electromagnetic and meson fields.
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