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The generalized Kramers-Kronig dispersion relations for charged bosons are used to treat the problem of
pion-nucleon scattering. The complications associated with the charge of the pions are discussed. The im-
portance of a "bound state" corresponding to the neutron is emphasized and its constrbution to the scatter-
ing amplitude is computed rigorously, assuming only that pions are pseudoscalar and that the interaction
with nucleons is charge-independent. The connection between our exact dispersion relations and the approxi-
mate equations for pion-nucleon scattering given by Low is discussed. A rigorous effective-range relation is
derived.

1. INTRODUCTION
' 'N the preceding paper, a new derivation of dis-
~ - persion relations of the Kramers-Kronig type has
been given which is of sufficient generality that the
problem of the scattering of charged pions by nucleons
may be treated. In the present paper we wish to special-
ize the results of I to this case and cast them into a
form suitable for comparison with experiment. The
application of dispersion relations to pion-nucleon
scattering was first suggested by R. Karplus and
M. Ruderman (preprint, January, 1955).Their results,
however, could not be applied to the description of the
scattering of charged pions by protons. In view of the
importance of this tool in the analysis of experimental
data, it was felt worth while to discuss the problem in
detail.

In Sec. 2, we shall give the explicit formulas appro-
priate for the description of the scattering of positive
and negative pions by protons. There appears in these
dispersion relations a term corresponding to a rather
unusual bound state, the neutron, whose contribution
may be expressed in terms of the strength of the pion-
nucleon interaction. In Sec. 3, the results will be
discussed and the connection between our work and that
of I.ow' will be developed.

2. DISPERSION RELATIONS FOR
PION-NUCLEON SCATTERING

The general dispersion relations given in I must now
be written explicitly for the case of pion-nucleon scatter-
ing. Regarded as a matrix in nucleon isotopic spin
space, the forward-scattering amplitude describing the
scattering of a meson with isotopic spin index P into
one with isotopic spin index n (o., P=1, 2, 3) may be
written as

T p(~)=~ sT"'(~)+ 'Lr- rp jT"'(~) -(21)

where cv is the total meson energy in the laboratory
system and we have assumed charge independence.
Both T") and T&') have a dispersive and an absorptive

~ Supported in part by a grant from the U. S. Atomic Energy
Commission.
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T&" (cp) =D&"( )c+pie(oi)A "&(co), j=1,2. (2.2)

We have introduced the factor e(oi) in order that our
notation coincide with that of I. We consider here only
positive energies, so it is of no importance. In place of
the representation we have been using it is convenient
to introduce the amplitudes for pure isotopic spin
states, namely

Tf ((u) = T&'& (cp) —T&'& ((u)

T&(ro) = T&'& (a~)+2T &'& (co).
(2.3)

We have assumed that the nucleon charge state does
not change and we shall assume that it is a proton. It
follows immediately from Eq. (2.3) that

T"'(~)= sLT-(~)+T+(~)j,
T"'(~)= s LT-(~)—T+(~)3,

where T~(cp) are the forward amplitudes for the co-
herent scattering of m+ mesons by protons, i.e., z+ —+ x+,

—+ z . We note that the four quantities D(~) and
3(&) are real since the nucleon charge is not changed.
LSee discussion following I-(2.22).j Thus D&" and A &"

are respectively the real and imaginary parts of the
forward scattering amplitudes defined by Eq. (2.4).
Since we have our simple dispersion relations LI-(2.40),
I-(2.41)g only for the quantities D"& and A&'&, it is
evident that neither the pure isotopic spin amplitudes
nor the charged meson amplitudes satisfy them sepa-
rately. The mathematical reason is, of course, that
these more physical amplitudes have no simple behavior
of evenness or oddness when co ~ —~. We shall return
to this point later in the discussion.

We now write the dispersion relations for T") and
T(') in the following form:

s LD-(~)+D+(~)3—st.D-(~)+D+(1 )3
2(~' —~')

t
",~'sLA-(~')+A+(~') j

do)' , (2.5)
&

p (o&"—li') (a)"—co')

(2.4)

sLD-(~) —D+(~)3—-sl:D-(~)—D+(~)j
p

,lEA-( )—A+( ')3

o (~"—u') (~"—~')
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These are just Eqs. I-(2.32) and I-(2.33), with &oo
——p.

We have introduced the obvious notation T~(ru)
=D+(&u)+i e(a&)A+ (&o) Recall that the integrations
over the singularities are to be carried out in the sense
of Cauchy principal values. All quantities appearing
in Eqs. (2.5) and (2.6) are to be computed in the labora-
tory system in which the proton is initially at rest.

For the region of integration extending from p to ,
we have the relations

0~(s)) = (4~/k)A ~((v), (2.7)

where k = (co'—p') l and 0.+ (&v) are the total cross sections
for all processes originating from positive or negative
pions incident upon a proton. In the integration region
0&co&p, there is a contribution from a "bound state"
corresponding to an intermediate state consisting of a
neutron. This may be computed almost exactly from
meson theory.

To find the bound state contribution we write out the
amplitudes A~(cv) as sums over a complete set of states,
following I-(2.23), modi6ed of course approximately to
describe our charged-meson amplitudes:

j (0) I p& I's(z.—z-+
n, p&

(0) I p& I
~(z„—z„—~) &, (2.8)

where j+(x) are the "currents" associated with the
charged meson fields, defined by

( '—&')4(~)=j-(*),
(2.9)

(p' — ')4*(~)= j+(~),
and the connection between p, p*, and the g„of I is

~= (~ —'~)/~,
(2.10)0*=(@+~4~)/~2.

It is evident that the only states
I n& which can possibly

contribute to an integral over co in the region 0 &cv &p
are those corresponding to a single nucleon state. For
all others, even though we allow co to be less than p
(or k'=~' —p,'(0) and consequently E = (M„'+k')'
&M, where 3f is the total rest mass of the states

I e&, the 6 functions can never vanish. For the positive
values of cv to which we have restricted ourself, only
the second term in (2.8) can contribute and in par-
ticular, if Ip) represents a proton state, by charge
conservation only (eIj (0) I p) is different from zero,
corresponding to the emission of a m+ meson by a
proton leading to a neutron state. The "energy" of this
state is E„=M p'/2M, correspon—ding to ~=p,'/2M
and k'= —p'+ (p'/2M)'. Consequently only A+(a&)
exhibits the 6 function singularity for 0&co&@.

Since the state In& represents a single nucleon state
the required matrix element in (2.8) may be expressed
in terms of the vertex operator F5 corresponding to the
emission of a virtual positive meson by a proton leading
to a neutron. According to Low, ' we have to within

3 See reference 2, Eq. (3.8). It is worth noting that the form of
this matrix element is essentially independent of any details of
the pion-nucleon interaction, although we have used the ter-

terms of order (p/M)' the result

(eIj (0) Ip)= —igv2e lr/2M,
and thus

(2.11)

k' ( p,
'

q
A+((o) = —2irg' 8I ~— I, 0(~(p. (2.12)

(2M)' E 2M)

In these equations, g is the renormalized coupling
constant of the symmetrical pseudoscalar theory (in
Gaussian units, with A=c=1) and M is the nucleon
mass. Note that we always maintain the relation
k'=oP —p even when ~&p, . In other words, our scatter-
ing amplitudes are to be expressed entirely in terms of
co and then continued from ~&p to cv&p. We observe
that for ~)p, only the first term in Eq. (2.8) contributes
to A+(a&), and it is a positive contribution, and as a
result of the fact that k'= aP —p'=+ (p'/2M)' —p', A+(cv)
is also positive for co&@. The contribution of this neu-
tron state to the real part of the forward amplitudes is
numerically very important.

We now substitute Eqs. (2.7) and (2.12) into Eqs.
(2.5) and (2.6) and also change the variables from
energy to wave number. We find then, using the same
letters to designate functions of k that had been used
for functions of co, the results

jp ~oo

dkll:D-(k)+D+(k) 1—ll:D-(0)+D+(0)3=
4X'~ p

0 (k')+0-~(k') k' 1
X +2f' , (2 13)

k"—k' cv' —(p'/2M)' 2M

GO k2~ &-dk'
lI:D-(k) —D (k)l —-OLD-(0) —D+(0)3=

p 4x~p M

o. (k') —0~(k') k' (u 1
X —2f' ——. (2.14)

k"—k' a&'—(p'/2M)' p p

We have introduced the small coupling constant

f=pg/2M characteristic of the pseudovector inter-
action. The energy dependence of the bound state
term is exact, however the coefficient, 2f', as we have
remarked before, is accurate only to terms of order
(p/M)2. The final form of the dispersion relations for
the individual amplitudes D~(k) is obtained by com-
bining Eqs. (2.13) and (2.14):

1 p a)& 1 t'
D+(» —-I 1+- ID+(o)—I

1—ID (0)
2E p) 2& p)

k' p" d(o' ~+(~') ~ (a)') 2f' k'

4ir2~ „k' (o' —(u a)'+&a p2 (u —p2/2M

1f ~l 1p
D-(k) —-I 1+- ID-(0) —-I 1——ID+(o)

2E p) 2i
k' t" des' 0 (o)') 0.„((u') 2f' k'

4'll ~y k 07 —M %+M. p GO+p/2M

minology of the usual p5 theory, and depends only on parity and
angular momentum considerations. Zt a8ords a definition of the
coupling constant which measures the strength of the interaction.
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We have reverted to the original variable, co', in the
integrals, although the wave number is more convenient
for numerical evaluation.

3E~ ((u) =M~*(—te). (3 2)

As was shown in I, it is the 3E's for which the dispersion
relations, strictly speaking, hold, and it is this fact that
leads to our fundamental relations Eqs. (2.5) and
(2.6). In the case of neutral pions, because the m' is its
own charge conjugate we have

Ms(oi) =Mo*(—ce), (3 3)

and consequently the appropriate dispersion relation is

Dp(oi) —Dp(li)

2(res —ir') I"
J

dN CV

71 O

As(~')
(3.4)

(~&s ~s) (~&s ~s)

Our expressions for the amplitudes D~(k), Eqs. (2.15)
and (2.16) bear a striking resemblance to the equations
for pion-nucleon scattering recently proposed by Low.
In fact, if one assumes that scattering occurs only in
p-states and further considers the limit M~ ~, and
replaces our exact total cross sections by the total
elastic cross sections, one gets two combinations of
Low's three integral equations for the phase shifts. '
We can obtain only those which do not involve spin
Qips, because there is no spin Qip in the forward direc-
tion. Our expressions are of course much more general

4 Note added in proof. It has been shown by one—of us (R. O.)
and independently by W. Thirring (private communication) that
the spin Qip equations may also be deduced from the causality

3. DISCUSSION

The final forms of the dispersion relations, Eqs.
(2.15) and (2.16), for the real part of the scattering
amplitudes, D+(k), are quite different from what one
obtains by naively applying a dispersion relation such
as Eq. (2.15) to the individual amplitudes for the
scattering of positive and negative pions. We should
perhaps note that this is the correct procedure for the
case of +' scattering. The underlying physical reason for
the profound difference between the scattering of
neutral and charged pions seems to be that in making
the continuation of the scattering amplitudes to nega-
tive frequencies, the charge of the beam must be
changed. Thus only the symmetric and antisymmetric
combinations of amplitudes which we have considered
have simple properties when we continue them to nega-
tive frequencies. It may in fact be shown that if we
de6ne two quantities M~(o&) by the relations

~a (~)=D+ (oi)+ s~+ (ce) (3.1)

which coincide with T~(&v) for ca) 0, that

although they are not equations for the determination
of the complete scattering amplitudes.

We may also provide the exact form of the eGective
range relations which have been suggested by Chew
and I.ow' by expanding the integrals in Eqs. (2.15) and
(2.16) in powers of co. This must be done with some care
because of the singular nature of principal value in-
tegrals; however, the leading term is trivially obtained
simply by setting co equal to zero. Calling the left-hand
sides of Eqs. (2.15) and (2.16) L+(k), we have the
rigorous effective range relations

1
'

& L~(&')

coal

23')

2f2

(taming'/23')
I

"do~'o.+(ta')+o (t0')
+ . (3 5)

47/ ~
p, k M

Note that the effective range, r„defined by

I
"da&' o+(o)')+o. (o~')

(3.6)

Using the value of f' given by reference 5, namely
0.081, and the experimental data on the total cross
sections one finds h(p) —6(0o) =0.18/p' which is pre-
cisely the value given by Orear' for 6 (li) = 2Lai —as7/3li.
Thus to within the present experimental accuracy, we
may conclude that A(~) =0. We have not as yet been
able to prove theoretically that A(0o) must be zero,
but it would not be unreasonable. If true, Eq. (3.7)
then provides us with a sum rule relating the difference
of the s-wave scattering lengths to the coupling constant
and the total cross sections.

The results obtained in this paper have been applied
to the phase-shift analysis of pion-nucleon scattering
data by H. L. Anderson, W. Davidon, and U. Kruse.
This work will be published shortly.

considerations of the preceding paper by studying the derivative
of the scattering amplitude with respect to angle, evaluated in the
forward direction.

5 G. F. Chew and F. E. Low, Fifth Annual Rochester Con-
ference on High-Energy Nuclear Physics, 1955 (to be published).' J. Orear, Phys. Rev. 96, 176 (1954).

is a positive quantity.
Note added t'I proof An inter. e—sting sum rule may

be obtained by dividing Eq. (2.14) by ca and passing
to the limit of ~—+~. Within the framework of the
assumptions already made in deriving the dispersion
relations it can be shown that the difference

I
D (o~)—D(&o)7/~ either approaches a constant or goes to

zero as 1/o~s. Calling the quantity D(ce), we have the
result

4 1 f' dM

&(l)—&( ) =—+ J
—I:a-(~)—a+(~)7 (3 7)
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