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(A1), (A2), and (A4) imply

S'I;= —i I dose "&—*ztz( z)—

&((ep„+', zt-p„„AP„)~r&„(*), (A5)

which may also be written as,

S'I.= i—~dote 's—s' zts( i—)

The invariant functions e and p, must depend only
on the invariants that can be formed from pz and pz,
which are (zzzN)z and (AP)'. This, together with the
assumption on the analyticity of j in the neighborhood
of Ap„=o, implies that we may write

e= eo—er(AP)'+ ez(AP)'—

t =t o t z—(AP)'+t z(AP)'

lp~ ~
" I If these expressions for e and p, are subsittuted into thetr /c)A„c)A, ) )

p 2 p v 1~

& ctg„cjoy„) ) last equation, one readily obtains Eq. (10).
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The dispersion relations of Kramers and Kronig as generalized for charged and neutral Bose particles
with finite rest mass are derived in a new way using the formalism of quantum 6eld theory. The alternative
forms of dispersion relations obtained by making various assumptions on the high-frequency limit of total
cross sections are used to obtain information about the high-frequency behavior of the total cross section
for the scattering of p rays by electrons.

1. INTRODUCTION
' "N two recent papers, ' a discussion has been given of

the derivation of the Kramers-Kronig dispersion re-
lation for photon propagation from the standpoint of
quantum field theory. It was shown in the first of these
papers (GGT) that the relation followed from the
"causality requirement" that the commutator of two
vector potential operators taken at space-like points
shall vanish. The derivation was based on the use of
perturbation theory and a quite restrictive form of
interaction between matter and electromagnetic fields.
These two limitations were removed in the second paper
(G). Another problem treated in GGT was the dis-

persion relation for Bose particles with mass. Only a
very idealized situation was considered and the dis-
cussion was very involved and not very satisfactory. In
addition, some erroneous and misleading statements
were made in connection with the results. One of the
purposes of the present work is to give a simplified
and more satisfactory derivation of the generalized
dispersion relations for particles with mass based. on a
general formulation analogous to that used in G.

In Sec. 2, we shall discuss the scattering of bosons
with finite mass by a matter system, the exact nature
of which is unimportant. We shall use no specific
theory to specify the interaction in detail. Only the

* Supported in part by a grant from the U. S. Atomic Energy
Commission.

'Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612
(1954); M. L. Goldberger, Phys. Rev. 97, 508 (1955).

usual assumptions of quantum field theory necessary
for the definition of an 5-matrix are used. Section 3
contains a discussion of the results and a comparison
with the work of GGT.

We shall confine our attention in this paper to the
scattering of bosons. There are a number of novel
features involved in the fermion scattering problem and
these will be treated in a separate paper which is being
prepared in collaboration with Dr. R. Oehme, We
remark only that the dispersion relations derived here
do not seem to hold in the case of fermion-fermion
scattering processes.

(t '- &')4-(*)=j-(*) (2.1)

where the "current, "j (x), will be assumed to depend,
perhaps, on p (x), but on p (x). (To avoid the latter
we do not carry out expl&c&t wave function renormaliza-

2. DERIVATION OF DISPERSION RELATIONS

We consider the scattering of particles of mass p, ,
described by a real boson field p (x), by a matter sys-
tem, the exact nature of which need not be specified
too closely. (We shall assume, however, that it is
distinguishable from the projectile field. The difhculties
which arise in the case of identical particle scattering
will be discussed in Sec. 3.) The index o. may desig-
nate an internal degree of freedom of the boson field,
such as isotopic spin, polarization, etc. The Heisenberg
equation of motion for p will be taken to be
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tion; if the above assumption is not correct, or if one
wants to do the renormalization at this point, it is
simple to generalize the derivations. ' We assume that

is an Herrnitian operator. We shall furthermore
demand that

coefBcient of this factor F s(k, q; p'X', p», we have

F„&(k,q; p'a', p) ) =i~' d'xe 's'(p'X'
I (g (x)gs(0))

-&(»)I j-(x),A(0)) I P~)

X(i'— .')(~'—,')(p'~'l(e. (x)y&(y))+IP», (2.4)

where (p (x)ps(y))+ stands for the familiar F-bracket
of P (x) and Ps(y). For real particles, k'=q'= —p'.
Carrying out the operations indicated in (2.4), we
obtain

f
F s(kq p'X' pX)=i d'x Id'ye '" *+*&&—

x(P'~'l(j-( ) j (y))+—~( — )

~Lj-(),A(y))l») (25)

It is convenient at this point to assume that

(x) ~ rP. xj (0)eiP z— (2 6)

where P is the total momentum operator. I It is sufK-
cient to assume that only the time dependence of j is
given by a relation like (2.6) but the algebra is simplified
by the assumption of full translational invariance. )
Using Eq. (2.6), we may easily separate from Eq. (2.5)
a factor of (2x)'8(p'+k —p —q) which expresses the
over-all energy momentum conservation. Calling the

~%'ave function renormalization must, of course, be carried
out in practice eventually. All of the relations to be derived are
homogeneous in the scattering amplitude and a multiplicative
factor is of no consequence.

which follows from Eq. (2.1) and the requirement that
the commutator of two p's taken at space-like points
shall vanish. This is our causality condition.

A typical physical situation which could be described

by our formalism is the scattering of symmetrical
pseudoscalar mesons by nucleons in which case the
index 0. refers to the isotopic spin of the Ineson field.
In the conventional theory, j (x) is given by

~.(*)= 'g~y —.O+~"~. ~(~~s—)~., (2 3)

where we have explicitly included the mass and meson-
meson interaction renormalizations.

We now calculate the I'"eynman matrix element for
the process in which a particle of four-momentum q,
index P, is scattered into a particle of four-momentum

k, index n, while the matter system goes from p, X to
p', X'. The labels X, X' mean all quantum numbers beside
the four-momenta, p, p' needed to characterize the
matter system. This matrix element is given, just as
in G, by

r
5 s(k,q; P9',pX)=—i d4x d' ye '" ~"&

where we must remember the restriction p'+k= p+q.
tAte specialize now to the case of forward, but not
necessarily coherent scattering, i.e., we put p'= p, q= k,
but allow n and P as well as X' and P to be distinct. We
write then'

F-s(k ' ~',lt) = d' "(P~'l(j-( )js(0))+
—~( o)I j-( ),js(0))I P&) (2 g)'

The state
I p) ) of the matter system will be assumed

to be stable. Under this circumstance we may define a
quantity M s(k; X',X) which is fundamentally simpler
than F s(k;X',X) and which conta, ins all the same
information:

M.,(k; X',X) =—i d'xe-"*(pX'I q(x)Lj.(x),j,(0))
—~( o)Lj-( ),A(0))IP&), (29)

where tt(x) is the step function, zero for xs(0, unity for
x,)0. The relation between F s(k; X',X) and M s(k; X'X)

is as follows: If the two quantities be written as a sum
of a dispersive and an- absorptive part, where the
division is made according to whether real or virtual
intermediate states are involved, one 6nds

F.s(k;X',X)=D p( k;)';A) +i e( kp) As(k; X',»,
M p(k; X',X)=D s(k; X',X)+iA s(k; X',X).

(2.10)

Thus, for positive frequencies, ko, the two quantities
are identical, but the absorptive parts diGer in sign
for negative frequencies.

I
See the corresponding dis-

cussion in GGT, Eqs. (3.12), (3.14), (3.15), (3.16).
The notation has been changed slightly: A ~ e(ks)A. )
It should be noted that the quantities D and 3 are
not necessarily real. The great advantage of Eq. (2.9)
over Eq. (2.8) for our purposes is that the quantity
ti(x)Lj (x), js(0)) is a truly retarded fu'nction which
vanishes not only for so&0 but also for x„')0, accord-
ing to our causality requirement, Eq. (2.2). As we shall
see shortly, this is the key to the whole derivation.

It is convenient at this point to choose a definite
Lorentz frame in which to evaluate the quantities

3 The dependence on the momentum p will be suppressed.
4 We have defined the forward scattering amplitude as the limit

of the amplitude for nonforward scattering, as is usually done.
Our 6nal formula, however, contains terms which in an actual
computation should consequently be dropped, namely, essentially
vacuum fluctuation terms in which the state of the matter system
is unchanged. We must subtract from the matrix element in Eq.
(2.8) byway times the vacuum expectation value of the same operator.
This causes no modification of any of our subsequent results, and
to save space we shall not write it explicitly. The author is in-
debted to;Professor Y. Nambu for this observation.
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appearing in Eq. (2.10). Since both F e(k; X',» and
M e(k; &i',X) are effectively invariants, this entails no
loss of generality. We shall choose the system in which

p is zero, the laboratory system. The particular ad-
vantage of this system for us is that the k dependence
of our quantities F and 3f is explicitly exhibited in the
factor exp( —ik. x). We may also assume then that the
states

I p») has a definite parity.
We wish now to break M e(k; X','A) into its dispersive

and absorptive parts and then eventually each of these
into parts which are even and odd under interchange of
n and P. These operations are facilitated by the ob-
servations that

M e (k,p&; X',»,) =3II e(—k,p&; X',&~), (2.11a)

M p(—p&;X',&i)=[M p(p&; &i,'A')g*. (2.11c)

If we regard M p as a matrix in the X',X labels, we may
say that changing cv to —~ causes M p to go into its
Hermitian conjugate. It should be noted that the
Feynman amplitude F e(p&; X',X) does rot satisfy Eq.
(2.11c).

The dispersive and absorptive parts of M e(p&; X',X)
are given, respectively, by

i
D t&(p&; X',X) =— d4xe'"*'

2J

and

Xcos(k x)(PX'I p(x)[j.(x),je(0)j
—25(xp)[j (x),pe(0))I p» (2.12)

A p(p& X'»= — d'xe'"*'

Xcos(k x)(P~'I[j (*) jt&(0))IPX) (2.13)

where we have merely written q(x) = [1+p(x) j/2. Now
in all conventional theories, the second term in Eq.
(2.12) is independent of p&, since the equal time com-

(p~'I Lj.(—x),je(0)3 I p»
=(p~'ll j-(0),je(x)jl p», (2»b)

where we have written ko ~, and, of course, we have
pp'= k'+y'. The proof of these statements is elementary:
Eq. (2.11a) follows from the observation that the be-
havior of p (and hence of j ) under rejections is, with
P the parity operator, Pp (x,xp)P '=&& (—x, xp),
and that Pl p'A) =exp(ix)

I p&i), x real. Equation (2.11b)
follows trivially from the assumed translational in-
variance, Eq. (2.6). We see from Eq. (2.11a) that
M e(k,p&;X',» must be an even function of k and,
thus, the exp( ik x) —in Eq. (2.9) may be replaced
by cos(k x). The same is true for F e(k,p&; &i',X). These
quantities then effectively depend on k through k'
= co'—p' and we shall henceforth regard them as
functions of + only. There appear to be no branch points
at co= &p,, although if there were, they would cause no
trouble. Finally, we note the very important relation

E e&-&(x)=Ep &-&(x),

E e&+&(x) = -1&.p &+&(x).
(2.16)

By using Eqs. (2.15) and (2.16), the separation of Eqs.
(2.12) and (2.13) into symmetric and antisymmetric
parts is easily carried out. We write

D e(p&; X',X)=D e&'&(pp; X',»+iD p&'& (p&; X',X), (2.17)

A.e(p&; &i',»=A eo&(pp; V,»+iA.p&(p&; &&.',»), (2.18)

where
2

D e&'& (p&; X',X) =— d4x cosk. x
2~

Xcosp&xp(ph'I p(x)E e&
—

&(x)

—»(xp) [j-(x),be(0) ll P~), (2 19)

Jo

D e"&(p&;X',))=— ' d4x cosk x
2~

Xsinp&xp(pa'l. (x)E.e&+ (x) I p», (2.20)

I

A e
"& (p&; X',X) =— d4x cosk x

2J

X»np&xp(P&'I&-e' '(x)
I y), (2.21)

Z

A e
"& (p&; X',&i) = —— d'x cosk x

2~

Xcosp&xp(P)'I& e+ (x) IPX). (2.22)

By construction, the quantities labeled with superscript
1 are symmetric in n and P, while those labeled 2 are
antisymmetric. All four quantities are hermitian mat-
rices in the ) ', ) space. Note that regarded as functions
of the frequency, co, D&') and 2&') are even functions
whereas D") and 2(') are odd. If ) '=), all four quan-
tities are real. Finally, we see that the integrations over
xo may be restricted to positive values only.

There is one further step which must be taken before
we proceed to the derivation of the dispersion relations.

mutator always leads to a factor of 8(x); furthermore,
it is inevitably symmetric in o. and P. We shall assume
for simplicity that this .circumstance always obtains
for the remainder of the discussion. I,et us separate
Eq. (2.12) and Eq. (2.13) into parts which are sym-
metric and antisymmetric under interchange of 0. and
P. With the understanding that the matrix element be-
tween the states lp&i') and lp» will be eventually
formed we may write, using Eq. (2.11b),

Lj-(*),j (0)j=&- ' '(*)+&- '+'(*), (2 14)
where

E t&' '( )=—',([j.(x),jp(0)j—[j (0),j (*)]},
(2.15)

&-e"&(x)= l([j-(x) je(0)j+[j-(0)je(x)3 .
Note that E e& &(x) is an odd function of x whereas
E e'+&(x) is even. Furthermore,
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X(P7 'li-(x) ln)(nlie(0) IP» (2 24)

We note that unless there are discrete bound states of
energy E„=E„+t& 8„,8„)—0, A e(&d; 7~', 7&) is zero for
~&o~ (ti. This point was overlooked in GGT and was
pointed out to the author by F. Low and Y. Nambu,
independently. It has been further discussed by Karplus
and Ruderman in a recent paper. ' It is clear from Eq.
(2.23) that there will be branch points for values of

~
&o

~
)p corresponding to the thresholds for real

reactions.
Consider now the quantity I t&(o&,ooo, X',7&) defined by

M Mo f'

Jl d&o'

A e"'(&o' ll' 7i)+iA, e&'& (o&' 7i' X)
X . (2.25)

Gl M o G) —QP

I~p(&oqMo& 7& )7i) =

The integrations over the singularities are to be taken
in sense of Cauchy principal values and the branch
points mentioned above are to be detoured by small
semicircles into the upper half plane. From the nature
of the or dependence in the neighborhood' of any such
threshold point, it is clear that as the semicircles are
shrunk to zero, they make no contribution to the
integral. The only role played by the branch points is
to determine the phase of A e(a&';'A', 7&) on either side
of them. The frequencies co, coo are arbitrary, but we shall
take them to be greater than or equal to p. We shall
now substitute for A e(&o';7i', 7i) its value as given by
Eqs. (2.18), (2.21), and (2.22), and interchange the order

of integration. Recall now that the space-time integra-
tions in these expressions for the absorptive parts
extend over the interior and surface of the future light
cone. As long as xo)

~

x ~, the proposed interchange may
be probably justified without too great difhculty, since
the contributions to A e(&o';7&',X) from these regions
approach zero for large &d. (This assumes that the
quantities (p7i'~E e&+&(x)

~ pX) are reasonably well be-
haved, which is an assumption which underlies all field
theoretic calculations. If this is so, then since xo)

~

x ~,

we always have an oscillatory integrand which will
make the integral go to zero as ~&o~ ~ ~.) The con-

' R. Karplus and M. Ruderman, Phys. Rev. 98& 771 (19SS).

We must investigate the nature of whatever singularities
might be expected for real values of ~ for the function
A t&(&o; X,X). To simplify the writing, we will not at this
point separate 3 into its two parts as we did previously.
We simply expand the matrix element in Eq. (2.13) into
a complete set of states for the interacting systems and
obtain, after carrying out the xo integration,

A e(o&; V,7~)=s P„tf. e(&on; 7i',7&)t&(E,—E +&o)

f.p—"(&o,n'; 7~,l&')t&(E„—E.—&o)j, (2.23)
where

f. (t&M, n7 ',X) = t dsxe-'" *

tributions from the light cone itself cannot be neglected
since we must be prepared for very singular behavior
of our matrix element, such as being proportional to
t&(x') or even derivatives thereof. It is, of course, the
high-frequency behavior which will be determined from
the matrix elements on the light cone, and we must
assume that we have supplied a sufhcient number of
inverse powers of co to make our procedure legitimate.
We shall return to this point later in the discussion.

If the above outlined steps are carried out, we obtain,

Iat&(&o)&os' X )7&) =1 dxo) &Px

0

XL(p7'I&-e& '(x)Ip7)I"'(x;, )

where
+(pX'~E p&+&(x)

~

p7i)iI&s&(x; &o,&oo)), (2.26)

&o
—

&oo t' &o' sln&o xo cosk' xJ &'& (x; &o,&do) =
~

d&o', (2 27)
CO

—
(Op GO

—
CO

Go
—Q)o fI&'& (x &o &oo) =—

D., & &(~ 7'X)-—D.,&'&(~„7',7)
Goo

2&o(&os—ooo') &

" A p&'&(&o'; 7~',7&)
do&'— . (2.33)

~ p Go
—coo Go —

Go

COS&o Xo Cosk 'X
X . (2.28)

~I2 ~ 2 ~I2 ~2

These integrals may be evaluated by elementary con-
tour integration following the replacement of sincoxo by

i exp—(io&xo) and cos&oxo by exp(io&xo), since for xo) ( x ~,
these factors dominate the integrands, and even for
xo= (x~, exp(i&oxo) cosh' x is bounded, and we have
supplied enough inverse powers of co that the usual
infinite semicircle in the upper half co plane makes no
contribution. We obtain then

I&'& (x; &o,&oo) = cos&oxo cosk' x—cos&doxo cosko x, (2.29)

I"& (x; &o,&oo) = (&oo/&o) sin&oxo cosk x
sln&ooxo cosko ' x. (2.30)

Substituting these equations into Eq. (2.26) and com-
paring with Eqs. (2.19) and (2.20), we find

I e(&d, o&o, 7&,',7&) =D e&'&(&o; 7&',7~) —D p&'&(&oo, 7&',7&)

+i[(&oo/&o)D t&&s&(&o 7~'7~) —D t&&'&(&oo 7'l&)j (231)
where we have assumed that the second term in Eq.
(2.19) is a constant, independent of frequency. Since
the quantities with superscript 1 (2) are symmetric
(antisymmetric) under interchange of &r and P, we may
separate Eq. (2.31) into two distinct parts:

D e&' (&o 7~ X)—D e (&oo'X X)

2(&o —o&o)
t

~ A e&'&(&o''g'7&)d&o'a&', (2.32)
o co —no m —co
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We have used the fact that A p(') is an even function
of co while A p(') is odd in rewriting the definition of
I p, Eq. (2.25). These are the generalized dispersion
relations appropriate for particles with mass. They
correspond to Eqs. (5.13) of GGT, and in fact coincide
with them in the limit p, —+ 0.

Our final task is to express the integrals appearing
in Eqs. (2.32) and (2.33) in terms of physical quantities
in so far as it is possible. We recall that our funda-
mental quantity, SI p(o&; X',X), becomes identical with
the Feynman matrix element, F p(o&;)',X), for o&)0.
The relation between this quantity and the true
forward scattering amplitude for elastic scattering,
T p(o&; X','h), in general depends the choice of a Lorentz
frame. For any two particle scattering process,
T p(o&; X',))=F p(o&'; 'A', X) for the laboratory system in
which the target is initially at rest, to within a constant
factor. s In virtue of the fact that T p(o&; &&.',X)/~k~ is
an invariant we may easily convert our forward scatter-
ing amplitudes to the center-of-mass system: LT p]&sb
= (W/M)fT pj, , where W is the total energy in the
center-of-mass frame and 3f is the mass of the target.
We know also that for u&p, the absorptive parts of
T p are related to what we may loosely refer to as
total cross sections by the so-called optical theorem.
In general only the portion A po& (o&; X,X) which is sym-
metric in n and P is related to a true physical cross
section but under some circumstances A pi'&(o&;X,A)

may also be so identified. For the energy interval
0(o&(p, , we shall use the expression Eq. (2.23) for
A p(o&; X',&i), appropriately broken into its symmetric
and antisymmetric parts:

A po&(o&;),',&&)=7r Q„{fpi+&(o&,m; &t',X)3(E„—E„+o&)
—f pi+&*(e&,e; X',X)8(E„—E —o&)},

(2.34)
A pie&(o&; lt',X)=n-g„(f.pi &(o&n;X', lt—)3(E„—, E„+o&)

+f.pi-&*(,e; X',X)~(E„—E„)}, —
where

f.pi+& (o&,e; 'A', l&.)
=[f.p(~,~; X9)+f,.(~,N; X'P )$/2,

(2.35)f.pi
—

'(o&,&s; X',».)
= ff.p(o&,e; X',X)—fp. (o&,e; X',X)j/2i.

We now write Eqs. (2.32) and (2.33) in terms of total
cross sections and bound state contributions by using
for A p(" and A p(') the above expressions for 0&~&@
and for o&)p, we define two "cross sections, "

o p
o& (o&,&~)

and o.pi'& (o&,X), by

o p"&(o& &t)=(4s./k)A p"&(o& Alt), (2.36)

o~pt'&(o&», )='(4&r/k)A~p"&(o& XX). (2.37)

We have set X'=P, for it is only when one has not
changed the state of the scatterer that one has the co-

In meson-nucleon scattering, for example, F~p=4xT~p if we
use Heaviside units for the meson field; with Gaussian units,
Fap= Tap

herence necessary for the optical theorem to hold. We
have also written

~
k~ = k, k'=o&s —&u'. It is convenient

to introduce the wave number as the variable of in-
tegration and we find, using the same letter to designate
now fundtions of k as we had previously used for func-
tions of co, the results

k' &" o pt'&(O', X)
D p"'(k y) —D.po&(ks, y)= I dk'

2m-'~ p k"—k'

ks' t
" o o&(k' X)

dk' — +2 Q ('E E,)—
2&2/ k~2 k 2

Xf p'+' (En E„,r&—; A)
(E —E„)'—k' —&u'

X — . (2.39)(E„E)'—k' —p'—(E„E)'—ks' —&u—'

The sums extend over those states
~
&s) for which

E —E„&p,.7 The most natural reference energy is
kp ——0, in which case our formulas take their final form:

k'
t
" o li&(k' X)

D po&(k;)t) —D p"'(0;X)= dk'
2s' e k"—k'

+2 Q (E„—E )f p(+& (E E ~ ~ y)

X —,(2.40)
(E E )2 O2 ~2 (E E )2 ~2

k'o& r" dk'o p"&(k')
D.p&s&(k; X)——D.pi'&(0; Z) =

p 2~~~ o ~ k '—k'

+2o& Q f.p~ '(E E„,n; X)— —

X
(E E)'—k' —&i' (E——E )'—p,

'
7 We have included in the bound state contribution only terms

arising from the singularities associated with the erst b function
Eq. (2.34). These correspond to true discrete bound states of
energy M &8 &M+p. It is also possible for the argument of the
second b function to vanish and in fact in the case of meson-
nucleon scattering it is only this second 8 function which makes a
"bound state" contribution. It is not a true bound state, of course;
however when the energy of the meson is continued below the
rest energy, and the state ~&i) corresponds to a one-nucleon state,
we indeed find a singularity in the scattering amplitude. This
point is discussed in the paper on meson-nucleon scattering
which immediately follows this one.

(2.41)

(2.38)
(E„—E„)'—kss —p'

o&k'
I

"dk' o.
p

ls& (O' X)
D.pi'& (k; X)——D.pl'& (kp, X) =

a)p 2x'" p co' k"—k'

o&kss r" dk'o. p&s&(k';X)
+2o&g f p' &(E En g)—

2s' "s o&' k"—ks'
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A typical application of these generalized Kramers-
Kronig relations is to the problem of meson nucleon
scattering. We shall treat this case in detail in a separate
paper, so at this time we merely mention the physical
significance of Do&, D&", o. &'& and a' s&: D&'& (D&'&) is one
half the sum (d&fference) of the dispersive forward
amplitudes for m +p and w++p (ordinary) scattering
and consequently o.n&(o. "&) is one half the sum (dif-
ference) of the total s. & ' and w''+& cross sections for all

processes. These results follow from the fact that the
total forward scattering amplitude, regarded as a
matrix in nucleon charge space, may be written as

assuming, of course, symmetrical theory, and

T&'& (o&) =D&&& (o&)+is(o&)2 '(o&), j=1,2. (2.43)

There is a bound state corresponding to the neutron
whose contribution may be calculated from meson the-

ory almost exactly (to within terms of order (p/M)');
numerically, it is a very important eGect.

3. DISCUSSION AND COMPARISON WITH GGT

The actual simplicity of the derivation of the general-
ized dispersion relations, Eqs. (2.40) and (2.41) has

probably been obscured by the algebraic details. For
this reason it is perhaps worthwhile to summarize the
procedure. We 6rst observed that the Feynman matrix
element describing the scattering event could be re-
placed by a quantity which was the Fourier transform
of a function which vanished everywhere except inside
the future light cone. This new quantity was divided
into two parts one of which satisfied the relation
Mo&(—o& X)=[M"&(o& X)$* and the other satisfied
M&'& (—o& ),) = —[M "&

(o& X)$*.s An integral operation,
Eq. (2.25), was applied to the absorptive part of Mn&

+iM"& and the two dispersion relations (2.32) and
(2.33) emerged. The remainder of the task was to
express these results in terms of physical quantities.
There are, however, a number of points concerning the
final relations which should be discussed further.

The reason for the special role played by the forward
scattering amplitude would appear to be the fact that
the entire k-dependence, as given, say, by Eq. (2.9)
occurs in the explicit exp( —ik. x), whereas if p'&p, but
instead p'= p+q —k, the k dependence becomes much
more complicated. In this connection, it should be
noted that the dispersion relations which we have de-
rived cannot necessarily be expected to hold without
modification for identical particle scattering processes,
since the forward amplitude for such events is a linear
combination of forward and backward scatterings for
nonidentical particles and the backward amplitude does

' Note that it is iV, rather than the Feynman amplitude (which
is essentially the same as the scattering amplitude) which has these
simple properties and which is the fundamental quantity for our
purposes.

not satisfy the normal relations. This point will be
taken up in more detail in connection with fermion-
fermion scattering in another paper. The problem of
finding dispersion relations for other than forward
scattering is being studied further.

In this paper we avoided explicit mention of the
behavior of the forward scattering amplitude or rather
our quantity M p(o&; X',X), in the complex o& plane. The
use of complex variable theory does not appear to add
anything to our understanding, although it is certainly
true that a sufhcient condition for the existence of our
general dispersion relations is that M s(o&; X',X) be the
boundary value of a function which is analytic in the
upper half plane, together with certain boundedness
requirements. Our "boundedness requirement" had to
do with the legitimacy of the interchanging of certain
orders of integration. Because of the fact that principal
value integrals are rather singular, the conventional
theorems on such matters are not immediately appli-
cable. However reference to our integral operation,
Eq. (2.25), shows that at the point where the operation
is really singular, namely if co=coo, we have the factor
(oos —&oo') in front which is then zero, and thus the
singularity is removed. The remaining troublesome
point that is involved is the behavior of the scattering
amplitude for large frequencies. That this is indeed the
case was borne out by examples in which the results
of the two orders of integration were compared.
Our particular form of the dispersion relations, Eqs.
(2.40) and (2.41) would appear to be valid provided
o. &so&(o&; X)/o& and o. »&'&(o&; X)/o&' tend to zero for
+~ ~. The behavior of scattering amplitudes at high
energies is of central importance in field theory and it
should be clearly recognized that the precise form of
any dispersion relation depends on this (unknown)
high-energy behavior. Violations of the dispersion re-
lations as given might perhaps be interpreted as an
error in the assumed behavior, although it is certainly
possible that it means that our original causality re-
quirement, Eq. (2.2), has perhaps broken down at
small distances.

It is interesting to see what happens if we make our
high-frequency assumption more stringent. For sim-

plicity we confine our remarks to the completely co-
herent amplitude, i.e., n=P, X', X, and assume that
there are no bound states. Further, assume that the
second (and usually constant) term in Eq. (2.9) is
absent. A physical model which satisfies these conditions
is provided by ordinary quantum electrodynamics. We
shall assume that J' dooa o&(o&; X) is bounded, i.e.,
o&o o& (o&; X) —+ 0 as o&

—& ~ . Under these circumstances
we may consider, instead of Eq. (2.25), a quantity I
defined by

o&' —o&os p" o&"& "&(o&'; X)I '(o&,o&o , X)=— d'o&' . (3.1)
(o&"—o&os) (o&"—o&s)
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This quantity is evaluated, as before, with the result may rewrite Eq. (3.5) as

I..'(~ ~o., &)=~'D.."&(~;))—~o'D..o&(o&o., l~o), (3.2) D, &'&(k; X)—D, o&(k'= —p,
' X)

and following the same steps which led to Eqs. (2.40)
and (2.41), we find

k' t" o. .o&(k') p,
'

t

" o.. &'&(k')
dk'- + dk', (3.6)

2rr'~ o k"—k' 2m'~ o k"+ti'

k' t." o.."&(k 'A)

dk' . (3.3)
~'~ p P"—P

Evidently, if (3.3) is valid, so is (2.40) and comparison
of the two shows that

00

D &'&(0 X)= ' dko &i&(k X)
2' p

(3.4)

D. &" (or X)-D "&(M=O;X)

2o&o r" A &'&(or'X)
d&o' , (3.5)

rr ~ o o&'(or"—o&')

corresponds to choosing the cop of the previous section
equal to zero, instead of p, , as we have done. As has been
remarked earlier, if there are no bound states, the
lower limit of the integral should be set equal to p, .
Then, changing to the wave number as variable, we

Consider now the scattering of photons by free elec-
trons. We know that D "'(0;X)=—e'/m, where e

and ns are the physical charge and mass of the electron.
Thus, Eq. (3.4) cannot be satisfied and we must con-
clude that the assumed existence of J'"dko o&(k; X) is
incorrect. All indications from perturbation theory lead
one to believe that the integral diverges, nevertheless it
is interesting that a rigorous demonstration of the fact
may be given. It should be noted that although we have
proved that Eq. (3.3) is not applicable in quantum
electrodynamics, we have not established the correct-
ness of Eq. (2.40).

Before concluding, we must make a few remarks on
the relation between the results of the present paper
and those of GGT. For the case of photon scattering,
they are identical. However, for the case of particles
with mass, aside from the bound states which were

assumed absent by them, their formula, namely,

which perhaps illustrates more clearly the choice of
cop=0 as reference energy.

The derivation of the dispersion relations which we
have given here is based on the formalism of present
day quantum field theory. It would appear, however,
to make use only of the essentially minimal features of
the theory, which we would abandon only with extreme
reluctance, such as I.orentz invariance, and the concept
of the S-matrix. If one were to assume that our condi-
tion on the vanishing of the commutator of the cur-
rents at space like points were too stringent, and
instead should be replaced by the requirement of van-
ishing for space-like separations greater than a certain
fundamental length, the dispersion relations would be
modified in an essential manner. We shall not discuss
these modifications here, but merely remark that there
are complications similar to those which arise when
one considers the scattering amplitudes for individual
angular momenta.
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Note added in proof It has b.
—een pointed out to the

author by Professor R. Karplus (private communica-
tion) that in the derivation of the dispersion relation,
Eq. (3.3), we have effectively assumed that not only
does o &'&(k) go to zero faster than 1jk for large k,
but also that D (k) also approaches zero. This may
be seen by comparing Eq. (3.4) with the limit as k goes
to inanity of Kq. (2.40), dropping the bound states.
We cannot, however, exclude the possibility of

o&(k,l&) approaching a constant in which case there
need be no contradiction, since D, &' (0&)—D o&(~)
may be positive and equal to the right-hand side of
Eq. (3.4). It is the author's opinion that this is not the
case and that the conclusion drawn in the text is
correct.


