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Electromagnetic Properties of the Deuteron. I. Charge Density and Quadrupole Moment*

JEREMY BERNsTEIN AND ABRAHAM KLEINt j
Harvard University, Cambridg, Mussachlsetts

(Received April 27, 1955)

The Tamm-Banco' method is applied to the calculation of the electrostatic properties of the deuteron. The
state vector is assumed to contain amplitudes for at most two mesons in the field, but the possible presence of
nucleon-antinucleon pairs is ignored. A formula applicable to the calculation of any multipole moment is
derived and used to compute the leading exchange corrections, of order g~ and g4, respectively, to the usual
expression for the quadrupole moment. For a suitably chosen hard-core wave function the ratio of suc-
cessive terms is about one tenth, and the g' term is itself only a few percent of the total effect.

I. INTRODUCTION

''N this paper we shall present a Tamm-DancoG
~ - calculation of the mesonic contributions to the
charge density and quadrupole moment of the deuteron
in which we shall explicitly include the presence of as
many as two mesons in the field. We have chosen to do a
Tamm-DancoG calculation, despite the well-known
difhculties in properly taking into account nucleon
"self" effects, for two reasons. Firstly, the method can
be used to give a reasonable account of the low-energy
properties of the two-nucleon system. ' The finite ex-
plicitly two-body contributions arising from the equal
times reduction of the covariant equation are also given
by our formalism. ' 4 The eGects of self-interactions, the
treatment of which requires a covariant formalism, are
logically separable from the exchange terms treated in
this work and will be discussed in a future paper.

Our decision to calculate charge density eGects rather
than magnetic moments rests on the oft-noted fact that

*A preliminary account of this work was presented at the
Washington meeting of the American Physical Society, April, 1954
fPhys. Rev. 95, 655(A) (1954)).

f Harvard Society of Fellows.
t Now at the Departinent of Physics, University of Pennsyl-

vania, Philadelphia, Pennsylvania.
I K. Brueckner and K. M. Watson, Phys. Rev. 92, 1023 (1953).
2 For a treatment of electromagnetic eRects with the covariant

equation, including recoil eRects but not radiative corrections, see
S. Deser, Phys. Rev. 92, 1542 (1953).The very large (of the order
of 50%) mesonic correction which Deser finds in order eg is due
partly to his taking the asymptotic form of the deuteron wave
function seriously down to the origin and partly to an incorrect
coordinate-space reduction of his energy operator. Our treatment
also differs from his in the treatment of recoil eRects. See Appendix
8 for a discussion of this point.

3 Another interesting and quite diRerent calculation has been
given by F. Villars, Phys. Rev. 86, 476 (1952) who uses covariant
perturbation theory (canonical transformations) to estimate the
mesonic effects on the deuteron moments. He 6nds that the
quadrupole effect is of the order of a few percent and in his ap-
proach is given entirely by terms which have a vanishing adiabatic
limit. One evident drawback with using canonical transformations,
as pointed out by Villars himself, is that the potential to which it
leads will not bind the deuteron t M. M. Levy, Phys. Rev. 84, 44i
(1951)] and hence it is not quite consistent to evaluate the ex-
pressions with a phenomenological wave function based on two
nucleon binding. The essentials of this approach are described in
Appendix C.

4 A. Sessler, Phys. Rev. 96, 793 (1954) has given a calculation of
charge density effects to order eg' which is quite similar to our
work. We are pleased to acknowledge an informative correspond-
ence with Dr. Sessler. See also I. Sato and K. Itabashi, Progr.
Theoret. Phys. (Japan) 12, 100 (1954).

II. FORMALISM

In principle, all of the information about the static
electromagnetic eGects in the two-nucleon system can be
obtained from the Schrodinger equation:

where

and

(H'+H'+H')O'= WC,

H"=
eJ"dxg—(x) ', (1+r s)y„A „'-(x)P(x), (2a)

H'= g)~dxg(x)ysr y/i(x—)rli;(x). (2b)

Here lt and f are the usual nucleon field operators, and
A„' is an external electromagnetic field.

Our program is to obtain explicit expressions for the
electromagnetic and nuclear energies defined by Eq. (1)
after C has been expanded in a basis of free-particle

' The meson current effects depend on the nucleon coordinates
via the antisymmetric operator (e&)&e2) and hence, as has often
been remarked, yield vanishing expectation values for any two-
nucleon state.

the expressions for charge density phenomena, like the
quadrupole moment, are less sensitive than the magnetic
eGects in a given order to the behavior of the wave
function in the region of interaction. The validity of our
approach rests upon the rapid convergence of the effects
calculated; it is, therefore, a satisfactory result of our
work that the one-meson exchange eGects amount to a
few percent while the two-meson effects are about a
tenth as much.

The heart of the calculation consists in determining
the eGective one-meson and two-meson charge density
operators associated with the nucleon current. ' In Sec.
II, we develop the formal apparatus for doing this and
discuss the relationship between the charge density
operator and the protons probability density. In Sec.
III, we present the quadrupole moment formulas and
the numerical evaluation of these with appropriately
chosen wave functions. In Sec. IV, we discuss the more
general aspects of our results; in the appendices, recoil
eGects are discussed and the Tamm-DancoG approach
as used in this paper is related to the method of canonical
transformations and to the covariant two-body equation.

966



ELECTROMAGNETIC PROPERTIES OF DEUTERON

states. Then, in the spirit of ordinary perturbation
theory, we shall evaluate the exchange contributions to
the electrostatic energy with the solution of Eq. (1)
taken in the absence of the external field, A„'.

In the expansion of the state vector, using a free-
particle basis, we shall restrict ourselves to the form

a0C'0+ alC 1+a2+21 (3)

integrations over mon1entum variables being understood
and where the e, are free-particle kinetic energies. The
correct choice of the a; is given by the condition

c)W/Ba, = 0,
and hence

where the C; are the solutions of the free-particle
Schrodinger equation involving two nucleons and i
mesons, and the a, are the amplitudes for the ith meson
state, We have omitted all nucleon-pair amplitudes. '
The relations among the a; can be determined by a
variational principle. Thus, if

W= (C' (H +H')C')/(C', C'), (4)

where II' is the total interaction Hamiltonian, then
putting Eq. (3) into Eq. (4) we see at once that

W(ao al a2) =L lao l'so+ lail'el+ Iasl 02

+ I ao
I

Hoo + I
al

I
'Hll + I a2

I
'H22

+a0 alH01 +al apH10

+al a2H12 +a2 alH21 j
&I:Iapl'+lail'+lasl'j ' (5)

1

rl
l
I

/

(a) (b) (c)
Flo. 1.Diagrams for parts of (V ) which involve self-interactions.

Solid lines represent nucleons, dashed lines are mesons, and the
sense of time can be taken as running up the page.

where, with Gp= (W Ho) ', w—e have

& V'(W)) = (Hpl'GpHlp')

+&Hoi'GQH12'GQH21'GQH10'&, (10a)
and

(V"(W)) = (Hoo")+(Hol GQH11"GQH10 )
+&Hpl GOH12 GOH22 GoH21'GoHlo')

+(Hpl GOHll GOH12 GOH21 GOH10 )
+(HQ1 GQH12 GQH21 GQH11 'GQH10'&. (10b)

Of course, Eqs. (10a) and (10b) contain many diver-
gent contributions. Typical samples of these are indi-
cated in Fig. 1 and in Fig. 2. Since estimates of such
effects with the present model are necessarily cruder
than that of the finite contributions, we shall not attempt
to give them here. However, since these terms are easily
recognized, we can split them off and lump them to-
gether as 5(W) leaving a finite residue which we call
&V'(W)), and (V"(W)), . Hence Eq. (9) becomes

(W—ep —Hpp') ap ——Hpl al,

(W el Hll )al Hlp ap+H12 a21

(W 02 H22 )a2 H21 al
We now turn to the essential business of extracting

the two-body electrostatic moments from Eq. (11) and
learning what effect the &5(W)& have upon these. To this
end, we recall that the electrostatic energy of the two-
body system in the presence of an external potential
Ap'(r) can always be written in the form,

By carrying out a formal elimination of the other a; in
terms of gp we obtain the following integral equation,

(W—eo —Hoo") ao
= LHpl'(W —H' —H")—'H 10'

+H &(W Hp Hei) 1H &(W H0 Hel) —1—

XH21'(W —H' —H") 'Hlo'jail.
(12)&p.,(r))A, (r)Zr,

W &Ho)+(V'(W)). +(V"(W)).

(f)
+9'(W)&+9"'(W)& (11)

Since the physical consequences of the theory cannot
depend upon how C is normalized, we set Ilapll=1.
Hence upon expanding the electromagnetic effects to
first order and taking the scalar product of Eq. (8) with
Qpq we find

W=&H')+&V'(W))+&V" (W)& (9)
' The justification of the neglect is twofold: quite generally, the

work of many authors /for example, see A. Klein, Phys. Rev. 95,
1061 (1954) where references to previous literature are given]
indicates that pair effects associated completely with the nuclear
interaction are in fact suppressed. On the other hand, those effects
in which the pair is either created or annihilated by the external
field and thus not necessarily suppressed ('see, N. M. Kroll and M.
Ruderman, Phys. Rev. 93, 233 (1954)j give smaller contributions
to the electrostatic e&ects than the leading terms by the ratio of
meson to nucleon mass.

1
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(a) (b) (c)
Fxo. 2. Diagrams for parts of (V') which involve self-inter-

actions. The notation is the same as in Fig. 1 with the addition of a
cross to indicate an interaction with the external Geld.

where p, (r) is the effective charge density operator
which will include the effects which arise from meson
exchange. We may expand Ap'(r), about the center of
mass of the system, taken at r=0, and thus obtain the
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equation

(p, (r))Ao'(r)dr= (po (r))LA0'~0+r QA0 [p

or symbolically,
+-', rr: ~~A 0'~ o+ ]dr, (13)

where
(V"(W)) =Q,(V,"(W)))~;,

)I,= (i!) '(B,+B„+B,)'Ao'(r)
~
0.

(14)

One can then define the 2'th static moment tensor by
lllealls of tile tel'IIls contained 111 Bw/B)t

~
1=0. However,

using Eq. (11), one obtains

Bw/N, i
p= P(BU'(W)/BW). BW/B);j1 p=

+p(BS'(W)/Bw)BW/N ~j1 0

+Dv'"(W)) j&=0+L(S'"(W))j&=0 (16)

or, again understanding the limit );=0,

Until now we have been dealing with P and (S'(W))
as if they were perfectly finite. However, under the
assumption that in a properly renormalized theory I'
would be small compared to unity, we would expand
L1+Pj ' and hence note the additivity of al/ self-
e6ects to those arising from exchange interaction.
Leaving it at that, we shall henceforth devote ourselves
solely to interaction effects.

In ordinary quantum mechanics one defines the
charge density in terms of the probability density of the
proton coordinate and the quadrupole moment in terms
of this charge density. In our calculation, however, the
probability density of the proton in momentum space
can be taken as

oo

p(yl) =p ( a(pl, ps, kl, k;) I
sdypdkt, ~ dk;, (22)

i~

from which it follows that the sum in Eq. (21) has the
form

BW/B)„= L(V,'I(W)).+(S,'I(W)P
X$1—(BS'/BW) —(BV'/BW), j '. (17)

oo

P (Q~)= p(r)r2X (3 cos28—1)dr, (23)

On the other hand, the electrostatic energy must also
be given by

(c,a 4)/(c, c), (18)

and if we expand C and Eel and remember that
t~ ap(( = 1,

we learn that

Bw/N„= t (v") +(s")j

where p(r) is the Fourier transform of Eq. (22). For
the remainder of this section we illustrate how p(r)
may be computed directly from the nuclear interaction,
in a manner analogous to the use of Eq. (20).

To this end, we shall consider in parallel the expres-
sions in momentum space arising from Figs. 3(a) and
3(b). Inserting the details of the coupling we may write
as the contribution to the energy from Fig. 3(a)

oo

X 1++ ~a(pl, ys, kl, k,) ~2

i=1

X(7075)1&1 02(7075)2

g'
I

dpldp, dk
a*(pl-k, P2+k)

dk . . .dl,

Since the f ~a(pl, ps, kl, k;) ~2 are the relative proba-
bilities for finding i mesons in the field, we are thus led to
the theorem'.

'oo

~
lI(yl P2 kl ' ' 'ki)

~
dyldp2dkl

i=1

(BS'/BW) —(BU'/BW). —=P. (20)—
However, as can be seen from Eq. (12b), (V,"),is itself,
in the general case, an infinite series in g . Thus if we

choose )1;= (2!) '(B,+B„+B,)'Ap' we are led in the
standard way to the following infinite series for the
quadrupole moment,

XLw —e(yl —k) —e(p2) —tp(k) $-'a(yl, ps), (24a)

where ( ) means that we are to take the matrix element
of the enclosed Dirac operator between free spinors.
From Fig. 3(b) we have

eg f' dpldpsdkdq
II (Pl —"+q P2+")

22r)' & 2co (k)

X(A 0'(q)~ (pl —k)7070)1

X &I ' '02(7070)2(LW 0 (PI—k+q) —e(P2) oI (k)j
XLW—e(pl —k) —e(P2) —oI(k)])—'~(PI,P2). (24b)

Q= Z(Q'&t:I+Pj ' (21)
J=.O

where (Q') can be identified with the usual expression
for the quadrupole moment as expressed in terms of the
bare proton charge density.

V See also remarks by A. Klein, Proceedings of the Fourth
Annual Rochester Conference (University of Rochester Press,
rochester, 1954), p. 4f.,

P-k
I

r
rr

r

P~+ k P,-k+q p+k

rr.&P-k r' 'rkr

P

FIG. 3. Contributions
to (V'), and to (V"), in
the order of g» and eg»

respectively.
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where
ii(yi yo) =B(P)ii(y)(2~)'V ~ (26)

yl+P2 p (yl p2) (27)

and V is the system volume. An integration by parts,
then, transfers the 8 function differentiations on to the
other functions of q in Eq. (23b). We shall show in
Appendix A that the only term arising from this process
which has a nonvanishing adiabatic limit has the form

eg'

„~
fi(B'/BP'BP )~*(p k))—

(2ir)' ~
X(voto)i~i ~o(voto)of2~(k)) '

XfW- o (y —k) —e (p) —oo (k))—'

X&(y)B'B Ao'I odpdk. (28)

One need only compare Eq. (28) with Eq. (24a) to
understand that in the limit contemplated, p(r) is given
by BV'(—r)/BW, where the last quantity is the adia-
batic limit of the energy derivative of the interaction.
Hence, it is sufhcient to give the formulas for BU'/BW,
from which both the normalization P and the moment
terms can be computed.

III. RESULTS

We write the expressions for BV'/BW at the stage
after the spin-matrix elements have been reduced to
large components and the adiabatic limit taken. We are
then led to a local operator in coordinate space which
has the form

—BVi'(r)/BW

(g l' 1
t

eikeok
~

dke'"' ~i ~o, (29)
(2M) (2ir)' & ohio

—BVo'(r)/BW

( g )' 1 t dkidko
e~(&1+&2) '&

(2M) (2ir) o & 4&uiooo

X(f6(ki ko)'+4(~i ~o)(~ri kiXko)(oo kiXko)]

Xf4(~i'~o) '+(~i~i) ')
+f2(~i ~o)(ki ko)'+3(ei kiXko)(eo kiXko)7

Xf8(oii'ooo) ' —2 (ooioi,)
—'

—4(oii~o) '(~i+oio) '7}. (30)

If in Eq. (23b) we perform the same expansion as in
Eq. (15), then the contribution to the quadrupole
energy is obtained by replacing —Ao'(q) by

l 2(B'/BV'BV)&(q)B'B ~o'I o (25)

It is also useful at this stage to introduce center of
momentum and relative coordinates in the amplitudes
in Eq. (23) which is done under the approximation that
the deuteron is unperturbed, i.e., we write typically

All of the Fourier transforms in Eqs. (29) and (30) are
standard except the last term of Eq. (27) which we
evaluate under the assumption that

4foilioo(oil+~o2) 7 = (oiloio) (31)

X d '()*'LEo( )+2E ( )/*], (35)

go2)1y' 1
is—D=-

4ir ir &2M) Sv2

X druwx fEo(x)+SEi(x)/x], (36)

go2p 1 q'1
4ir ir &2M) 20

X drw'x'fSEo(x)+13Ei(x)/x], (37)

(g'&'(~ i'11 t.
Qos= —

I
—

I I I

—— «I'(r)x'((2/~)'
44ir) (2M) po 5 ~

Xf7 (Ei(x)/x)'+ (7/2) Eo (x)Ei(x)/x]

+(e '~/x') f2x'+Sx+4)}, (38)

over the momentum range considered. Setting g= p~, we
then find (with ~i ~o ———3 and ei co=+1 for the
deuteron),

—BVi'(r)/BW
= (g'/4m) (p/2M)'(2/ir)

X(fEo(x)—Ei(x)/x)
ysiofEo(x)+2Ei(x)/x]}, (32)

BVo'(r)/—BIV

= (g'/47r)'(p/2M) 4

X ((2/~)'f (43/2) (Ei(x)/x)'
+19Eo(x)(Ei(x)/x)+6(Eo(x) )']
—(e "/x4) f3x'+2x'+8x+4)}
—Sio(2/ir)'f 7(Ei(x)/x)'+ (7/2)Eo(x) (Ei(x)/x)7

—Sio(e '*/x4) f2x'+5x+4)} (3'3)

In terms of the standard expression for the deuteron
ground state, which we identify with Gp,

f(r) = (4ir)
—lr 'fl(r)+2 —lw(r)S, o]x., .. (34)

we obtain by means of Eqs. (32) and (33) the following
contributions to the quadrupole moment, separated ac-
cording to order in g' and orbital angular momentum
state:

go 2(1 y'1
4ir m (2M) 5
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(g)'( p l 1 1 (2q
l 4z.) (2M) p' 592 0 4s-)

XI (71/2) (Er (x)/x)'+12Eo(x) (Et(x)/x)

+6(Eo(x) )']+ (e "/x4)

Xf—3x'+2x'+2x+4], (39)

Pg'l'( p q'1 1 ~ )2q'
Q»=-I —

I I

&4~) &m) &s20~ Ex)

XL (127/2) (Er (x)/x) —2Ko (x) (Er (x)/x)

+6(Eo(x))']+(e '*/x4)

X[—3x'+10x'+22x+20] . (40)

(&'lf '1 t'& l~--.= I
—

I I

—
I I I

4~~
(4z.) Ez.) (2M)

X~ «+te(Ep+2Kt/x), (42)

a' f'2i f' l i'
IErn ——

I

—
I I

——
I

drw'(Ep+5Kr/x),
4~(~) Em) ~

(43)

and in fourth order

ra'&') & q' (', (2i'
E4s ) &2M) ~ 1 z.)

XP (43/2) (Er/x)'+19Ep (Er/x) +6Ep']

We must also record the normalization terms arising
from —(cl V'/BW). ,

(&'& &2'l & & )' Iz«I'«o Kr/'x) —(41)
&4m. ) (z-) &2M)

It will be noticed that the operators in Eqs. (44), (45),
and (46) are too singular to permit the integrations to be
performed down to the origin. Hence, in performing the
numerical evaluation of our theory we made use of a
phenomenological wave function based on a hard core,
which gives a good fit to the bound-state data. ' The
results are given in Table I.We have chosen (g'/4m. )= 10,
even though the experimental evidence indicates a
slightly larger constant, in order to facilitate comparison
with previous work. ' 4 The g2 terms, which are perfectly
convergent at the origin, have, for comparison's sake,
been calculated using a Hulthen wave function. One
should keep in mind when considering our meson cor-
rection terms that the measured Deuteron moment is
2.73)(fo—2& cm2

If, from Eq. (21) we take as the total mesonic correc-
tion to the quadrupole moment,

~Q..t= &Q')+(Q')-Q(~r+~s), (47)

then from Table I, AQ„&———0.539X10 's cm', which is
the order of two percent of the measured moment.

TABLE I. Numerical results for quadrupole moment and
normalization integrals. The coupling constant go/4z. has been
chosen equal to 10.

IV. FINAL REMARKS

As in all treatments of the two-nucleon problem which
make use of the adiabatic approximation, the validity of
the results depends upon the justification of the use of
the hard-core wave function. With this proviso, how-

ever, it appears that the Tamm-Dancoff method provides
a means of computing mesonic contributions to charge
density effects which is rapidly convergent. In fact, the
rate of convergence for these effects, as shown in
Table I, is considerably more favorable than that for the
nuclear potential itself, since the second moment of
BU /BW is less singular in the interaction region than V'

itself.

+ (e "/x')
I
3x'+2x'+8x+4], (44)

f'g'i ( l l'
14~2 ~

«&te
I

—
I

&4~) lm) & & )
X I 7(Kr/x)s —(7/2)KpKr/x]

Core: S—S
S—D
D—D

Hulthen S—S
S—D
D—D

Order

Quadrupole
moment

( &&10» cm2)

0.974—0.435
0.115

1.177

Normalization
integrals
(y1O2)

—0.289
5.136—0.778

—3.797

t'C'l't' lz )' t' f21'
44m ) &235) ~ E~)

Core:

+ ('e /x )[2x +5x+4]
&

(45) Core 5'—5'

S—D
D—D

eg4

Total eg2

Total eg4

—0.270—0.050
0.350

0.636
0.028

0.742—0.395
0.176

4.069
0.523

XL(71/2)(E /x)'+12Ko(K /x)+6Ko']

y (e '*/x')L —3x'/2x'+2x/4] . (46)

' J. M. Blatt and M. H. Kalos, Phys. Rev. 92, 1563 (1953}.We
are grateful to Dr. Kalos for giving us the use of his wave function
tables and to Dr. Sessler for correspondence relevant to the
numerical integrals performed,
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It is to be noted that the same techniques employed in
calculating the quadrupole moment can be used to
estimate the deuteron charge density radius. Here,
mesonic contributions may play a role in the interpreta-
tion of high-energy electron-deuteron scattering experi-
ments when these become accurate enough to give a
precision measurement of this quantity. One may also
employ the formalism of the paper for transition prob-
lems where meson currents play the dominant role at
high energies (over 100 Mev). Such work is in progress.

APPENDIX A. RELATION OF CHARGE DENSITY
TO QUADRUPOLE MOMENT

In this Appendix, we shall present the details upon
which the remarks following Eq. (22) of the text are
based.

To this end we consider in detail Eq. (24b), with the
substitutions indicated in Eqs. (25), (26), and (27), and
with all irrelevant multiplicative factors omitted, as
follows:

)
t 0Pdpdkdqb (P+q) a*(p—k+-,'q)

X [u*(p+-,'P —k+q)A+(y+-', P—k)

Xypypu(P+-, 'P) ji[u*(-',P—y+k)ypypu(-, 'P —P)]2

Xa(p) 5(P)82/Bg;Bq, b(q) 8;8;A 0'~ p

X{pi(k)[W—0(p+2'P —k) —0(-2'P —p) —pi(k) j
X [W—0(p+-2'P —k+q) —0(-,2P—p) —pi(k)]}—'. (A.1)

At this stage one performs an integration by parts
with respect to q. One then has four classes of terms to
consider. There are terms in which one or more deriva-
tives acts on 5(P+q). All of these vanish quite inde-
pendently of the adiabatic limit since on the one hand
single derivatives give rise to vanishing odd integrals
and the double derivatives when integrated pick out
only the trace of 8;cj,Ap

~
0, which vanishes since there

are no sources of the external field in the nucleus. Next,
there are the terms in which one or more derivatives act
on an energy denominator. These can all be shown to
have vanishing adiabatic limits and represent recoil
corrections not evaluated explicitly in the text. The
derivatives acting on the spinor u*(yi —k+q) also give
rise to recoil terms dropped in the adiabatic limit.

Hence, we are left with the term in which both
derivatives act on the amplitude a(y —k+2q), Eq. (28)
of the text. Transforming this term to coordinate space
will readily convince the reader that this is the contribu-
tion to the quadrupole energy defined as in Eq. (23).
The structure of Eq. (A.1) is general enough to indicate
that the argument will go through similarly to any order
in g2. We therefore conclude that in the adiabatic limit
it is correct to compute charge density sects from
8V'/8W, as we have done.

W—5 (p) —5 (p') —
&u (k), (8 1)

occurring in BV'/BW, have been set equal to —&u(k).
This has been done under the assumption that

LW —5(p) —0(p') j/~(k)«1, (8 2)

and since in the deuteron this ratio is of order p/M, we
do not expect modifications of the effective exchange
operators based on the inclusion of recoil terms to make
substantial alterations in our results.

However, another entirely different approach to recoil
terms can be given in the Tamm-Dancoff formalism
along the lines of what Deser' has done for the covariant
equation. In this approach one assumes that the static
nuclear potential binds the deuteron, i.e., one solves Eq.
(10) of the text in the adiabatic limit, and then one adds
both the electromagnetic field and the "recoil potential"
as perturbations on the system. If one now applies
perturbation theory, it is evident that cross terms be-
tween the velocity dependent potential and the electro-
magnetic field will make a contribution to the exchange
moment energies. It is interesting to follow this idea
through in detail in our formalism since we shall succeed
then in making connection with Deser's results.

To this end we consider a typical contribution to U' as
given, for example, by Eq. (23a) of the text, with the
structure,

g (7075)1&1' &2(|'075)2

(8.3)
(22r)5 200(k)[W—0(p' —k) —0(p) —pi(k)j

In order to separate the recoil effects in Eq. (8.3) we
write

[W—5(p' —k) —0(y) —~(k)j '
= —pi '+[W—5(p' —k) —5(y) 1

X (pi[W —0(p' —k) —0(p) —pi)} '. (8.4)

Thus by the "recoil potential, " V„', we shall mean all
contributions to V' such as Eq. (8.3) with the nucleon
energy denominators replaced by expressions like the
last term of Eq. (8.4).

By standard second-order perturbation theory the eg'
contribution to the electrostatic energy due to U„' and

APPENDIX B. RECOIL CORRECTIONS

The problem of the treatment of nuclear recoil in our
work has two aspects. There is the problem of de6ning a
suitable nuclear interaction from which the amplitude
a(yi, p2) is to be computed. In this connection we have
adopted the attitude that Eq. (10) has been solved with
suKcient accuracy so that a(pi, p2) actually contains the
significant facets of the nuclear motion in intermediate
states. There is also the occurrence of recoil effects in the
exchange operators themselves. Here we have uniformly
employed the adiabatic approximation in order to
facilitate our numerical computations. Thus all energy
denominators of the form
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Ao'(q) is given by

(0~ v, '~~&&~l v (lo&+&ol v )
l~&&~l v„'lo

AW=P . (8.5)
n 8'p —S

Here, Wp refers to the unperturbed deuteron energy and
the summation is over continuum states of the two
nucleon system. In order to get a manageable expression
for Eq. (8.5) we shall ignore interactions in intermediate
states and write for the continuum wave functions
indexed by momentum variables,

4-(p),po) =4, , ,- &p~po)

= (p') &p")&(p —p')~(p —p") (8.6)

where the N(p) are free-particle spinors. If we put in the
details we obtain as a typical contribution to Eq. (3.5),

ego t dy)dpodkdq
*(p, p+q)(vov *-&

&2~)0»I:~(k)3'

X(A0'(q)A+(po)yoyor'&ouo(yx k, y—0+k)

W —0 (p~) —0 (po+k)

LW —(p )—(p )hl:W —
&p )—(P +k) — (k)&

The principal point to notice is that the structure of
Eq. (8.9) is identical to that of Eq. (8.10), and differs
from it only by a factor of —2. If these two equations
are now added together, we get as a total expression of
the eg' electromagnetic energy exactly Eq. (21) of
Deser's paper. ' Hence, the burden of this appendix has
been to show under what conditions Deser's covariant
calculation and the three-dimensional configuration-
space approach reduce to each other, the transitions
having been made only by means of the two unveri6ed
assumptions contained in Eqs. (8.6) and (8.8).

(Ho+ H'+ He))

where II' is the free-meson Hamiltonian,

(C.1)

&'= —g Zo 2'(2V~)) 'rd" (voto)")e'" *'

X(~ + '), (C.2)

APPENDIX C. METHOD OF CANONICAL
TRANSFORMATIONS

In this Appendix, we want to explore the question of
the existence of exchange effects in the method of
canonical transformations. Thus we consider the
Schrodinger equation,

W 0(pl k) 0(P2)

LW 0(p)) 0&po) jl W 0(p)—k) —0(yo) —ot)(k)j
a"=—e P;(~,~„)(')A„(~;)-,'&Iy;*) (C.3)

(3.7)

to which must be added three terms of similar structure.
The subscript zero on ao (p),po) means that these ampli-
tudes are solutions of Eq. (10) of the text after the
adiabatic limit has been taken in the interaction kernel.

If in Eq. (8.7) we were to set all ratios of the form LSo) H'j= H'—(C.4)

that is, we ignore nucleon recoil in intermediate states
ab i)initio. Equation (C.1) is then transformed by means
of a sequence of canonical transformations designed to
uncouple components of 4 belonging to diferent num-
bers of mesons. The first of these is chosen according to
the equation

PV—0(p) —0(p') j/LW —0(p")—0(p"')j=1 (3.8) and is given by

and tape the adiabatic limit, Eq. (8.7) would become S(')=g Po P, (2V(oo') '*r)(")(popo)("e'"'*~
at once, X(+0)—a-)) ) (C5)
—2ego (I dpydpodkdq

(eo (p» po+q)
(2n-)' ~

The electromagnetic effects to this order are then
evaluated by taking the expectation value of

X&7070r '&1(A 0 (q)W(po)7070+ '&0 exp(S('&) H" exp( —S('&) (C.6)

X,(p,—k, y,+k)+ . .). (8.9)

po Fq. (8.9) we add the electrostatic exchange energy
computed directly from the adiabatic nuclear potential,
i.e., terms of the form

in the two-nucleon, no-meson amplitude. However, 5("
has the very special property that it can be written as a
sum of commuting operators belonging to distinct
nucleons, i.e.,

eg'
t

dygdyodkdq
(oo*(pi, po+q) and

S(» —S (»+.S (» (C.7)

LS,(»,S,(»j=0. (C.8)
'& (Ao'(q)A+( ) Hence Eq. (C.6) can be written

X 0(px—,po+ )+ ). (8.10) exp(S ('&) exp(Sx('))Q" exp( —Sq(')) exp( —S (»). (C 9)
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However,

with

H"=P; H,"
LH,",S,o&j=o, i' (C.11)

It is now evident from Eq. (C.9) that Eq. (C.6) contains
no exchange terms. In agreement with Villars, ' we would

have to include nucleon recoil to obtain a nonvanishing
result to this order.

If we now construct the next term in the sequence of
canonical transformations it can be shown that no
decompositions of the form of Eqs. (C.7) and (C.9) is
possible. Hence, there are adiabatic exchange effects in
the theory, but they are at least of order eg4.

PH YSI CAL R EVI EW VOLUME 99, NUM BER 3 AUGUST 1, 1955

Neutron-Electron Interaction
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The effective neutron-electron interaction is calculated with the cut-oG pseudoscalar meson theory and
neglect of nucleon recoil. Values of —7.1 and —8.6 kev are obtained for the meson contribution with two
different shapes for the cut-off function. The nucleon contribution is ambiguous in the cut-off theory since
the shape of the core charge is undetermined. It is shown that if the no recoil theory with cutoff is inter-
preted to be the limit, as the nucleon mass becomes infinite, of a relativistic theory with a cutoff, then the
contribution of the anomalous magnetic moment (or Foldy) term is not contained in our calculation. Since
the Foldy term alone accounts for the major part of the experimental interaction, the sum of pion and nu-
cleon charge contributions in this theory, if correct, should be at most of the order of a few hundred ev, or
an order of magnitude less than the pion part. Finally, a brief calculation is made to illustrate the fact that,
if spread out in a plausible way, the nucleon core charge could effect the needed cancellation.

1. INTRODUCTION

ECENT experiments at Brookhaven' give —eVO

= —3.86&0.37 kev for the effective neutron-
electron interaction energy, where the effective potential
Vo is assigned a radius equal to the classical electron
radius, and —e is the electron charge. Although the
weak coupling approximation to relativistic pseudo-
scalar meson theory with pseudoscalar coupling is in
qualitative agreement' with this value if the coupling
constant is fitted with the neutron anomalous magnetic
moment p,&, this theory must be considered unreliable
because of its inability' to give simultaneously the
experimental ratio of tt~/tet, where tt~ is the proton
anomalous magnetic moment. The neutron-electron
interaction and the neutron anomalous magnetic mo-

ment are closely related; one involves the interaction
of a slow neutron with a static electric Geld, the other
with a static magnetic Geld.

Our approach to the nucleon meson problem is re-

lated to that of Sachs, 4 who also neglects nucleon recoil.
The two treatments differ in that here a specific inter-
action is assumed, whereas his more general analysis is
independent of such details. For the present purposes
however, a more important difference lies in our belief

~ Now at the University of Rochester, Rochester, New York.
'Hughes, Harvey, Goldberg, and Stafne, Phys. Rev. 90, 497

(1953).
s B.Fried, Phys. Rev. 88, 1142 (1952).References are given here

to earlier calculations.
e L. Foldy, Phys. Rev. 87, 675 (1952); 87, 693 (1952).
4 R. Sachs, Phys. Rev. 87, 1100 (1952); 95, 1065 (1954).

that a theory without nucleon recoil should explain
only the "large components" part of the neutron-
electron interaction. The parameters of this theory
were thus Gtted to a set of data which is not equivalent
to the set of data used by Sachs.

These facts, and recent efforts to describe nucleon
meson phenomena by a no recoil cut-off pseudoscalar
meson theory, "make it of interest to examine the
neutron-electron interaction in this theory, because it
gives the nucleon anomalous magnetic moments fairly
well' without having any adjustable parameters. The
parameters were previously determined in pion-nucleon
scattering and photomeson production calculations.
The mesonic part of the electrostatic neutron-electron
interaction is as well defined in this theory as are the
nucleon anomalous magnetic moments.

In Sec. 2, the approximation is described and the
usual expression for —eVs is obtained [Eq. (2)]. In
Sec. 3, the meson charge density surrounding the neu-
tron is calculated by second-order perturbation theory,
and shown to be negative definite independent of the
choice of cut-off function. It then follows that the
mesonic contribution to —eVO is negative. This is
intuitively expected from a picture of the neutron
dissociating according to X E+rr . In Sec. 4, an
expression for the pion contribution to —eVO is ob-
tained LEq. (9)j which applies for the particular meson

' G. Chew, Phys. Rev. 94, 1748 (1954); 94, 1755 (]954).
e G. Chew, Phys. Rev. 95, 1669 (1954).' M. Friedman, Phys. Rev. 97, 1123 (1955).


