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Pion-Nucleon Scattering at High Energies*
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Juborutory of Nuclear Studies, Cornel/ University, Ithaca, 1Vem York

(Received April 28, 1955)

The pseudoscalar theory in the Tamm-Dancoff approximation is applied to high-energy pion-nucleon
scattering with a view to explaining the observed maximum in ~ -p scattering around 1 Bev as a resonant
interaction. The integral equation is solved for the D; state of T=-, which is attractive. The various
singularities in the kernel and the wave function are taken into account in a semianalytical fashion. A short
derivation is given of the complex intefral equation which takes the effects of meson production into account,
and it is solved in an approximate manner.

It is found that, contrary to the original expectation of a resonant interaction, the increase of Ds, g phase
shift over the Born approximation is not large. Also the eGects of meson production are not found to be very
significant over the energy range 1 Bev to 2 Bev. This last is contrary to the observations in this energy
range.

1. INTRODUCTION

'HE early Brookhaven experiments on the total
cross section for sr -p scattering indicated a

maximum near 1 Bev (laboratory system) in addition
to the (now famous) maximum around 200 Mev which
had been observed before. The latter one had been
successfully explained by means of the Tamm-DancoR
(T.D.) approximation in pseudoscalar theory, ' as a
resonant interaction in the state I';, ; (J=s, T=z) of
the meson-nucleon system. The success of the T.D.
approximation encouraged the belief that a similar
explanation of the maximum around 1 Bev might not
be unreasonable.

The basis for this expectation was, of course, some-
what weaker than in the case of the 6rst maximum
around 200 Mev. Firstly, the data were rather few (and
not too accurate), so that any detailed analysis (of the

type carried out for the "low"-energy case) had not
been feasible in this region. Thus the interpretation of
the high-energy region had to be based on rather general
considerations instead of more positive experimental
facts (which were available in the "low"-energy case).
Secondly, the maximum around 1 Bev was believed to
be much broader' than that around 200 Mev. Still it
was thought worthwhile carrying out an investigation
similar to Dyson's for this case as well.

The interesting feature of this "second" maximum is
that it occurs only in the sr -p cross section, un]ike
the previous case where both the sr+-p and sr=p cross
sections showed maxima at the same energy (~200
Mev); no maximum in (sr+p) scattering has been

observed in the region of 1 Bev.' Thus a possible

*Based on a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at Cornell
University.

t Now at the Department of Physics, University of Delhi,
Delhi, India.

'Dyson, Ross, Salpeter, Schweber, Sundaresan, Visscher, and
Bethe, Phys. Rev. 95, 1644 (1954); referred to as A.
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explanation of the "second" maximum would require
an isotopic spin state T=» rather than T= ~, since
the latter would contribute mostly to z-+-p scattering.
Now the most important feature of the T.D. method
(as has been clearly shown by Dyson's work) is that
it considerably enhances the Born approximation phase
shift for attractive states and reduces it for repulsive
states. Hence, in order to interpret the second maximum
as a one-meson resonance, one has to look. for some
state of T= —,

' which has an attractive interaction.
Now it can be shown generally' ' that for T=~, the
states of j=2ss+rs (where 'ss' is an integer) have an
attractive interaction, while for T=2 it is the states
j=2n —

2 which are attractive.
Among the states j=2n+-,', the states j=-', occupy

a special position because only in these states can the
meson be absorbed by the nucleon before the latter
emits one. As a result, these states exhibit self-energy
eRects due to the possibility of successive emission
and reabsorption of a meson by the nucleon, in the
framework of the T.D. formalism. Consequently these
states require a special renormalization which has been
treated by Dalitz and Dyson. ~ Qn account of these
special features these states are not expected to be
strongly attractive. (Moreover, their j- value is much
too small to account for the magnitude of the cross
section at the observed. maximum. ) This leaves as the
first strongly attractive states those of j=5/2. At an
energy as high as 1 Bev, it is reasonable to consider
states of such high j; indeed the large cross section
observed around 1 Bev ( 50 mb) requires a j at least
as high as this.

Now for a given j, the state with l= j—~ has always
the stronger interaction; for /= j+rs the interaction
begins to be important only in the relativistic region
(but cannot exceed the former). So one may expect the
j9; state to be the more important one, rather than I'~.

For the same reason one would not expect important
effects from the Di state of T=ss (which would,

' Bethe, DeHoffman, and Schweber, 3desoms assd Fields (Row,
Peterson and Company, Evanston, 1955), Vol. 2.

& R. H. Dalitz and F. J. Dyson, Phys. Rev. 99, 501 (1955).
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moreover, contribute predominantly to m.+-p scattering).
Having thus decided on this choice of the state to

be considered, we shall take the paper of Dyson et al. '
as basic and freely use the various equations and
formulas of this paper with the same notation as far
as possible.

2. NECESSARY FORMALISM

From Eqs. (23), (27), and (27a) of A, we find that
the wave function f(p) of the Dg, ; state satisfies the
equation:

$2

important part, and their eRects should therefore be
taken into account.

The Eq. (15) of A (before angular integration)
suggests the modification necessary for including meson
production eRects. We find that one of the terms in the
kernel (corresponding to the (1,2) state) involves an
energy denominator E—E~+,—~„—co, which can vanish
only for E &~M+2p. Now in Eq. (A15), the integral is
evaluated as a principal value, representing standing
waves. To include the eRects of meson production, we
should now add an outgoieg two-meson wave to the
one-meson equation (A15) through the modi6cation:

f(p)=2),L~(p, s)
(En~nE ~ )'

f(s)
b(E E )yp (1) where

E Eg Ala

P — r]].m
Eg ' Eg+ie

1
=P +iirb—(Eg),

+1

EI]=E 608 Goy Ep+s) (11a)
where

and

and e)0. The kernel therefore becomes a complex
function of p and s, and in place of (1), we now have a
comp/ex integral equation of the form:

Lg(p, s) = —-,'[(E~+M) f (A —2M)Eg(C)
+(E M) '(~)~f+sP(E'+M) f(P)+iy(P) =2K ~ s'ds(E, (u,E &u ) l(Lg(P, s)

X {AEi(C)+(E+M)Ei(B))j. (3) "o

The other symbols are as de6ned in A. f(p) is related to
the phase shift according to the equation:

+iLg(p, s)) X b(E (o, E,)——

tanb = —mf (k). (4) +P (f(s)+i&(s)) (12)8 E8 GoaIt is somewhat more convenient to work in terms of
the quantities f&(p) and x de6ned as follows:

fi(p) = (E.~.)*'f(p),

x=E,+a), E. —

The transformations (5) and (6) bring (1) into the
form: where the I"„'s are the usual I,egendre polynomials.

It may be noted that the above modi6cation does not
change the 8-terms in (3). Thus we have:f~(p) =fe(p)+7 J~ L(p;)f~(s) (dxix),

The evaluation of Li(p, s) may be carried out by
(5) noting that, according to (11), the quantities E„(C) in

(3) Lsee Eq. (A22) $ are changed into

E„(C)+iver (2ps) 'P„L(c'—1—r')/2r j, (13)

where Li(p, s) = —ir(ps) 't (E„+M)(A—2M)P&(y)
L(p,s) = —2s(E,+(u,) 'Lg(p, s), (8) +spA (E,+M) 'Pi(y) j, (14)

fe(p) = —lb, (EpMp)lL(p, k), where

y = (c'—1—r')/2r. (15)
tanb= —ir (Ep(og)-if( (k). (10)

The important property of Li(p, s) is that it is zero
unless E=cu„+or,+E,+. as may be seen from the
appearance of the b function in (11). This condition
cannot be satis6ed for real values of e (angle between

p and s) unless both p and s are less than k in magnitude.
In particular, Li(p, s) vanishes on and above the energy
the energy shell (i.e., when p &&k or s &&k or both).

Transformation of (12) according to (5) and (6)
leads finally to the equation:

fi(p)+i&~(p) =fe(p)+) J fL(p&s)

+iL'(p, s)) t f, (s)+i/, (s)](dx/x), (16)

The quantities f~(s) and L(p,s) should now be regarded
as functions of x rather than s. This has the advantage
that the singularity at @=0 can be evaluated very
simply in a semianalytical manner, without introducing
any complexities elsewhere.

So far, the Eqs. (1) or (7) do not take account of
the possibility of meson production. However, if the
total energy of the system is suSciently large, the latter
process becomes energetically possible (threshold energy
in the c.m. system being only E=M+2p), and its
importance increases with energy. Since the energies
to be considered are rather large (~&1 Bev), it is
expected that these reactive processes will play an
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where
L+iL'= 2s—(E,+oo,) '(Li+iLs). (17)

A similar expression holds for N. We now have the
following expressions for the E„-functions:

o;~(j,T) =2~%(2j+1)B[(1+B)'+A] '. (20b)

For the state T= —'„ the contributions to (s p) scattering
are anally given by:

The quantity fii (p) in (16) is purely real and is given
as before by (9), since L'(p, k) =0 (from what has been
said in the last paragraph).

The complex phase shift 8+it) is now given by:

«n(&+it)) = —s (E&co&)-lLfi(k)+inst(k)] =A+iB. (18)

The contributions of a particular state (j,T) to the
total cross sections (elastic and inelastic) are'

o.,&(j,T)=n4'(y+ s) ~
exp(2ib —2tl) —1

~

', (19a)

'-U T)= ~'(j+l)L1—exp( —4n)] (19b)

In terms of the quantities A and B of (18), the
cross sections are easily seen to be:

oct(f ~T) ='2vrV(2 j+1)(A'+B') L(1+B)'+A'] '~ (20a)

&s(C) = s(sp) '»[(1+o)/(1 —o)]; (23a)

& (C) =y&o(C)+-:(1—)/ P; (23b)

Ks(C) = syEt(C)+4c/E' ——,'Es(C); (23c)

Es(C) = (5/3)yEs(C) —
—s,Et(C) —-', cr/E'. (23d)

Exactly similar expressions hold for E„(B).'
For small values of u and v, the logarithmic terms

inL(1+v)/(1 —e)] and 1nL(1+I)/(1 —I)] can be ex-
panded in ascending powers of these parameters and a
certain number of terms may be retained, depending
on the accuracy needed. On the other hand, for

~
tt~ or

~

I
~

&~ s, the closed forms are more suitable for numerical
work.

The asymptotic behavior of the kernel can be
obtained by expanding in powers of (p&/p&) (where

P& and P& are respectively the smaller and larger of

p and s). Following the procedure of Bethe and others, t

one has the following asymptotic form of L(p,s), for
the case of j=l+—', :

o.i(~ p) = so.~(j,s),
o -(~ P)=so'-U, s)

L(p, )=lp 'L» :(p/)+=H+ :(p/)], -( &p); (24)

(21) where

H„(x)=ln(1+ x) —x+-'x' — + (—1)"x"/e. (24a)
3. KERNEL OF THE INTEGRAL EQUATION

The solution of the complex integral equation (16)
is an extremely complicated process, since it appears in
a coupled form when the real and imaginary parts are
separated out. It is more feasible first to solve the real
equation (7) (which does not take account of meson
production) and then to use this solution as a basis
for the more general case of (16). Even for the simpler
case of (7) a completely analytical solution is virtually
impossible, and a semi-analytical approach seems to be
the most that can be done. For this purpose, it is
useful first to discuss some of the important features
of the kernel L (p,s). L (p,s) contains the various
functions E„(b) and E„(C)which have been defined in
A. It is useful to express these functions in terms of the
parameters u and v defined by:

—X/Q'= 2
e(1—e) sin~e e(1—e)

+22 (-1)' +
ks —es k' —(1—e)'

Retaining the most important terms in the expansion
of H„(x) for

~

x
~
(1, one finds that (24) reduces to the

following expression (l= 2):
L (p, s) =38/405 (p/s)'+0 (p/s)4. (24b)

Using (24), one can derive the asymptotic behavior of

fi(p), assuming ft(p)~p ", (e)0), and substituting
in (7) to determine e in terms of X. This relation is
given by':

where
I= r/(1+5), v= r/(1+c); (22) +( 1)i+-:

-(j+l)'—e'
c=C/E, fi= B/E;

E= sÃ(P+s)+E(p —s)];
C= co,+co,—E, r = sp/E'.

(22a)

(22b)

(22c)

Thus, explicitly,

o=sp/E(E+C) = {E(p+s)
E(p s))/{E(p+s)+E(p—s) —2C). (22d)——

J. M. Blatt and V. F. Weisskopf, Theoretical 37uclear Physics
(John Wiley and Sons, Inc. , 1952), Chap. 8.

(25)(j+-:)'-(1—e)'-

Using the argument of Bethe et a/. ,
4 one can derive

from (25) an upper limit Xs on the value of X, from the
requirement of square integrability of the wave function
which demands that e)—', . This "critical" coupling
constant (4s)ts) is obtained by putting e=~t in (25)
(limit of normalizability) and using the values of

7 Dalitz, Sundaresan, and Bethe, Proc. Cambridge Phil. Soc.
(to be published).
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j=5/2 and Q'= —1. This gives finally:

4v Xo=Go'/(4s. ) = 176.8. (25a)

If p is kept fixed and s varied, then for s=0 we have

E+C=E(p)+co(p)+p E.— (28)

It may be noted from the expressions (23) that the
functions E„(C) are real as long as ~v~&1, diverge
logarithmically when e =~1, and become complex
when tv ~

)1.' Thus the imaginary part of the kernel
vanishes except when

~

v
~
)1. This gives a simple

criterion for the existence of the imaginary part. For
the energies we shall consider, ~u~ is always less than
unity, so that E„(8) is 'always real. Moreover, for the
real equation (7), 1n» is replaced by 1n~»~, where
»= (1+v)/(1 —v).

Since
~
v

~
)1 makes the kernel complex this condition

must be equivalent to the possibility of simultaneous
production of two mesons, of momenta p and s, with
conservation of energy. Such production is possible if,
for some relative direction of p and s, the energy
conservation equation )see (11)j,

E(p--)+~(p-:)+f =E, (28a)

and is always somewhat smaller than k.
The nature of the kernel is quite different according

as p ~&or )p, . For p &~p, , v can vary from —~
to +~, so that the E„(c) functions have logarithmic
singularities. Thus for such values of p the kernel is
expected to show rather large variations as a function
of s. On the other hand, for p)p, , ~

v~ is less than
unity for all s, so that the kernel is expected to be a
smooth function.

The quantity L(P,s) was first tabulated numerically

by programming it for the Card-Programmed-Computer

Production of an additional meson s together with p
is only possible if the expression (28) is negative which
will only be the case if p &p,„,where p, is defined

by:

E(p+s)+oi,+to„=E, (26)

E(p s)+C ~& 0—&~E(p+s)+C, (26a)

where C is defined in (22c). But according to the
definition (22d) of v, v= &1 means that

E(P&s)+C=E(P&s)+tov+td, E=0. (2—7)

This equation is clearly equivalent to the two
limiting cases of Eq. (26a). It can then easily be shown

that the energy equation (26a) can indeed be fulfilled

if and only if
~

v
~

~& 1.
The region in which the kernel is complex is then

the one between the two curves in the p —s plane defined

by Eq. (27), with the —and + signs in E(p+s)
respectively; they are plotted in Fig. 1 for the case
k = 1.0M.

l.O

g .6
Ii

.6
=P

.8 &m'o

FrG. 1. The curves v= ~T; the shaded portion between the curves
is the region of meson production.

' This follows from the relation:
In((1+v)/(1 —v)/= in [ (v+1)/(v —1) ) +iv., for

~
v

~
& 1.

can be fulfilled. This is obviously the case if, for the

given p and s,

A)60
Ltp,s)

%48

Fzo. 2. The function L(p, s) as a function of s, when p&p,
and k=1.03I. Curves (1), (2), and (3) correspond respectively
to p=1.0', p= 1.4M and p=2.0M.

(C.P.C.) situated at the Cornell Computing Center.
Two diferent initial C.M. momenta, &=0.7M and
k = 1.0M were considered. These correspond respectively
to 1.135-Bev and 2.128-Bev meson kinetic energies in
the laboratory system. For each of these two energies,
the kernel was programmed as a function of the
"variable" s and the "parameter" p. Use of two diGerent
"instruction fields" greatly facilitated the programming
for ~v~)-', and (v~ ~& a respectively. The regions where
the kernel was expected to show rather marked varia-
tions (according to the previous paragraph) were given
due weights by taking smaller intervals of s and p for
them. For the asymptotic region (large s) the behavior
of the kernel, as given by (24a) was taken as a rough
indication of the maximum value of s needed for a
given p, with the specification that the least tabulated
value of L(p,s) (for given p) should be about 1% of
its maximum value.

Some typical curves are shown in Figs. 2 and 3.
For p) p,„, Fig. 2 shows that the kernels are indeed
smooth functions of s, with fairly well-defined maxima
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at roughly s= p. There is a tendency for these peaks
to be somewhat broader as p is increased.

Figure 3 shows that for p&p, the kernel has
logarithmic singularities. There is a fairly deep min-
imum in between these singularities. The signularities
shift towards the left as p is increased, and 6nally
disappear at p= p

4. SOLUTION OF THE REAL EQUATION

For a solution of the integral equation (7), it was
necessary first to transform it into a set of linear
simultaneous equations in suitable parameters repre-
senting the wave function. Because of the presence of
various singularities it was thought somewhat more
convenient (and probably safer) to use a semianalytical
approach by 6tting simple functions of the appropriate
type to the numerical data representing the kernel,
instead of taking only those discrete points at which

the kernel had been tabulated. This procedure permitted
the integrations over singular regions to be carried out
in a relatively simple way. It is particularly useful for

p&p, , though not so much for p)p, . However,
since the procedure of curve fitting turned out to be
very much simpler for p) p, , it was decided to adopt
the same procedure throughout.

As already noted, it was found convenient to work
in terms of x(=E,+~, E) rather than —s. This makes
the integration over the singularity at @=0 a fairly
trivial matter.

Since it was not possible to represent L(p,s) by a
single function of x over its entire range (without
sacrificing a considerable amount of accuracy), the
latter was broken up into several suitable intervals in
each of which the kernel could be represented accurately
by simple functions of 'x'. It was expected that the
number of intervals should increase with k in order to
achieve the same degree of accuracy; therefore it was
decided to take 4 intervals for k=0.7M, and 6 for
k= 1.03f.

The wave function fi(p) could be conveniently
represented in the corresporidirsg intervals by means of
simple analytic functions of a similar type. As regards
the shape of fi(p), the function L(p, k) (which is just
the Born approximation fear(p), apart from the factor
—X(EI,a&I,)&, was taken as a rough indication. The
assumption of similarity between L(p,k) and fi(p) is

probably not unreasonable at moderate energies, but
may not be valid for larger ones. However, as long as
the number of parameters used to represent fi(p) is
reasonably large, the assumption of a particular shape
(like the one mentioned above) should not make any
important difference, especially since fi(p) cannot have
any unphysical singularity (being a wave function).
For p) p, it was found that the functions L(p,s)
as well as L(s,k) could be represented very accuractely

.28
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.2 4 .8 .8 t
I.O

I
1.2

I

I.4 1,6 I.8

Fio. 3. L(p,s) as a function of s when p&p and k=1.0M.
Curves (I), (2), and (3) corresponding respectively to p=0.4M,
p=0.6.V and p=0.8M.

by simple quadratic functions of x for moderate values
of s and by functions of the type

ft (s) =n/x+P/x'+y/x' (29)

in the asymptotic region. This conclusion was thoroughly
checked for all the values of L (p,s) (p) p .) which had
been tabulated. This gave a basis for the choice of
functions needed to represent fi(s).

As for p&p, , there were some additional complica-
tions on account of the appearance of logarithmic
singularities in L(p,s) at the values of s corresponding
to v=+1. To take these features into account, it was
necessary to use functions which would have the
correct singular behavior of L(p,s) at the appropriate
places. With some trial and error it was found that
L(p,s) and (p &p ) could be represented in the
neighborhoods of @=1 and e= —1 in the form:

L(p,s) =a+tx+cx'+(»+Ca)»11+~xI, (30)

o. being so chosen that the function would diverge
logarithmically at the value of x corresponding to
@=+1 or v= —1 as the case might be. A term like
le~ 1+nx( was not considered in (30) in order to avoid
integrals involving Spence functions. The function (30)
was thoroughly checked to give the correct shape of

L(p,s) near the singularities and the addition of a term
like A in~ 1+nx~ was not found to improve the fit in

any signi6cant way.
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TABLE I. Representations of the wave function f&(s)
as a function of x.

k =0.7M (1.135 Bev)
Interval f1(s)

(1) 0 ~& s ~& 0.5 aI +bix+cfx2
(2) 0.5~(s~(0.9 a+bx+cx~
(3) 0.9~(s~(1.5 a+Px+yx~

- (4) 1.5~(s~( ~ aI/x+PI/x2+y1/x3.

k =1.0M (2.128 Bev)
Interval fI(S)

(1) 0(s(0.4
(2) 0.4&s(0.8
(3) 0.8~(s~(1.2
(4) 1.2(s(1.7
(5) 1.7&s&2.5
(6) 2.5&(s~& ~

a2+b2x+c2x2
c1+bIx+ctx2
a+bx+cx2
a+px+yx2
a1/x+pI/x~+y I/x'
~2/x+p2/x2+~2/x3.

L(p,s) was tabulated for the following values of p:
k =0.7M:p= 0.2, 0.5, 0.7, 0.9, 1.2, 1.5, 2.0, 3.0;
k= 1.0M:p= 0.2, 0.4, 0.6, 0.8, 1.0,

1.2, 1.4, 1.7, 2.0, 2.5, 3.5, 5.0.
(31)

TAsz.z EI. Calculated phase shifts.

k =0.7M (1.135 Bev)
G~/4m tanB

tantra

15 0.1961
10'. 0.5032

0.1777
0.3676

k =1.0M (2.128 Bev)
tanb tanya (tanb) mod

0.3762 0.3722 0.4075
1.1164 0.7700 1.5380

The various functions were then represented in
accordance with the general scheme described above
for the two cases p &p, and p) p,„.

The wave function fr(s) was represented as in Table I.
The continuity conditions on fi(s) are as follows:

(1) f&(s) sho'uld be continuous at the junction of
two successive intervals,

(2) ft(s) should vanish at s=0 (since both f~(p)
and L(p,s) vanish at p=0).
These conditions reduce the number of independent
parameters in Table I to 8 and 12 respectively and
these are just the number of "data" represented by (31).

The integral equation (7) was converted into a set of
linear equations in the parameters representing fi (s) by
carrying out the integrations with the help of (29), (30)
and Table I, in a straightforward way. These equations
were then solved for two diGerent values of 'A, corre-
sponding to G'/(4s. )=15 and 1(hr. The results for the
phase shifts so obtained are summed up in Table II
below, which also includes tanb~.

Table II shows that the percentage increase in the
phase shift over the Born approximation is small
even for G'/(47r) as large as 10s. The quantity tan8& was
calculated for intermediate energies k =0.8M and
k=0.9M as well.

Figure 4, which exhibits (sA) tanbii ——L(k,k) (inde-
pendent of X) as a function of k, shows that the quantity
is strictly monotonic in k. This behavior of L(k,k),
together with the fact that the percentage increase of
the phase shift over the Born approximation is not
large, suggests strongly that the exact phase shift also
increases monotomically in the entire range from
k=0.7' to k=1.03f, rather than, for example, passing

through a maximum at some intermediate energy.
In view of this result it was not thought necessary to
calculate the exact tanb for the intermediate energies,
but its value was obtained by a simple interpolation
formula assuming that tan5/tan8ii is linear' in k. The
curves for (mX) ' tan8 which are drawn in Fig. 4 are
thus based on the equation tanb= tan8&(a+bk).

The wave functions obtained from a solution of the
simultaneous equations are shown in Figs. 5 and 6 for
the two cases k=0.7M and k=1.0' respectively. The
quantity actually plotted is g(s) = —lI '(EgoA) '*fr(s).
The corresponding quantity in the Born approximation
(also shown) is gn(s)=L(s, k), independent of X. This
allows a direct comparison of the percentage change in
the wave function for diferent values of X.

Figure 5 shows that for the lower energy (k=0.7M)
the e8ect of the integral equation is to increase the peak
and to push the entire wave function somewhat towards
higher momenta. This only means that the region of s
above the energy shell plays a more important part
than the Born approximation form indicates. Apart
from this feature, ft(s) seems to be similar in shape to
fz(s) The be.havior is qualitatively the same for both
the coupling constants; only the eGect is more pro-
nounced for the larger one.

The situation seems to be qualitatively diferent,
however, for the case k=1.0M, as one sees from Fig. 6.
Here the exact function g(s) has sharp oscillations
below the energy shell which are not present in gn(s).
This seems to contrast sharply with the situation
encountered for k=0.7M, where no such oscillations
are perceptible. The behavior is again qualitatively
similar for the two coupling constants.

It appears that the oscillations in g(s) in Fig. 6 may
be due to the peculiar shape of L(p,s) for p&p,„, as
may be seen from Fig. 3. The importance of this region
apparently increases with energy (see Figs. 5 and 6).

An explanation of these oscillations was attempted
by looking for the second Born approximation which is
given by:

(32)

It was expected that if the Born approximation were not
too inaccurate, this quantity should approximately
represent the difference between fr(s) and fB(s), and
hence show large oscillations in the appropriate region.
The quantitative evaluation of the integral (32) did
indicate oscillations in this quantity below the energy
shell, but they were found to be too small to account
for the actual difference between fr(s) and f~(s)
Apparently, Born approximation is too inadequate.
The solution of the integral equation apparently
amplifies the oscillations to a large extent (and also
shifts the wave function generally to the right).

' This approximation is justified since the percentage increase
over tanb~ is small, i.e., the phase shifts are far from resonance.
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TABLE III. Valuea Of A+SB= —s'(E~Z) &pf&(k)+Sf&(k)g
= tan (S+s&).

G~/4
k =0.7M k =1.0M

0.19613
0.50324

0.00425
0.06810

0.39638 0.05566
1.23990 0.60517

to evaluate the quantity:

4~(p) =) L'(p, s)fr(s)(d~/~), (35)

which plays the role of f&(p) in (7). This can be
obtained by simple quadrature with fr(s) and L'(p, s)
(which is defined by (14) and (17)).From (26), we can
deduce immediately that the parameter y= (c'—1—r')/
(2r) is simply equal to cos9, where 0 is the angle between

y and s. Thus y should lie between —1 and +1 for real
values of 0.

Solution of Eq. (34) in a straightforward manner gave
results for the complex phase shift (defined by (18)),
which are listed in Table III. A comparison of the
relative magnitudes of 3 and 8 shows that the latter
increases fairly rapidly with energy and coupling
constant. These figures serve to give a general idea of the
relative importance of the effects of meson production
at these energies, as predicted by the T.D. method.

For a discussion of the validity of our "decoupling"
approximation, it is enough to confine our attention to
k=1.0M, since Table III shows already that the
approximation is quite good for the lower energy.

An iterative procedure was employed to check the
approximation. The last term of (33) was evaluated on
the basis of the solution for gi(s) as obtained from the
simplified equations. This term was then included in

fz(p) and the equation was solved for f&(s) for both
the coupling constants 15 and 10m. The "modified"
phase shifts so obtained are listed in Table II which
shows that these quantities are larger than the previous
ones. The change is small for G'/4s. =15, but quite
significant ( 20%) for G'/4s. =10s.. However, even
for the latter, the increase is not so large as to invalidate
the interation procedure itself; (one might need a few

more interations).
The "modified" wave functions are plotted in Fig. 6

alongside the unmodified ones. As might have been
expected, the modification mostly affects the region
helot the energy shell, at least for the lower coupling
constant. The effect is of course much more pronounced
for the larger coupling constant, where even the region
above the energy shell is significantly affected. The
general tendency is to increase the importance of the
region above the energy shell, indicating a somewhat
stronger interaction than the real integral equation
alone implies.

TABLE IV. Theoretical cross sections in mb.

k =0.7M
(lab energy =1.135 Bev)
G2/4~ =15 G~/4~ =10~

k =1.0M
(lab energy =2.128 Bev)
G'/4' =15 G2/4' =10m-

0.g(~ p)
o; (s. p)

0.834
0.092

4.196
1.108

1.400
0.4866

5.166
1.635

"This is because of the factor X' in the cross section."N. M. Kroll and M. Rudernran, Phys. Rev. 93, 233 (1954).
'4 F. Low, Rochester Conference Proceedings, 1955 (un-

published).

0. DISCUSSION OF THE RESULTS

The significant feature of the results derived in the
previous sections is the total absence of any resonance
over a wide range of energies and coupling constants.
If the maximum in the s. pc-ross section near 1 Bev
were indeed due to a one-meson resonance, the value
5=90' should have occurred at an energy somewhat
higher than 1 Bev,"and the range of energies considered
here would have been sufhcient to locate such a point.
On the contrary, the results obtained in the previous
sections strongly suggest that the phase shift for the
D;, ~ state increases monotonically over a wide range of
energies and coupling constants, without ever reaching
90'.

As shown in the introduction, the state chosen for
the purpose of the present investigation seemed the
most plausible one theoretically as a one-meson resonant
state. It is unlikely that any other single meson state
of the ~ psyste-rn will give any better results of the
type desired. Thus we are forced to conclude that it is
apparently not possible to explain the second maximum
in terms of single meson resonant states like P';, ;.

If the D;, ~ state were considered as an isolated
problem, G'/4s- could have been taken arbitrarily
large, subject only to the condition that G'/4s-(Gs'/47r
LEq. (25a) j, and it is quite conceivable that a resonance
would have been obtained for a fairly large value of
G'/4s- (but less than 176.8). The more important
consideration, on the other hand, is how far the coupling
constant so obtained is compatible with other conditions.

Increasing evidence has been accumulating in favor
of the value G'/4s. =15, ever since it was determined
from the P,*, ~ resonance. ' A considerable theoretical
basis for the interpretation of experimental results in
terms of the coupling constant has been provided by a
theorem of Kroll and Ruderman" and the recent theory
of I-ow." These questions are discussed in detail in
Bethe's forthcoming book. It now appears that even a
value of 20 for the coupling constant is too high, and
we are certainly not justified in considering any value
greater than 10m.

For a direct comparison of the experimental results
with the theory, we have evaluated the cross sections

Lusing the formulas (20) and (21)] which are described
in Table IV.
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YOLK V. Experimental cross sections.

Process (7r +P~)
Cross sections (mb)
1.0 Bev 1.5 Bev

1. Diffraction scattering
2. Elastic (large angle)
3. Inelastic processes

14
5

28-33

7
2

26

"O. Piccioni (private communication).
"W. Walker, Proceedings of the Fifth Annual Rochester Con-

ference on High Energy Physics, 1955 (to be published).
' 0. Piccioni, Proceedings of the Fifth Annual Rochester

Conference on High Energy Physics, 1955 (to be published).

The experimental curves for the total cross sections""
show a maximum of about 50 mb at 1 Bev in ~ -p
scattering. The m+-p scattering at this energy is about
30 mb. From this one estimates the T= —,

' contribution
to ~ -p scattering to be 10 mb. This leaves about 40
mb to be explained by the state T= —', . Unfortunately
the values given in Table IV are much too small to
account for this magnitude.

It may be worthwhile analyzing this large discrepancy
in terms of elastic and inelastic contributions. According
to Table IV, the reactive cross section is rather small
compared with the elastic contribution, though the
former increases with energy. However, even at
k=1.0M, the ratio o; /o. ,i is only rs. The various
contributions to the cross sections estimated from the
experiments of Walker, " Piccioni, " and others are
given in Table V.

Comparison of these figures with those in Table IV
shows that the discrepancy is very much larger for the
inelastic processes than for elastic ones. The calculated
ratio o;„/&r.i i.s too small to account for the observed
ratio of 1 at 1 Bev and 2 at 1.5 Bev.

It may be noted from Table V that most of the
contribution to the elastic events comes from diGraction
scattering (confined to small angles). The large angle
scatterings are mostly inelastic. Now a large number of
angular momentum states make comparable contribu-
tions to diGraction scattering, so that even large
/-values are important for this process. On the other
hand, we have assumed only one / value (l= 2), so that
this process has not been adequately treated in our
theory.

It has been suggested by the Brookhaven group that
a possible explanation may be based on a two-meson
interaction. As the experiments indicate, the cross
section for the production of a meson increases very
rapidly with energy. If the total available energy is
shared in comparable amounts by the various particles
concerned, the conditions may be such that around 1

Bev, one or both the mesons are in a resonant P;;
state with the nucleon. Walker's" measurements of
the momentum distributions of the scattered mesons
at 1 Bev and 1.5 Bev, respectively, throw some valuable
light on this point. His analysis shows only one peak
(at p 350 Mev/c) for the 1-Bev mesons and two
distinct peaks (at p 300 Mev/c, p 600 Mev/c) for
the 1.5-Bev mesons. This gives support to the argument
that at 1 Bev, both the Inesons are at the same resonant
state with the nucleon. Assuming therefore a P;;
resonance, it follows that at 1 Bev, one essentially gets
the square of the enhancement factor which comes from
the P;, ~ state, and this is probably enough to explain
the large magnitude of the cross section at 1 Bev.

One difficulty about this explanation is that there is
no simple reason why this enhancement will aAect
only the T=-', state and not T=-,'. According to Ross,"
the P;, ; state might still account for the peak at 1 Bev,
but only if the subsequent scatterings of both the mesons
by the nucleon are important.

An explanation which avoids the enhancement in the
T=-,' state has been recently proposed by Dyson. "
According to him, a "particle" with a strong interaction
with the nucleon is probably formed when the m-meson
strikes the target. This particle which is assumed to
have a mass of about 1000m, and an isotopic spin
T=O decays into two m mesons with an unobservably
short lifetime. This picture can explain why the 7=-,
scattering can be very large in several angular momen-
tum states simultaneously, without affecting the
T=-,' state. It may be noted in this connection that a
calculation performed some time ago" indicated an
attractive interaction between two mesons in a state
T=O. It is therefore suggested that a more detailed
study of this interaction may prove useful in this
connection.
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